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Abstract: High-spatial-resolution urban buildings play a crucial role in urban planning, emergency
response, and disaster management. However, challenges such as missing building contours due
to occlusion problems (occlusion between buildings of different heights and buildings obscured
by trees), uneven contour extraction due to mixing of building edges with other feature elements
(roads, vehicles, and trees), and slow training speed in high-resolution image data hinder efficient
and accurate building extraction. To address these issues, we propose a semantic segmentation model
composed of a lightweight backbone, coordinate attention module, and pooling fusion module, which
achieves lightweight building extraction and adaptive recovery of spatial contours. Comparative
experiments were conducted on datasets featuring typical urban building instances in China and
the Mapchallenge dataset, comparing our method with several classical and mainstream semantic
segmentation algorithms. The results demonstrate the effectiveness of our approach, achieving
excellent mean intersection over union (mIoU) and frames per second (FPS) scores on both datasets
(China dataset: 85.11% and 110.67 FPS; Mapchallenge dataset: 90.27% and 117.68 FPS). Quantitative
evaluations indicate that our model not only significantly improves computational speed but also
ensures high accuracy in the extraction of urban buildings from high-resolution imagery. Specifically,
on a typical urban building dataset from China, our model shows an accuracy improvement of 0.64%
and a speed increase of 70.03 FPS compared to the baseline model. On the Mapchallenge dataset,
our model achieves an accuracy improvement of 0.54% and a speed increase of 42.39 FPS compared
to the baseline model. Our research indicates that lightweight networks show significant potential
in urban building extraction tasks. In the future, the segmentation accuracy and prediction speed
can be further balanced on the basis of adjusting the deep learning model or introducing remote
sensing indices, which can be applied to research scenarios such as greenfield extraction or multi-class
target extraction.

Keywords: remote sensing images; lightweight; context information; adaptive recovery;
building extraction

1. Introduction

Efficient extraction of buildings from remote sensing images can provide geospatial
data of buildings with wide coverage, clear spatial information, and fast update speed
for urban planning, disaster management, and other scenarios [1–7]. With the continuous
progress of remote sensing technology, researchers use building feature information in vari-
ous multi-temporal high-resolution remote sensing images to discriminate and manually
extract urban buildings by visual interpretation and manual labelling [8,9]. However, due
to different lighting conditions, some non-buildings (containers, cars, and roads) may have
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similar spectral and spatial features to buildings; visual interpretation may then misjudge
buildings, which leads to mislabeling of non-buildings by manual annotation, resulting in
poor building extraction [10–12]. Therefore, researchers are trying to use better methods to
improve the building extraction accuracy.

Presently, researchers primarily extract building information from remote sensing
images using both traditional and deep learning methods. Traditional methods for urban
building extraction from remote sensing images include clustering algorithms, support
vector machines, and random forests, among others [13–15]. Gavankar et al. devised an
object-based approach that leverages high-resolution multispectral satellite images, combin-
ing K-means clustering and shape parameters to extract building outlines [16]. While this
approach combines pixel-level information with object-level features, thus improving the
accuracy of building extraction, clustering algorithms may struggle to differentiate between
buildings and other features when they share similar spectral characteristics in complex
background environments. Arham et al. explored object-based image analysis methods,
combining support vector machines (SVMs) with rule-based image classification for build-
ing extraction tasks [17]. SVMs can provide relatively high precision in building extraction,
especially with appropriate feature engineering and parameter tuning, even in complex
urban settings. However, an SVM’s performance can be limited by factors such as noise and
occlusions (e.g., trees, clouds, and tall buildings), especially when extracting fine-grained
building outlines. Chen et al. employed a method based on random forests and superpixel
segmentation to automatically extract buildings from remote sensing data [18]. While
random forests exhibit robustness to noisy data and missing information, they struggle
to provide detailed internal decision rules in complex urban scenes, resulting in reduced
interpretability and potentially affecting the accuracy of urban building extraction. The
performance of these three traditional methods heavily relies on the chosen feature sets, and
inappropriate or incomplete feature selection can lead to suboptimal building extraction
results. Therefore, a more precise research approach is needed to enhance the accuracy of
urban building extraction.

With the rapid development in the field of computer vision, researchers have started
applying deep learning methods to urban building extraction tasks [19]. Deep learning,
based on neural network structures, autonomously learns the relevant features of build-
ings in large-scale high-resolution remote sensing images (such as spectral features, scale
features, and texture features), enabling efficient and accurate building extraction [20].
Currently, deep learning-based building extraction methods have been widely applied
in areas such as object detection and semantic segmentation [21,22]. However, while ob-
ject detection methods can successfully detect buildings, they are unable to extract more
detailed urban building contours. Therefore, researchers have chosen to employ deep
learning-based semantic segmentation methods for urban building extraction. In 2016,
through the encoder–decoder structure, Zhong et al. applied a fully convolutional network
(FCN) to extract buildings from high-resolution remote sensing images to achieve pixel-
level segmentation [23]. Subsequently, derived semantic segmentation methods such as
PSPNet [24], U-Net [25], HRNet [26], and the Deeplab series [27–30] have been utilized
to further enhance building extraction efficiency [31,32]. Aiming to solve the problems of
insufficient high-precision building datasets and the inability of semantic segmentation to
further classify buildings, Ji et al. established a large-scale, high-precision building dataset
(WHUbuildingdataset) covering multiple sample forms (raster and vector) and multiple
data sources (aviation and satellites), and achieved the identification and extraction of
buildings through an instance segmentation method based on Mask R-CNN [33]. Since
traditional building extraction methods make it difficult to accurately segment buildings,
roads, and trees in complex scenes, Xu et al. proposed a multi-layer feature fusion dilated
convolution ResNet model, effectively overcoming interference from non-building objects
like trees and roads [34]. Considering the problems of low segmentation accuracy and
blurred edge contour in traditional building extraction methods, Zhang et al. proposed
the combination of a U-net neural network and a fully connected CRFs network and opti-
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mized the segmentation results according to image features, which significantly improved
the segmentation accuracy and building contour integrity [35]. Yang et al. adopted the
Deeplabv3plus algorithm to enhance the expression ability of building detail information,
and compared the classification performance of Deeplabv3, Deeplabv3plus and BiseNet
by using the building sample library, which solved the problem that machine learning has
poor robustness in building extraction tasks and finds it difficult to fully mine the deep
features of buildings [36,37]. Although these methods improve accuracy and efficiency to
some extent, building features are not easily extracted due to problems such as buildings
being occluded by other ground features (high-rise buildings and trees) and building edges
being mixed with other non-building elements (roads, vehicles, and trees), which in turn
result in partially missing building outlines. Therefore, a deep learning method is needed
to avoid the occlusion and mixing problems arising between non-building feature elements
and buildings and to maintain the integrity of building contours for the task of urban
building extraction.

In conclusion, we propose an improved deep learning network to address the issues
of incomplete contours in the building extraction process. To tackle the problem of missing
building contours, we introduced the coordinate attention module into the improved
network. By learning the coordinate information of different positions, we enhanced
the attention given to the accurate positioning of building space, and then improved the
accuracy of building edge contour extraction. In order to further optimize the building
contour, we designed a pooling fusion module to improve the clarity of the building
contours and enhance the perception of the overall structure of the building, so as to
achieve a comprehensive optimization of the building contour. It is worth mentioning that
the current method is low in computational efficiency and cannot support large-scale urban
building extraction applications. To achieve fast extraction of urban buildings, we employ
a lightweight backbone network to enhance the model’s inference efficiency by reducing
the number of model parameters. The main contributions of this research are as follows:

(1) We propose an advanced deep learning-based method for extracting urban buildings
from high-resolution remote sensing images. In this study, we replaced the backbone
network by adopting a lightweight model to address the issue of low computational
efficiency in existing models. Additionally, we introduced an attention mechanism to
enhance the focus on the spatial coordinate information of building contours at differ-
ent locations in the image, aiming to alleviate the problem of missing architectural
outlines.

(2) Our improved network incorporates a fusion module that combines strip pooling
with Atrous spatial pyramid pooling to introduce lateral context information to
further recover building contour profiles by enhancing the network’s representation
of building edge features. We validate the significant role of strip pooling in enhancing
the feature extraction of urban buildings.

2. Methods
2.1. The Structure of the Network

This paper proposes an improved deep learning network for urban building extraction
from high-resolution remote sensing images as shown in Figure 1. Firstly, the backbone net-
work Mobilenetv2 is introduced to reduce the scale of model parameters and improve the
inference speed of the model [38]. Additionally, a coordinate attention (CA) module [39] is
introduced into the improved model to enhance the attention given to the spatial coordinate
information of the building contour. This helps to make the network more flexible to adapt
to the contour features of buildings at different locations, thereby optimizing the contour
extraction results. Second, the pooling fusion module combines strip pooling [40] (SP) and
dilated spatial pyramid pooling to obtain more comprehensive background information
in both horizontal and vertical directions to optimize the fine features of the building con-
tours and the overall structural perception. Finally, the feature map formed after pooling
fusion is downscaled by 1 × 1 convolution and a new feature map is formed by 4-fold
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upsampling, while the backbone feature extraction network Mobilenetv2 is downscaled by
1 × 1 convolution to form another feature map; then, the two newly formed feature maps
mentioned above are fused, and a building contour map with the same dimensions of the
original image is generated by using 3 × 3 convolution with 4-fold upsampling.
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2.2. Coordinate Attention Mechanism

In the task of extracting urban buildings from high-resolution remote sensing images,
there are occlusion problems for buildings in certain areas (occlusion between buildings
of different heights and occlusion of low-height buildings by trees) due to interferences
in shadows, lighting conditions, etc., which makes it difficult for the model to accurately
extract the outlines of buildings in these areas. When dealing with such problems, the exist-
ing network is unable to optimise the effect of building contours in these areas, resulting
in uneven extraction of building contours. Therefore, this study introduces a coordinate
attention (CA) module into the DeepLabv3plus to address this problem. The CA module
helps to improve the model, making it more adaptable to the characteristics of the building
contours at different locations, thus optimising the building contours in these areas.

The coordinate attention (CA) module is a technique used to enhance the relationship
between input feature channels in a neural network. It leverages the coordinate information
of each location in the input image to calculate attention weights and obtain a comprehen-
sive feature representation of the entire image. Firstly, the input image is partitioned into
multiple grids, each encompassing positional information. Then, the positional informa-
tion of each grid is used as input to compute its corresponding weights using a simple
multi-layer perceptron or a more complex neural network. Finally, the computed weights
are used to find weighted averages of the feature representations of each grid, resulting in
the feature information of all targets in the entire image. By utilizing position encoding,
CA focuses on different regions at various positions in the image, capturing the spatial
information within the image. The CA module is depicted in Figure 2.
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Based on Figure 2, the process can be described as follows. Initially, the input feature
map “Input” of size C × H × W undergoes pooling operations along the X and Y directions,
resulting in feature maps of size C × H × 1 and C × 1 × W, respectively. Subsequently,
the feature maps of size C × 1 × W and C × H × 1 undergo transformations and are
fused to generate the feature map “f1.” Next, “f1” is subjected to dimension reduction and
activation using a 1 × 1 convolutional kernel, yielding the feature map “f2.” Finally, “f2”
is spatially segmented (split) into two feature maps, “f3” and “f4.” These feature maps
are then upsampled using 1 × 1 convolutions and combined with the Sigmoid activation
function to obtain attention vectors “g3” and “g4,”, respectively.

2.3. SP-ASPP Module

To address the problem of degradation of building contour extraction accuracy due
to the mixing of building edges with other feature elements (roads, vehicles, and trees),
the SP-ASPP module is introduced in this paper. The SP-ASPP module integrates a strip
pooling (SP) branch [40] after the average pooling layer within the ASPP module. By
introducing lateral context information, it helps to better capture the edge features of the
building and thus enhances the recovery of the building contours. The SP-ASPP module is
illustrated in Figure 3.Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 16 
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Based on Figure 3, the process can be described as follows. Firstly, the input feature
map is subjected to dimension reduction using a 1 × 1 convolution, resulting in feature
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vectors that enhance the model’s capability to fuse diverse channel features. Subsequently,
the feature vectors are processed through 3 × 3 dilated convolutions with dilation rates of 6,
12, and 18, respectively, to extract features under different sensory fields. By using different
rates of expansion to form different sensory fields, the convolutions effectively expand the
receptive fields without introducing additional parameters, thereby capturing a wider range
of context information in the output feature maps. Next, for the multi-layer feature maps,
pooling operations are employed to obtain fixed-sized feature vectors that encompass multi-
level context information, facilitating a more comprehensive capture of global semantic
information in the image. Finally, a strip pooling branch is introduced, which partitions the
input feature map into multiple strip regions and performs pooling, leading to an increased
channel dimension of the feature map and an enhanced representational capacity of the
model.

3. Experiment
3.1. Experimental Environment

The experimental setup involves using the Windows 10 operating system, an NVIDIA
GeForce RTX 3070Ti GPU, and 8 GB of memory. The deep learning framework utilized
is PyTorch 1.7.1 with CUDA 11.6. For this experiment, pretrained weights from the VOC
dataset are employed, and the training process is divided into two phases: the freezing
phase and the thawing phase. The model’s optimizer is stochastic gradient descent (SGD),
and the learning rate is adjusted using the cosine annealing method, which helps optimize
the training process over iterations. To enhance the available data, the Mixup and Mosaic
methods are employed, which provide data augmentation techniques to improve the
model’s generalization and robustness by combining and manipulating training samples.
These techniques collectively contribute to the performance improvement and accuracy
enhancement of the model in object detection tasks.

3.2. Dataset

(1) The primary dataset employed in this study is the publicly available Remote Sens-
ing Image Dataset of Typical Urban Buildings in China [41], which was curated by
China University of Geosciences. The dataset contains 7260 image area samples
and a total of 63,886 buildings; four representative urban centers, Beijing, Shanghai,
Shenzhen, and Wuhan, were selected as the data collection target areas. The origi-
nal data were sourced from 19th-level satellite imagery provided by Google, with
a ground resolution of 0.29 m. To ensure the dataset’s versatility, the selection of
data regions considered diverse factors such as the inclusion of orthorectified and
non-orthorectified image regions, areas with both sparse and dense distributions of
buildings, and the incorporation of various building contour shapes. The dataset was
partitioned into training, validation, and testing sets, following an 8:1:1 ratio, and the
image dimensions were standardized to 500 × 500 pixels. The dataset was exported in
the Pascal VOC data format. Sample images from the dataset are depicted in Figure 4.
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(2) The second dataset employed in this study is the Map Challenge Building Dataset [42].
The images within this dataset have dimensions of 300 × 300 pixels. It encompasses
a total of 280,741 training samples, 60,697 testing samples, and 60,317 validation
samples. For the purpose of this study, 6028 images were selected from this dataset.
These images were divided into training, validation, and testing sets following an
8:1:1 ratio, and the data were exported in the Pascal VOC data format. Sample images
from the dataset are depicted in Figure 5.
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3.3. Evaluation Index

In order to adequately assess the performance of the enhanced model, qualitative
evaluations were carried out using mean Intersection over Union (mIoU), pixel accuracy,
mean pixel accuracy, and Intersection over Union (IoU), as defined in Equations (1)–(4),
respectively. Mean Intersection over Union (mIoU) denotes the average of the ratio of
the intersection and concatenation of the model’s predictions for the two categories of
building and background to the actual labeling, which is used to evaluate segmentation
performance in a comprehensive way. pixel Accuracy denotes the ratio of the number of
pixels of a building correctly predicted by the model to the total number of pixels. Mean
pixel accuracy in denotes the average ratio between the model’s correct prediction of pixels
in both building and background categories. Intersection over Union (IoU) denotes the
ratio of intersection over union between the model’s predicted and actual building regions
for evaluating segmentation accuracy. The operational performance of the algorithm was
measured in terms of frames per second (FPS), which represents the number of frames
processed per second.

Based on the above equations, TP denotes the number of true positive samples ac-
curately predicted for a specific class, FP represents the number of false positive samples
incorrectly classified as positive for a specific class, FN indicates the number of false neg-
ative samples incorrectly classified as negative for a specific class, and TN signifies the
number of true negative samples accurately predicted for a specific class. The variable ‘n’
represents the total number of classes.

mIoU =
1

n + 1∑n
i=0

TP
TP + FP + FN

(1)

PA =
TP + TN

TP + TN + FP + FN
(2)

mPA =
1

n + 1∑n
i=0

TP + TN
TP + TN + FP + FN

(3)

IoU =
TP

TP + FP + FN
(4)
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3.4. Ablation Experiment

In order to verify the effectiveness of the improved strategies, a series of ablative exper-
iments were conducted on the Remote Sensing Image Dataset of Typical Urban Buildings in
China, using Deeplabv3plus as the baseline model. The experimental setup and parameters
were kept consistent. Table 1 presents a comparative analysis of the architectural extraction
performance using different modules, namely Mobilenet, CA (coordinate attention), and
SP-ASPP (strip pooling and Atrous spatial pyramid pooling) modules. In this context,
Mobilenet serves as the backbone network, CA represents the coordinate attention module,
and SP-ASPP combines strip pooling with Atrous spatial pyramid pooling for pooling
fusion.

Table 1. Ablation experiment of the improved strategies.

Method IoU (Building)/(%) mIOU/(%) PA/(%) mPA/(%)

Deeplabv3plus 75.61 84.47 88.11 91.63
Deeplabv3plus + Mobilenetv2 74.97 84.13 86.07 91.25

Deeplabv3plus + CA 76.02 84.74 88.39 92.23
Deeplabv3plus + SP-ASPP 76.27 84.99 85.21 91.23

All 76.44 85.11 86.35 91.61

From Figure 6 and Tables 1 and 2, it can be observed that the introduction of the
Mobilenetv2 module results in a significant reduction in the number of model parameters
and floating-point operations compared to the baseline network, with a 0.34% reduction
in the mean accuracy (mIoU) and a 0.38% reduction in mPA. However, the network’s
prediction speed increased by 96.89 FPS, indicating that the Mobilenetv2 module, while
potentially sacrificing architectural extraction accuracy, significantly enhances the com-
putational efficiency of the model. The CA attention module effectively enhances the
ability to adapt to the building contour features at each location, and improves the prob-
lem of missing building contours due to trees and high-rise buildings occluding low-rise
buildings. The mIoU is improved by 0.27%, with a slight increase in prediction speed.
The SP-ASPP module achieves an accurate distinction between building contours and
non-building contours by focusing on the extraction of building edge features, resulting in
a 0.52% increase in mIoU, albeit with a slight decrease in prediction speed. In summary,
with respect to extraction accuracy, apart from the reduction in the Mobilenetv2 backbone
network, the other two improvement modules show enhancement. Regarding prediction
speed, the improved backbone network demonstrates significant improvement, while other
enhancement strategies have minimal impact on prediction speed. Moreover, the fusion of
the three improvement strategies yields a 0.64% mIoU gain for the model, confirming the
effectiveness of the enhancement strategies.

Table 2. Number of parameters used to improve the strategy.

Method Gflops (GB) Params (MB) FPS/(f/s)

Deeplabv3plus 166.84 54.71 40.64

Deeplabv3plus + Mobilenetv2 6.26 2.06 137.53

Deeplabv3plus + CA 166.88 55.10 41.14

Deeplabv3plus + SP-ASPP 177.17 61.27 38.15

All 6.51 2.23 110.67
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3.5. Comparison with Other Algorithms

To assess the effectiveness and generalization of the improved model for urban build-
ing extraction, experiments were conducted on both the Mapchallenge dataset and a
dataset containing typical urban building instances in China. The improved model was
compared against other state-of-the-art algorithms, and their extraction accuracies were
compared. For the comparative experiments on the Mapchallenge dataset, the reference
models selected were PSPNet, U-Net, Deeplabv3plus, and HRNetv2. The comparative
experiments demonstrated that the improved model achieved a mean intersection over
union (mIoU) of 90.24%, surpassing PSPNet (Mobilenet), PSPNet, U-Net (vgg), U-Net
(resnet50), HRNetv2_w32, Deeplabv3plus, HRNetv2_w48, and HRNetv2_w18 by 6.94%,
1.71%, 1.2 3%, 0.96%, 0.54%, 0.54%, 0.34%, and 0.20%, respectively, as depicted in Table 3.
The comparative experiment results on the dataset of typical urban building instances in
China indicated that the improved model achieved an mIoU of 85.11%, outperforming PSP-
Net (Mobilenet), PSPNet, U-Net (vgg), U-Net (resnet50), HRNetv2_w32, Deeplabv3plus,
HRNetv2_w48, and HRNetv2_w18 by 7.70%, 2.10%, 0.94%, 0.60%, 1.23%, 0.64%, 0.25%, and
0.31%, respectively, as depicted in Table 5. These findings demonstrate that the improved
method exhibits higher extraction accuracy and faster prediction speed.
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Table 3. Comparison experiment results (Mapchallenge building dataset).

Models IoU (Building)/(%) mIoU/(%) PA/(%) mPA/(%)

PSPNet(Mob) 74.43 83.33 84.86 90.49
PSPNet 82.37 88.56 89.12 93.56

U-Net(vgg) 83.06 89.04 89.62 93.90
U-Net(resnet50) 83.48 89.31 90.61 94.12
HRNetv2_w32 84.12 89.73 90.58 94.30
Deeplabv3plus 84.13 89.73 91.18 94.43
HRNetv2_w48 84.40 89.93 90.86 94.37
HRNetv2_w18 84.63 90.07 91.03 94.47

Ours 84.86 90.27 92.22 94.79

On the MapChallenge dataset, according to Tables 3 and 4, the proposed improved
model achieves the highest accuracy as well as faster speed in urban building extraction
compared to other algorithms. Specifically, the mIoU reaches 90.27%, the PA is 92.22%, the
mPA is 94.79%, and the FPS rate is 117.68. As depicted in Figure 7, second row, due to
the fact that different terrain elements and building roofs may have low feature variability
(spectra, colours), PSPNet (Mobilenet), PSPNet, U-Net (resnet50), Deeplabv3plus, and
HRNetv2_w18 tend to extract redundant terrain element information, leading to ineffective
segmentation of building outlines and inferior extraction results. In contrast, the proposed
improvement method clearly exhibits smooth building edges without misidentifying non-
building elements, closely resembling real-world surface conditions. In the first row of
Figure 7, for dispersed building layouts, each network can effectively segment buildings.
However, due to the occlusion between buildings of varying heights and interference
from environmental elements such as trees, roads, and vehicles, the accuracy of building
extraction is hindered. U-Net (resnet50), HRNet_w32, and PSPNet (Mobilenet) all exhibit
instances of erroneously extracting non-building terrain elements, failing to effectively
extract building parts. Furthermore, when extracting large-scale buildings, the proposed
method demonstrates more pronounced refinement of building edge contours, achieving
better building segmentation accuracy.

Table 4. Comparison of the individual model parameters in the Mapchallenge building dataset.

Models Gfloaps/(GB) Params/(MB) FPS/(Frame/s)

PSPNet (Mob) 2.12 2.38 141.16

PSPNet 41.60 46.71 57.09

U-Net (vgg) 176.43 24.89 25.46

U-Net (resnet50) 71.31 43.93 70.97

HRNetv2_w32 32.00 29.54 22.77

Deeplabv3plus 58.33 54.71 75.29

HRNetv2_w48 66.17 65.85 20.10

HRNetv2_w18 13.06 9.64 24.91

Ours 2.28 2.23 117.68
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On the dataset featuring typical urban architectural instances in China, according to
Tables 5 and 6, the proposed improved model achieves the highest accuracy and faster
prediction speed in urban building extraction compared to other algorithms. Specifically,
the mIoU reaches 85.11%, the PA is 86.35%, the mPA is 91.61%, and the FPS rate is 110.67.
As shown in Figure 8, the improved algorithm demonstrates superior delineation of edge
contours for buildings of varying shapes compared to other algorithms. Furthermore, it
addresses the issue of misidentification of buildings. However, contrasting algorithms still
exhibit instances where the contours of buildings intersect with those of non-buildings,
whereas the improved method effectively highlights diverse building edge contours and
minimizes interference from non-building objects to a greater extent.

Table 5. Comparative experimental results (from the Typical Chinese Urban Buildings dataset).

Models IoU (Building)/(%) mIoU/(%) PA/(%) mPA/(%)
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HRNetv2_w32 74.46 83.88 85.07 90.83
Deeplabv3plus 75.61 84.47 88.11 91.63
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Table 6. Comparison of the individual model parameters in the Typical Chinese Urban Buildings
dataset.

Models Gfloaps/(GB) Params/(MB) FPS/(Frame/s)

PSPNet (Mob) 6.03 2.38 154.32

PSPNet 118.43 46.71 57.09

U-Net (vgg) 451.67 24.89 24.47

U-Net (resnet50) 184.10 43.93 35.25

HRNetv2_w32 88.34 29.54 22.77

Deeplabv3plus 166.84 54.71 40.64

HRNetv2_w48 182.61 65.85 21.01

HRNetv2_w18 36.11 9.64 20.63

Ours 6.51 2.23 110.67

4. Discussion

According to the ablation experiments, the improved model not only improves the
accuracy of building extraction, but also significantly improves the computational efficiency
of the model. In comparison with the baseline model, the improved model increases the
mIoU by 0.64%. As indicated in Tables 1 and 2, employing Mobilenetv2 as the backbone net-
work significantly boosts the model’s prediction speed, increasing FPS by 96.89, but results
in a 0.34% decrease in mIoU. This suggests that while Mobilenetv2 improves the model’s
prediction speed, it slightly compromises accuracy in feature extraction. In addition, as can
be seen in Figure 6, the improved algorithm incorrectly segmented non-building entities
and omitted small buildings when using Mobilenetv2 as the backbone network, suggesting
that the algorithm’s ability to extract the features of small buildings is insufficient, meaning,
in turn, that it fails to extract small building contours. The introduction of the coordinate
attention (CA) mechanism enables the network to learn the coordinate information of dif-
ferent locations in the input image, focusing on the exact location of the building in space,
which in turn better captures the edges and contour features of the building, resulting in an
increase of 0.27% in mIoU. Figure 6 shows that although the occlusion problem (low-rise
buildings are occluded by high-rise buildings and buildings are occluded by trees) leads to
missing building contours, the CA mechanism recovers the building contours in the regions
occluded by high-rise buildings and trees by enhancing the attention to the building’s own
features (e.g., edges, textures, which are related to the building contours). However, in
the process of enhancing attention to the building features, the CA mechanism pays too
much attention to some local features and thus misextracts non-building features, which
indicates that the mechanism is more efficient in forming building contours but slightly
less effective in overcoming mis-extractions of non-building features. As shown in Figure 6
and Table 1, the introduction of the SP module in ASPP enhances the model’s ability to
extract building edges by capturing features at building edges more efficiently, resulting
in a more accurate building profile. Meanwhile, the SP module adopts an appropriate
pooling scale to limit the feature extraction range of the improved model under a larger
receptive field, reducing the focus on non-buildings, which in turn significantly reduces
the mis-extraction of non-building feature elements, resulting in an improvement of 0.52%
in mIoU. Compared with the previous two improvement strategies, the SP-ASPP module
shows the greatest increase in accuracy, indicating that the SP-ASPP structure achieves a
more complete building outline extraction. The above improvement strategies indicate that
MobileNetV2 significantly enhances model computational efficiency and prediction speed,
while the other two modules effectively segment urban buildings. According to Table 1
and Figure 6, the improved method achieves the highest extraction accuracy, and there are
no obvious false positives or problems such as discontinuous building contours, which
proves the effectiveness and accuracy of the improved strategy.
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In comparative experiments, PSPNet, U-Net, Deeplabv3plus, and HRNetv2 were
employed as mainstream algorithms for evaluation. According to Tables 3 and 4, on the
Mapchallenge dataset, the improved model achieves the highest precision in building
extraction and the fastest prediction speed among the compared algorithms. As depicted
in Figure 7, contours of buildings extracted by the comparative algorithms appear discon-
tinuous, whereas the improved algorithm produces smoother building contours without
obvious jagged edges, demonstrating its capability to effectively address the issue of dis-
continuity in building contour edges. Additionally, the PSPNet algorithm exhibits false
positives of non-building entities, indicating that the improved algorithm can achieve
precise building extraction without introducing issues such as false positives. Further-
more, based on Figure 7, HRNetv2_w32 and the Mobilenet-PSPNet algorithm exhibit
irregularities in the contours of small-sized buildings, incompleteness in the contours of
medium-sized buildings, and unclear contours of large-sized buildings when extracting
multiscale buildings. In contrast, the improved algorithm can clearly extract the contours
of buildings at different scales, which affirms the effectiveness of the proposed method.
According to Tables 5 and 6, on a typical dataset of urban buildings in China, the improved
algorithm achieves an mIoU of 85.11%, and in terms of model prediction speed, it achieves
110.67 FPS. This confirms the effectiveness and efficiency of the improved model, making it
suitable for practical deployment and meeting real-world demands. Figure 8 illustrates
that the comparative algorithms encounter issues such as missing extractions for small-
sized buildings and contour intersections for densely arranged buildings. In contrast, the
improved algorithm can clearly extract the edge contours of various types of buildings
without causing edge overlaps, showcasing its ability to achieve fine-grained extraction
of building contours. Simultaneously, within a more straightforward urban context, the
improved algorithm’s building extraction results tend to be more realistic compared to
those of PSPNet and HRNet_w32. It minimizes interference from non-building entities,
achieves more accurate contour extraction for irregular buildings, and demonstrates the
stability of the improved algorithm in distinguishing between buildings and non-buildings.
In summary, the improved algorithm effectively accomplishes the building extraction task
and, compared to other mainstream semantic segmentation algorithms, exhibits higher
speed and accuracy.

Furthermore, although the improved algorithm demonstrates a significant increase in
prediction speed, the improvement in extraction accuracy is less than 1%. This is attributed
to the excessive simplification of the model structure after lightweighting, reducing the
model’s complexity and consequently impacting its precision. Additionally, it is noteworthy
that the improved algorithm solely addresses the task of urban building extraction from
remote sensing images, lacking experimental validation on other computer vision tasks.
Therefore, in future research endeavors, from a model optimization perspective, we can
contemplate algorithm refinement by considering the complexity of the model structure.
From an application standpoint, exploring the adaptability of this algorithm to diverse
computer vision tasks could be pursued through techniques such as transfer learning.

5. Conclusions

Aiming to confront the challenge that it is difficult to completely extract the outlines of
urban buildings from high-resolution remote sensing images due to occlusion, mixing and
other problems, a more efficient and accurate deep learning network is proposed to achieve
building extraction. The coordinate attention module is used to enhance the attention
to buildings’ contours in different positions to extract more complete building contours.
The SP-ASPP module is used to further obtain the building edge feature information and
improve the building extraction accuracy. Experimental results on datasets comprising
typical architectural developments in Chinese cities and on the Mapchallenge building
dataset demonstrate that the improved model achieves higher extraction accuracy. Ablation
experiments reveal that the three improvement strategies of the enhanced model effectively
enhance capacity for urban building extraction. Additionally, the introduction of the SP-
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ASPP module increases the model’s mIoU from 84.47% to 84.99%, effectively enhancing
urban building extraction accuracy. Furthermore, with the integration of the lightweight
Mobilenetv2 backbone, the model’s prediction speed escalates from 40.64 FPS to 137.53 FPS,
enabling real-time response and practical deployment in engineering projects. Notably,
combining Mobilenetv2 with the SP-ASPP and CA modules further improves the urban
building extraction accuracy to 85.11%, while achieving a speed of 110.67 FPS. In the future,
the combination of spectral features in remote sensing images (e.g., vegetation index, water
index, building index, etc.) with deep learning models can also be explored to further
improve the extraction efficiency of urban buildings.
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