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Abstract: Object detection is dedicated to finding objects in an image and estimate their categories
and locations. Recently, object detection algorithms suffer from a loss of semantic information in
the deeper feature maps due to the deepening of the backbone network. For example, when using
complex backbone networks, existing feature fusion methods cannot fuse information from different
layers effectively. In addition, anchor-free object detection methods fail to accurately predict the same
object due to the different learning mechanisms of the regression and centrality of the prediction
branches. To address the above problem, we propose a multi-scale fusion and interactive learning
method for fully convolutional one-stage anchor-free object detection, called MFIL-FCOS. Specifically,
we designed a multi-scale fusion module to address the problem of local semantic information loss
in high-level feature maps which strengthen the ability of feature extraction by enhancing the local
information of low-level features and fusing the rich semantic information of high-level features.
Furthermore, we propose an interactive learning module to increase the interactivity and more
accurate predictions by generating a centrality-position weight adjustment regression task and a
centrality prediction task. Following these strategic improvements, we conduct extensive experiments
on the COCO and DIOR datasets, demonstrating its superior capabilities in 2D object detection tasks
and remote sensing image detection, even under challenging conditions.

Keywords: object detection; multi-scale feature fusion; interactive learning; remote sensing image
detection

1. Introduction

As an important field of computer vision, object detection can recognize the category
of objects and determine their location in images and videos, which is very valuable in
autonomous driving [1], security monitoring [2], drone aerial photography [3], medical
image diagnosis [4], and industrial quality inspection [5]. Therefore, object detection has
become a research hotspot in the field of computer vision.

The significance of object detection, particularly in the realm of remote sensing im-
ages, has increased with the rapid advancements in remote sensing technology [6]. Deep
learning, renowned for its adept feature extraction and semantic information fusion capa-
bilities, has recently gained widespread application in computer vision research [7,8]. This
technological evolution has birthed a novel approach to object detection in remote sensing
images, proving invaluable in applications such as satellite monitoring [9] and the deploy-
ment of unmanned aerial vehicles [10] for law enforcement. However, these applications
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pose formidable challenges, necessitating the development of swift and precise detection
algorithms. The ongoing research in object detection algorithms for remote sensing images
can be broadly categorized into two streams [11]: one prioritizes the precision of detection
algorithms, while the other concentrates on optimizing the execution speed.

The intricacy of object detection in remote sensing images surpasses that of natural
scenes. These images present intricate scenes and backgrounds, with significant variations
in object scales induced by incongruent spatial resolutions among diverse sensors [12] or
substantial differences in object sizes [13]. To illustrate, a single image may encompass
both expansive cargo ships and diminutive fishing boats, posing considerable hurdles for
the object detection algorithm [14]. Furthermore, remote sensing images exhibit densely
packed objects, where objects of the same class often manifest in aggregations (such as
numerous cars in a parking lot), complicating the precise localization of objects [15,16].

Recently, various object detection datasets, such as ImageNet [17], COCO [18], and
PASCOL VOC [19], have been continuously updated and improved. Based on these
detection models, such as Fast-RCNN [20], YOLOv3 [21], and FCOS [22], these models
have been applied to other sub-level detection tasks. Various datasets display distinct
characteristics, encompassing variations in image scenes, image quality, spatial resolution,
and object categories. These open detection datasets comprise high-quality, high-resolution
images where target objects are prominently visible, rich in color details, and substantial
in size. Consequently, these datasets serve as relatively straightforward examples for
detection models that are currently in existence.

However, these open datasets also contain a large number of images with both large-
scale and small-scale objects, which are examples that are difficult for existing detection
models to detect, such as Fast-RCNN [20], YOLOv3 [21], and FCOS [22]. Insufficient
generation proposals and poor proposal classification performance have resulted in the
poor detection performance for these difficult samples. In addition, due to the complexity
of actual application scenarios such as multiple scenes, multiple qualities, multiple scales,
etc., actual object detection contains more difficult samples, and most scenarios contain
various irregular objects. There are large-sized targets in actual application scenarios that
occupy a large area of image space. Traditional object detection algorithms may have high
computational complexity and may not be able to accurately identify them. Moreover, some
feature information of large-target objects may be obscured or lost due to low resolution,
which increases the difficulty of feature extraction. Another common scenario is to detect
small target objects. The reduced size of the feature information due to the small size can
reduce the accuracy of the object detection algorithm. In addition, small targets occupy a
relatively small area in the image, making them susceptible to interference and difficult to
detect accurately.

Figure 1 shows some examples of actual application scenarios. The dataset contains
images of pedestrians collected for pedestrian detection. Different pedestrians have dif-
ferent sizes in images of different scales. Due to the different positions of pedestrians and
collectors, pedestrians can be roughly divided into three different scales, where small-scale
pedestrians have a pixel scale of 10 × 20, which is a difficult point in detection problems.
A medium pedestrian has a size of 40 × 60 pixels. A large-scale pedestrian has a size of
100 × 60 pixels. In addition, there may be some interference, blurry outlines, and inade-
quate color in actual application scenarios.
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Figure 1. Examples of the multi-scale scene challenges. The image on the left shows small-scale
objects that are densely distributed and difficult to detect. The right image is a large-scale object that
occupies a large number of pixels.

To address these limitations, we have developed a multi-scale fusion module, which is
a component of the MFIL-FCOS algorithm that optimizes the feature extraction strategy, es-
tablishes pixel-level correspondences, and enhances feature representation. By integrating
feature information from different scales into the feature extractor through the multi-scale
fusion module, the interrelationships between pixels can be understood in a nuanced way,
thus improving the accuracy of detection. This approach enables the model to incorporate
not just the immediate local context but also the broader global context, enhancing its ability
to model ambiguous entities and extract intricate features. The integration of multi-scale
fusion within our approach offers several benefits. This improves feature representation
and equips the model to detect nuances and intricate structures in both 2D inspection
images and remote sensing imagery at a finer level. Additionally, this module reinforces
the model’s capacity to capture global dependencies through a cascading feature fusion
mechanism. This, in turn, enables the model to discern spatial interrelationships among
objects, facilitating accurate detection.

Compared with object detection in a single scene or a single category, object detec-
tion in different scenes, different qualities, different scales, and different categories faces
the following challenges. Firstly, there are obstacles in proposal generation in different
application scenarios. Objects in diverse scenarios exhibit disparities in quantity, clarity,
color, and spatial resolution. The amalgamation of images featuring distinct quality, grades,
and spatial resolutions across various scenarios renders the pre-established anchor points
employed in the detection model incapable of generating an adequate number of pro-
posals for object detection. Consequently, this leads to a subpar detection performance.
Moreover, the substantial variations in spatial resolution among images result in objects
within different scenes manifesting considerable variations in size. Tiny objects often
cluster closely together, posing challenges for detection via pre-determined anchor points,
as used in Fast-RCNN [20]. Anchor-free detection models, exemplified by FCOS [22] and
CenterNet [23], address this issue by generating anchors from each point on the feature map
without relying on predefined anchor parameters. This approach proves highly effective
for detecting small objects within diverse image contexts.

Another pivotal challenge affecting object detection pertains to the precision of edge or
boundary delineation. The intricacy of specific datasets, such as those comprising remotely
sensed images, is frequently amplified by the aerial perspective characterizing many images
within the dataset. These perspectives tend to obscure the distinct boundaries between
objects, resulting in imprecise detection outcomes, particularly in the proximity of object
perimeters. Recognizing the pivotal role of precise boundary detection in enhancing the
overall accuracy and applicability of the detection task, it becomes imperative to tackle this
limitation. To address this concern, we incorporated an interactive learning module as a
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refinement tool, which notably enhances the boundary demarcation. In addition, object
detection in different scenes, qualities, scales, and categories faces the following challenges
compared to object detection in a single scene or a single category. Firstly, there are obstacles
in generating suggestions for the different application scenarios. Objects in different scenes
differ in number, clarity, color, and spatial resolution. Owing to the amalgamation of images
characterized by diverse quality, classes, and spatial resolutions across different scenes, the
predefined anchors employed in the detection model fall short in generating an adequate
number of proposals for object detection. This deficiency adversely impacts the overall
detection performance. Furthermore, the substantial disparities in spatial resolution among
the images contribute to significant variations in the sizes of objects within various scenes.
The presence of densely packed tiny objects exacerbates the challenge of detection using
pre-established anchors, as employed in Fast-RCNN [20]. To address this issue, we adopt
an anchor-free detection method that generates anchors from each point on the feature map
without relying on predefined anchor parameters. This approach proves highly adept at
object detection within a diverse range of complex scenes.

In summary, our work has the following contributions:

• We propose an anchor-free object detection architecture that can improve the detector
performance in multi-scale scenes.

• We introduced a multi-scale feature fusion module to enhance the detector’s learning
ability for different scale features and improve the robustness of the detector.

• We propose a branch interaction learning module that enhances object localization ca-
pability and bounding box regression accuracy by introducing a regression–prediction
weight to enhance the regression branch and the predicted centerness.

• Our proposed module achieves good experimental results on the detection task and
our method can also be used in remote sensing image detection.

2. Related Work
2.1. Anchor-Free Object Detection

Anchor-free object detection has emerged as a promising approach in recent years
for its simplicity and improved accuracy. Unlike anchor-based methods, the anchor-free
method does not depend on multiple anchors with different widths and heights given
prior to training. Instead, the problem of object detection is converted into a challenge of
identifying key points.

There are two main methods of anchor-free object detection: key point detection
and center point detection. The key point detection method qualifies its search space by
locating several key points of the target object. CornerNet [24] detected object corners
instead of bounding boxes, resulting in more accurate localization and fewer false posi-
tives. CornerNet [24] predicted the location and visibility of each corner using a heatmap-
based loss function and used pairwise embedding to match object corners. Furthermore,
ExtremeNet [25] improved CornerNet [24] by implementing multiple hourglass modules
to predict five key points for each target and then combining them.

The center point detection method detects object centers using a keypoint estimation
approach. CenterNet [23] predicted the center point of each object and the offset of the
bounding box from the center. CenterNet [23] trained the network using a heatmap-based
loss function to accurately estimate the location of objects. Recently, FCOS [22] achieved a
state-of-the-art performance on the COCO dataset in 2019. FCOS [22] directly predicted
the center point and size of the objects without using anchor boxes in Figure 2. It also
introduced a new IoU loss function that better handles overlapping objects. Positioning
through the center point of the target object, both CenterNet [23] and FCOS [22] represented
the object detection frame by predicting the distance from the center point to the four sides
of the object bounding box.
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Figure 2. The network architecture of FCOS. C3, C4, and C5 were from the backbone network. For
final predictions, feature levels P3–P7 were employed. The dimensions H × W correspond to the
height and width of the feature map. The ‘/s’ notation, where ‘s’ ranges from 8 to 128, signifies the
downsampling rate from the input image.

2.2. Remote Sensing Image Detection

Remote sensing imagery, characterized by expansive fields of view and wide imaging
ranges, poses a significant challenge to current object detection methodologies due to
intricate backgrounds.

Widely adopted solutions involve leveraging attention mechanisms to emphasize
foreground details while attenuating background information. Scholars have explored the
background–foreground relationship, employing refinement strategies to enhance object
detection features. Recognizing the profound impact of training data distribution on model
performance, researchers have embraced a dataset-centric approach to fortify detectors
against complex backgrounds. Yu et al. [26] identified a significant distinction in the spatial
distribution between objects in close proximity and those in remote sensing scenarios. They
developed a space-oriented object detector explicitly tailored for remote sensing images.
Zhang et al. [27] introduced a foreground refinement network (ForRDet), incorporating
a foreground relation module to augment the recognition capabilities during the initial
phase. Wang et al. [28] innovatively incorporated a multi-scale feature concern module
to suppress the noise, enhancing the feature representation of multi-scale objects through
multi-layer convolution. Subsequently, they elevated the feature set correlation through
a two-stage depth feature fusion. Bai et al. [29] innovated a time–frequency analysis
object detection approach, integrating a discrete wavelet multi-scale attention mechanism
to centrally detect object areas. Cheng et al. [30] proposed a detection model for remote
sensing images incorporating object and scene context constraints. This model utilizes
the scene context constraint channel, along with prior information and Bayesian criteria,
to enhance the object detection by leveraging comprehensive scene details. Li et al. [31]
proposed a cross-layer attention network aiming to obtain the stronger features of small
objects for better detection. Zhang et al. [32] proposed an adaptive adjacent layer feature
fusion (AALFF) method to capture high-level semantic information and accurately locate
object spatial positions and improve the adaptability to objects with different sizes.

Notwithstanding these progressions, traditional detection algorithms based on CNNs
continue to face challenges in comprehensively grasping the intricate spatial correlations
and overall context present within remote sensing images.

2.3. Feature Fusion

Feature fusion refers to the combination of features from different sources for use
in some machine learning tasks, such as classification, speech recognition, and object
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recognition. Its purpose is to improve the classification accuracy and model robustness.
Some works related to feature fusion methods are given as follows.

Feature hierarchical fusion method [33] is a technique integrating characteristics from
various levels, including low-level attributes like shape and color features, along with high-
level semantic features, which are usually based on deep learning methods. The Feature-
weighted fusion method [34] assigns weights to different features to adjust their impact
on classification. Generally, higher weights were assigned to more important features
to improve their classification accuracy. The decision-level fusion method [35] combines
the prediction results of multiple classifiers to improve the final classification accuracy
and robustness. Common decision-level fusion methods include voting, weighted voting,
bagging, etc. The feature selection and fusion method [36] selects the most relevant features
and then combines them to improve classification accuracy and robustness. This method
typically included feature selection methods based on filters, wrappers, and embeddings. In
summary, the feature fusion method is a useful technique that can improve the performance
and robustness of machine learning models. Various feature fusion methods have their
own advantages and disadvantages, and need to be selected based on the requirements of
the application scenario and task.

2.4. Interactive Learning

Many studies have used interactive learning to improve the effect of object detection.
Here are some related research works on interactive learning for object detection:

Haussmann et al. [37] proposed a self-supervised object detection method, during the
process of establishing a model, collecting samples through a combination of self-learning
and active learning to gradually improve the detection performance. Yao et al. [38] pro-
posed an interactive object detection method in which human users interact with the model
to correct detection errors using gestures or other feedback methods, thereby significantly
improving detection accuracy. Li et al. [39] proposed a selective self-supervised training
method, in which the model only needs to perform self-supervised training on samples
with higher error rates, enabling it to recognize targets more accurately. Ball et al. [40]
proposed an interactive learning method for pedestrian detection, in which human users
could participate in model training by manually correcting detection errors to improve the
detection accuracy. In conclusion, interactive learning for object detection is a widely re-
searched field that involves multiple techniques such as self-supervised learning, selective
self-supervised training, active learning, and human–computer interaction. These methods
can help models better understand targets, improve detection accuracy, and reduce the rate
of missed detections.

3. Methods
3.1. Overview

Figure 3 shows the overall structure of MFIL-FCOS, which consists of a feature ex-
traction stage and a candidate box generation and classification stage. Backbone and FPN
modules are used in the feature extraction stage. FCOS is applied to produce an ample set of
candidate boxes originating from every point within the feature map, encompassing three
integral branches: centerness, classification, and regression. Before performing candidate
box generation and classification, the feature maps obtained through feature extraction will
be inputted into the MF module for weighted integration of features at different scales. MF
is designed to enhance sampling for large-scale and small-scale targets. The IL module
strengthens the interaction between the regression branch and the centrality prediction
branch through a special regression-prediction weight. IL is designed to achieve a more
accurate regression performance.
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Figure 3. The network architecture of MFIL-FCOS. MFIL-FCOS is improved based on the FCOS
network; MF is the multi-scale feature fusion module; and IL is the interactive learning module.

3.2. One-Stage Anchor-Free Object Detector

Given an input image, the CNN backbone network processes it to produce feature map
Fi, where the value of i represents the number of feature map layers, annotated ground-
truth bounding boxes indexed as Bi. Each Bi is defined as x(i)0 , y(i)0 , x(i)1 , y(i)1 , c(i), where the

pairs x(i)0 , y(i)0 and x(i)1 , y(i)1 identify the ground-truth bounding box’s upper left and lower
right corners. c(i) tags the annotated object category, where MS-COCO and VOC datasets
include 80 and 20 categories, respectively.

Each point (x, y) on feature map F can be mapped to a location on the input im-
age represented by ( s

2 + xs, s
2 + ys). Here, s represents the total step size of the feature

map scaled with respect to the input image. Our proposed anchor-free detector diverges
from the anchor-based detector since the former lacks predefined anchors. In contrast,
the detector regression offset represents the result of the anchor-based detector. In our
regression approach, we consider the distance from pixel points on the feature map to the
four bounding boxes, effectively leveraging the four distances of the regression directly as
training samples, rather than as anchor boxes.

We consider a location (x,y) to be a positive sample if it lies within the ground-truth
bounding box and its classification prediction c aligns with the category present in the
ground truth. Conversely, we classify a location as negative if it does not lie within the
ground-truth bounding box or if the classification result does not match. Our method’s
regression result is a 4D vector t = (l∗, t∗, r∗, b∗), where l∗, t∗, r∗, and b∗ represent the
distances from the location to the four boundaries. When a location (x,y) is associated
with a ground-truth bounding box (Bi), the training process’s regression distance can be
expressed as:

l∗ = x − x(i)0 , (1)

t∗ = y − y(i)0 , (2)

r∗ = x(i)1 − x, (3)

b∗ = y(i)1 − y. (4)

3.3. Multi-Scale Feature Fusion

Feature fusion from different scales is a crucial technique for enhancing the detection
performance. Lower-level feature maps offer higher resolution and include more precise
positional information. However, due to less convolution involvement, lower-layer feature
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maps are less semantic and more noisy. Meanwhile, higher-layer feature maps provide
stronger semantic information but have a lower resolution and worse detail perception.
Fusing low-level feature maps onto the high-level feature maps helps alleviate the infor-
mation loss in high-dimensional feature maps to improve the classification score for small
object prediction.

Object detection should concern both the deep semantic and shallow information of
the image. As such, it is vital to fuse feature maps that encompass both attributes. In light
of this, we propose a multi-scale feature fusion module, integrating a bottom–up feature
fusion layer and an adaptive pooling layer after FPN to generate four feature maps: N2,
N3, N4, and N5. Our methodology combines the layer-by-layer convolution and feature
splicing of the original feature map to obtain the MF. To produce N3, N2 first undergoes
3 × 3 convolution up-sampling with a stride of 1, resulting in N′

2. Subsequently, N′
2 and N2

are concatenated to achieve N3. N3, N4, and N5 all adopt the above fusion method outlined
in Figure 4. Each FPN feature map provides a prediction result because its receptive field is
relative to network depth. While deeper feature maps have larger receptive fields, they can
lose shallow semantic information. To counteract this, we perform global average pooling
on the feature maps after multi-scale fusion, suppressing the overfitting and strengthening
connections between categories and feature maps. Our proposed MF can be defined
as follows:

N3 = Concat(Conv(N2), N′
2), (5)

N4 = Concat(Conv(N3), N′
3), (6)

N5 = Concat(Conv(N4), N′
4), (7)

MF = AvgPool(Concat(N2, N3, N4, N5)). (8)

Figure 4. The architecture of the MF module. When fusing deep feature maps upwards, a
3 × 3 convolution is used along with a 2× upsampling operation. When fusing down shallow
feature maps, a 1 × 1 convolution along with a 2× downsampling operation. The final feature map is
output after feature concatenation.

3.4. Interactive Learning Method

When all feature points on the feature map are regressed, the quality of the resulting
predicted bounding boxes is often suboptimal for locations away from the center of the
object. To address this, we introduce a new centrality prediction branch alongside the
regression branch. The purpose of this branch is to compute the distance from any location
to the center of the predicted bounding box. Values closer to 1 indicate that the location
is close to the center while values close to 0 indicate that the location is further away
from the center. It is evident that bounding box regression is closely related to centrality
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prediction. Accordingly, for a location with bounding box regression targets of l∗, t∗, r∗, b∗,
the centerness target is defined as follows:

centerness∗ =

√
min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗)

(9)

Object detection is often viewed as a multivariate learning challenge that jointly opti-
mizes target classification and regression. The anchor-free detector employs a centerness
estimation branch that identifies low-quality points located far from the center of the target
to suppress. The independent nature of the regression branch and centerness estimation
branch in existing single-stage methods may result in inconsistencies in prediction, as the
key point chosen is often inconsistent in both branches. While the center point relates to the
characteristics and morphology of the target, this inconsistency can lead to high centerness
estimation prediction scores but inaccurate bounding box regression. To address this issue
and improve the interaction between the two branches, we propose an interactive learning
mechanism that enables closer collaboration and more accurate predictions. We define this
mechanism as the interactive learning module. The interactive learning module is shown
in Figure 5.

ω = Sigmoid( f c(Conv(ReLU(Conv(N))))) (10)

IL = Bmm(N, ω) (11)

Here, N refers to the feature map obtained after MF while Bmm represents the
weighted feature map used for matrix multiplication.

Figure 5. The architecture of the IL module. GAP denotes the global average pooling of the feature
map and FC is the output of features using a fully connected layer. The output feature maps are used
for centerness prediction and regression branching.

3.5. Sim Box Refine

The box-refine structure used in DW [41] significantly enhances the bounding box
regression ability. In this paper, a simplified method is introduced whereby a new branch
is introduced for regressing the four boundary points of the bounding box, and a box
refinement operation is proposed based on the predicted point offset map M ∈ RH×W×4

to refine the bounding box. Here, (a,b) = △l,△t,△r,△b represent the distance from the
object’s detected center point to its four edges. The predicted distance can then be used
in fine-tuning the boundary points, and a prediction module is designed to determine the
boundary point at each predicted bounding box edge as shown in Figure 6. By calculating
the distances from each bounding box’s center point to its four boundaries under the feature
maps of differing scales, the position of the original bounding box’s center point is adjusted
using the coordinate points of the offset map as follows:

Bl = (a +△y
l , b −△l +△x

l ) (12)
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Bu = (a −△t +△y
t , b +△x

t ) (13)

Br = (a +△y
r , b +△r +△x

r ) (14)

Bd = (a +△b +△y
b , b +△x

b) (15)

where Bl , Bu, Br, and Bd denote the coordinates of the four bounding box boundary points.

Figure 6. Illustration of Sim Box Refine. A coarse bounding box (orange box) at the location is first
generated by predicting the four distances = {△l,△t,△r,△b}. Four boundary points (orange points)
are then predicted with respect to the four side points (green points). Finally, a finer bounding box
(green box) is generated by aggregating the prediction results of the four boundary points.

3.6. Network Outputs

In the COCO dataset, our network generates a 80-dimensional vector p to predict the
object category and a four-dimensional vector t for boundary box regression. By utilizing
the anchor-free prediction method, the number of detection frames can be significantly
reduced in comparison to the number generated using anchor-based detection algorithms.
In the DIOR dataset, our network generates a 20-dimensional vector p to predict the object
category and a four-dimensional vector t for boundary box regression.

3.7. Loss Function

Being an anchor-free detection algorithm, MFIL-FCOS incorporates a unique detection
head onto the FPN model’s output. This detection head introduces three branches. Both
the classification and centerness branches share the feature map. The branch of classifi-
cation incorporates a loss function for point classification, while the branch of centerness
employs a loss function for point centerness to determine whether the point represents the
central region of the target. Additionally, a dedicated regression branch exists for target
position regression.

MFIL-FCOS utilizes three distinct loss functions. In particular, the loss function of the
point classification is implemented as follows:

L(px,y) =
1

Npos
∑
x,y

Lcls(px,y, c∗x,y) (16)

The term Lcls denotes the focal loss. Npos represents the count of positive samples,
while px,y signifies the classification score associated with points (x, y). Additionally, c∗x,y
pertains to the fundamental aspect of classifying the point (x, y).

The centerness loss function is defined as follows:

L(cx,y) =
1

Npos
∑
x,y

Ic∗x,y>0Lcls(cx,y, c∗x,y) (17)
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Lcls corresponds to the cross-entropy loss. Here, cx,y denotes the score of centerness for
the point (x, y), while c∗x,y represents the ground truth centerness value for the same point
(x, y). Notably, centerness calculations are exclusively performed for positive samples.

The regression loss function is defined as follows:

L(tx,y) =
1

Npos
Ic∗x,y>0Lreg(tx,y, t∗x,y) (18)

Lreg represents the IOU loss. Here, tx,y denotes the regression outcomes for the point
(x, y), while Ic∗x,y > 0 is the indicator function, taking the value of 1 for c∗x,y > 0 and 0
otherwise. It is essential to note that the location regression computations are exclusively
applied to positive samples.

The total loss function is defined as follows:

L(px,y, tx,y, cx,y) = L(px,y) + L(tx,y) + L(cx,y) (19)

4. Experiment
4.1. Datasets

Our research underwent validation using two distinct types of datasets. Initially, we
utilized the COCO dataset, renowned for its diversity and comprehensive feature collection.
The COCO dataset provides a vast array of annotations for everyday objects, aiding in
the initial stages of acquiring distinctive features. Next, we employed the DIOR dataset,
a benchmark dataset of significant scale designed for detecting targets in optical remote
sensing images.

4.1.1. COCO Dataset

The COCO dataset, short for “Common Objects in Context”, is a widely used bench-
mark dataset in the field of computer vision and object detection. It is designed to support
various computer vision tasks, such as object recognition, object detection, image segmen-
tation, and captioning. The COCO dataset is notable for its large and diverse collection of
images, making it a valuable resource for training and evaluating computer vision models.

4.1.2. DIOR Dataset

The DIOR dataset comprises 213,463 images covering 192,472 instances across
20 categories, including airports, dams, ships, and bridges. Each image measures
800 × 800 pixels, with a spatial resolution ranging from 0.5 to 30 m. The reasons for selecting
DIOR for object detection lies in several factors: (1) DIOR exhibits the attributes of multi-
category, multi-image, and multiple-instance scenarios; (2) Both image spatial resolution
and object scales exhibit variability; (3) Due to diverse imaging conditions, encompassing
different weather, seasons, and sensor sources, the dataset offers rich and varied samples;
(4) The heightened intra-class diversity and diminished inter-class distinctions amplify the
detection challenge and enhance the adaptability of the training model. Figure 7 visually
presents the assorted samples from each category within the DIOR dataset.
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Figure 7. Image samples of 20 categories from the DIOR dataset. The list comprises 20 distinct object
classes, namely airplane, airport, baseball field, basketball court, bridge, chimney, dam, expressway
service area, expressway toll station, harbor, golf course, ground track field, overpass, ship, stadium,
storage tank, tennis court, train station, vehicle, and windmill.

4.2. Implementation Details

Data augmentation strategy. Data augmentation plays a critical role in achieving scale
and rotation invariance during training. To achieve this, we apply several techniques, such
as image resizing, flipping, image normalization and padding, and other augmentation
methods. Specifically, we augment the size of the initial image, ensuring that the longer
side is equal to or smaller than 1333 pixels, while the shorter side is equal to or smaller
than 800 pixels. These methods help our models learn essential image features and prevent
overfitting to the dataset.

Training details. Stochastic gradient descent (SGD) with a momentum algorithm is
utilized to train all object detection models. The SGD algorithm employs an initial learning
rate of 0.01 coupled with a momentum of 0.9. Under the 1× scheduler at 12 epochs, our
learning rate undergoes a warm-up strategy, and its decay is triggered at epochs 8 and
11. A weight decay of 0.0001 and a training batch size of 4 are utilized. Batch normaliza-
tion is utilized throughout our network’s layers. We initialized our models’ weight using
publicly available ImageNet pre-trained models. Firstly, we pre-trained our model using
the COCO dataset, and subsequently, fine-tuned the model on the remote sensing dataset.
The model parameters are derived from the pre-training to accommodate the simple char-
acteristics of remotely sensed images. This customized strategy guarantees the model’s
competence in effectively managing diverse occlusion scenarios and intricate object charac-
teristics inherent to remote sensing applications. A ResNet-50-based model usually requires
1.5 days to be trained on four NVIDIA 3090 GPUs.
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4.3. Ablation Experiment

This study necessitates that ablation experiments are performed using the COCO
dataset. These experiments are essential to confirm the method’s validity and to ascertain
the significance of each module in the process.

The amount of network parameters. Table 1 presents a comparison of our network’s
performance with respect to traditional network structures. Using ResNet-50 as the back-
bone network, our proposed architecture maintains comparable accuracies with fewer
parameters, validating the effectiveness of our design.

Table 1. Comparison of parameters between MFIL-FCOS and other detection methods. We statisti-
cally analyze the total number of parameters for these different methods.

Method Params

RetianNet 37.41 M
DETR 41.3 M

YOLOF 43.88 M
MFIL-FCOS 38.83 M

Feature fusion methods. Detectors utilizing feature fusion hold promise in enhancing
detection performance, especially for small and irregular objects. This capability stems
from their capacity to integrate the semantic information from higher-level features with
the image data from lower-level feature maps. In this research, we introduce a multi-scale
feature fusion approach and conduct a comparative analysis against existing methods. The
PaFPN model utilizes a bi-directional fusion technique from deep to shallow and then from
shallow to deep, and is the first to propose a bottom–up secondary fusion model. The
BiFPN model builds on this concept with a more complex bottom–up secondary fusion
process. In contrast, the RFPN model utilizes a cyclic structured feature pyramid network.
We propose a simpler and more efficient lightweight module, the MF module, which yields
an improved accuracy and more significant performance gains for small object detection
compared to these other methods. The results of a comparative analysis of our method and
others are presented in Table 2.

Table 2. Comparison of MF with other feature fusion methods. + indicates the increase in the number
of method parameters when the module is added compared to the original.

Method Params GFLOPs mAP AR

PAFPN +6.885 M 24.84 0.782 0.937
BiFPN +4.66 M 38.126 0.776 0.929
RFPN +3.608 M 17.729 0.782 0.932

MF +2.361 M 15.119 0.787 0.933

Task interaction. Target detection is frequently formulated as a joint optimization
problem in which distinct learning mechanisms for classification and localization lead
to feature space distributions with differing properties. Consequently, utilizing separate
branches for prediction can result in misalignment. However, these misalignments can be
mitigated by enhancing the interactivity between the distinct branches. To improve this
interactivity between the classification and location branches, we propose an anchor-free
detector with three branches: classification, regression, and centrality prediction. We use the
product of the classification score and centrality prediction score when classifying positive
and negative samples. Although the classification and centrality prediction branches
interact on a task-by-task basis, there is a lack of interaction between the localization and
centrality prediction branches. To address this issue and enhance the network training
effects, we develop a new approach to improve the interaction between the localization
and centrality prediction branches. In comparison to the method proposed by TOOD, our
approach is more effective, as demonstrated in Table 3.
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Table 3. Comparison of MFIL-FCOS and TOOD on different interactive learning strategies. We
conduct experiments using two interaction learning strategies: cls + reg, which applies interaction
learning to the classification and localization branches, and reg + center, which applies interaction
learning to the localization and centrality prediction branches.

Method Task
Interaction Backbone AP AP50 AP75 APS APM APL

TOOD (cls + reg) ResNet-50 40.9 59.3 44.3 − − −
MFIL-FCOS (reg + center) ResNet-50 41.6 59.9 45.0 − − −

TOOD (cls + reg) ResNet-101 46.7 64.6 50.7 28.9 49.6 57.0
MFIL-FCOS (reg + center) ResNet-101 46.9 65.3 50.5 27.8 49.9 58.9

MFIL-FCOS. In order to attribute the contribution of each component, we progres-
sively integrated MF, IL, Sim Box Refine, and CBAM with the ResNet-50-FPN FCOS
baseline, improving the detector by adding modules. The introduction of MF in the COCO
dataset improves the performance from 40.4 mAP to 40.9 mAP. The introduction of IL
further improves the performance from 40.9 mAP to 41.3 mAP. The use of Sim Box Refine
increases the mAP by 0.1, and the results are shown in Table 4. CBAM is a lightweight
general-purpose module for generating the feature map notation diagrams, spatial and
channel dimension matrix multiplication and adaptive feature learning, the integration of
which increases the mAP by 0.2. In the DIOR dataset, the introduction of MF improves
the performance from 0.684 mAP to 0.699 mAP, and the introduction of IL improves the
performance from 0.699 mAP to 0.711 mAP, and the results are shown in Table 5.

Table 4. MFIL-FCOS modular ablation experiments on the COCO dataset. × indicates that we do not
add the module to the experiment, and ✓ indicates that we add the module to the experiment. Bold
indicates the best performance.

Method MF IL Sim Box Refine CBAM mAP

Baseline × × × × 40.4
− ✓ × × × 40.9
− ✓ ✓ × × 41.3
− ✓ ✓ ✓ × 41.4
− ✓ ✓ ✓ ✓ 41.6

Table 5. MFIL-FCOS modular ablation experiments on the DIOR dataset. × indicates that we do not
add the module to the experiment, and ✓ indicates that we add the module to the experiment. Bold
indicates the best performance.

Method MF IL Sim Box Refine CBAM mAP

Baseline × × × × 0.684
− ✓ × × × 0.699
− ✓ ✓ × × 0.711
− ✓ ✓ ✓ × 0.716
− ✓ ✓ ✓ ✓ 0.722

4.4. Comparison Experiment
4.4.1. Verified on COCO Dataset

Tables 6 and 7 present a comparison between MFIL-FCOS and other one-stage detectors
using the COCO dataset. Our model training follows the same resolution and 1× learning
schedule as employed by the majority of other methods to ensure a fair comparison. We
present results based on a single model and a single testing scale. When using the ResNet50
network, our model reaches 41.6 with the same accuracy as DRKD, and the DRKD method
has a higher accuracy in some detection scenarios because of the use of knowledge distil-
lation. On the ResNet-101 and ResNet-101-64x4d architectures, MFIL-FCOS demonstrates
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the outstanding performance with an AP of 46.9 and 48.4, respectively. This surpasses the
performance of other one-stage detectors such as ATSS (by 3 AP) and GFL (by 2 AP). The
introduction of ResNet-101-DCN results in an even larger improvement for MFIL-FCOS,
relative to other detectors on this architecture. For instance, while GFL has an improvement
of 2.3 AP (45.0 → 47.3 AP), MFIL-FCOS obtains an improvement of 2.6 AP (46.9 → 49.5 AP)
instead. This demonstrates the remarkable efficiency of MFIL-FCOS in collaboration with
deformable convolutional networks (DCN), as it dynamically adapts the spatial distribution
of learned features to align with the task. It is important to note that DCN is specifically
employed in the initial two layers of the head tower within MFIL-FCOS. When using other
backbone networks, our method further improves the detection accuracy as the backbone
network deepens. The DRKD method does not show a significant improvement in accu-
racy after using other backbone networks and may require the tuning optimization of the
network. In summary, Table 7 clearly illustrates that MFIL-FCOS surpasses other one-stage
object detection methods, achieving a result with an AP of 49.5.

Table 6. Results for our MFIL-FCOS and other detection models. These models are trained on the
COCO dataset with the ResNet50 backbone and the training period is 12 epochs. Bold indicates that
the best performance is achieved in that metric.

Method AP AP50 AP75 Reference

FoveaBox [42] 36.4 55.8 38.8 -
FCOS [22] 38.6 57.4 41.4 ICCV19
ATSS [43] 39.2 57.4 42.4 CVPR20
PAA [44] 40.4 58.4 43.9 ECCV20
OTA [45] 40.7 58.4 44.3 CVPR21

AutoAssign [46] 40.4 59.6 43.7 -
NoisyAnchor 38.0 56.9 40.6 CVPR20

MAL [47] 39.2 58.0 42.3 CVPR20
GFL [48] 39.9 58.5 43.0 NeurIPS20
VFL [49] 40.2 58.2 44.0 CVPR21

FCOS + GFLv2 40.6 58.2 43.9 CVPR21
ATSS + GFLv2 41.1 58.8 44.9 CVPR21

Musu [50] 40.6 58.9 44.3 ICCV21
TOOD [51] 40.3 58.5 43.8 ICCV21

DW [41] 41.5 59.8 45.0 CVPR22
DRKD [52] 41.6 59.7 45.3 IJCAI23

MFIL-FCOS (ours) 41.6 59.9 45.0 -

Table 7. Results for our MFIL-FCOS and other detection models under the same setting. ResNet101-
DCN indicates the use of deformable convolution in the experiment. ResNet-101 (64x4d) indicates
that, in the residual module, the convolution layer is a grouped convolution with 64 groups of
4 channels each. Bold indicates the best performance.

Method Backbone AP AP50 AP75 APS APM APL Reference

FCOS [22] ResNet-101 41.5 60.7 45.0 24.4 44.8 51.6 ICCV19
ATSS [43] ResNet-101 43.6 62.1 47.4 26.1 47.0 53.6 CVPR20
PAA [44] ResNet-101 44.8 63.3 48.7 26.5 48.8 56.3 ECCV20
GFL [48] ResNet-101 45.0 63.7 48.9 27.2 48.8 54.5 NeurIPS20

IQDet [53] ResNet-101 45.1 63.4 49.3 26.7 45.5 56.6 CVPR19
Musu [50] ResNet-101 44.8 63.2 49.1 26.2 47.9 56.4 ICCV21

AutoAssign [46] ResNet-101 44.5 64.3 48.4 25.9 47.4 55.0 -
VFL [49] ResNet-101 44.9 64.1 48.9 27.1 49.4 58.5 CVPR21
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Table 7. Cont.

Method Backbone AP AP50 AP75 APS APM APL Reference

DW [41] ResNet-101 46.6 65.1 50.3 27.5 49.6 58.6 CVPR22
DRKD [52] ResNet-101 46.7 65.1 50.1 27.6 49.6 58.7 IJCAI23

MFIL-FCOS (ours) ResNet-101 46.9 65.3 50.5 27.8 49.9 58.9 -

ATSS [43] ResNet-101-DCN 46.3 64.7 50.4 27.7 49.8 58.4 CVPR20
PAA [44] ResNet-101-DCN 47.4 65.7 51.6 27.9 51.3 60.6 ECCV20
GFL [48] ResNet-101-DCN 47.3 66.3 51.4 28.0 51.1 59.2 NeurIPS20

Musu [50] ResNet-101-DCN 47.4 65.0 51.8 27.8 50.5 60.0 ICCV21
VFL [49] ResNet-101-DCN 48.5 67.4 52.9 29.1 52.2 61.9 CVPR21
DW [41] ResNet-101-DCN 49.3 67.7 53.3 29.3 52.2 63.5 CVPR22

DRKD [52] ResNet-101-DCN 49.3 67.5 53.3 29.4 52.2 63.6 IJCAI23
MFIL-FCOS (ours) ResNet-101-DCN 49.5 67.7 53.5 29.5 52.4 63.6 -

ATSS [43] ResNet-101-64x4d 45.6 64.6 49.7 28.5 48.9 55.6 CVPR20
PAA [44] ResNet-101-64x4d 46.6 65.6 50.8 28.8 50.4 57.9 ECCV20
GFL [48] ResNet-101-64x4d 46.0 65.1 50.1 28.2 49.6 56.0 NeurIPS20
OTA [45] ResNet-101-64x4d 47.0 65.8 51.1 29.2 50.4 57.9 CVPR21
DW [41] ResNet-101-64x4d 48.2 67.1 52.2 29.6 51.2 60.8 CVPR22

DRKD [52] ResNet-101-64x4d 48.0 66.9 52.0 29.5 51.1 60.5 IJCAI23
MFIL-FCOS (ours) ResNet-101-64x4d 48.4 67.2 52.2 29.8 51.3 60.9 -

4.4.2. Analysis of the Detection Results and Convergence

Figure 8 shows the examples of the object detection results produced by FCOS and the
method proposed in this paper. The top of each image is FCOS and the bottom is the detection
result of this paper. Our method has a higher detection score when detecting the same object
and fewer misses and false detections when detecting dense scenes. We performed additional
assay experiments using MFIL-FCOS and the results are shown in Figure 9.

Figure 10 shows a comparison of the convergence curves of FCOS and the method
proposed in this paper during the training process. The training is performed on the COCO
dataset using a training period of 12 epochs, and the other settings are kept consistent for
fairness. During the training process, the convergence curve of our method is smoother
and produces less fluctuation during the training process.

Figure 8. Examples of the detection results of FCOS versus MFIL-FCOS. Both models implement a
ResNet-50 backbone architecture for object detection, trained using the COCO dataset. The detection
results of FCOS and MFIL-FCOS are presented above and below, respectively. It is evident that
MFIL-FCOS outperforms FCOS in detecting larger objects, and it can identify denser and smaller
objects that FCOS fails to detect.
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Figure 9. Examples of MFIL-FCOS detection results on the COCO dataset. These results demonstrate
that MFIL-FCOS performs effectively in diverse scenes, including occluded scenes, dense scenes, and
multi-scale scenes.

Figure 10. Convergence curves. MFIL-FCOS accelerates the training process for FCOS variants. The
x axis corresponds to epochs and the y axis corresponds to the mAP evaluated on COCO dataset.

4.4.3. Verified on DIOR Dataset

To evaluate the efficacy of our model, we perform a comparative analysis with cutting-
edge models. The analysis of the experimental data shows that our method is better than the
above methods in detecting objects such as airplanes and airports, but due to the problems
of uneven light and darkness in remote sensing images and the poor color differentiation
of the images, the accuracy obtained is lower in detecting some of the scenes. There
are differences between the different methods, such as LO-Det having a lower detection
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accuracy when detecting storage tanks, MFPNet having a lower detection accuracy when
detecting dams, and HakwNet having a lower detection accuracy when detecting airplanes.
A comprehensive analysis of Table 8 shows that our method outperforms other methods in
terms of average AP 0.722. This indicates that our method has excellent overall accuracy
and achieves an excellent balance between precision and recall. In addition, our method
also performs well in terms of AP 0.908 for chimneys, which is significantly better than
other methods. As for the AP scores for stadiums and storage tanks, our method achieves
0.891 and 0.716, respectively, showing a competitive performance.

Table 8. Comparison with other methods on the DIOR dataset. Our training period is 12 epochs.
Other settings are kept consistent in order to ensure the fairness of the experiment. Bold indicates
that the best performance is achieved in that metric.

Class SSD [54] LO-Det
[55]

YOLOv4
[56]

Efficient
Det [57]

AAFM
[58]

MFPNet
[59]

HakwNet
[60]

MFIL-FCOS
(Ours)

airplane 0.668 0.726 0.682 0.688 0.716 0.766 0.657 0.909
airport 0.687 0.650 0.702 0.742 0.751 0.834 0.842 0.907

baseball field 0.704 0.767 0.759 0.803 0.826 0.806 0.761 0.907
basketball court 0.763 0.846 0.806 0.778 0.810 0.821 0.874 0.800

bridge 0.334 0.334 0.414 0.403 0.459 0.443 0.453 0.411
chimney 0.668 0.737 0.713 0.683 0.704 0.756 0.790 0.908

dam 0.565 0.568 0.603 0.643 0.690 0.685 0.645 0.730
expressway-service area 0.648 0.758 0.776 0.816 0.832 0.859 0.828 0.867
expressway-toll station 0.574 0.575 0.663 0.671 0.682 0.639 0.724 0.719

golf field 0.662 0.662 0.755 0.775 0.784 0.773 0.825 0.831
ground track field 0.675 0.680 0.755 0.795 0.808 0.772 0.747 0.805

harbor 0.395 0.609 0.472 0.468 0.483 0.621 0.502 0.668
overpass 0.495 0.515 0.560 0.576 0.598 0.588 0.596 0.672

ship 0.697 0.886 0.734 0.746 0.768 0.772 0.897 0.753
stadium 0.660 0.680 0.696 0.807 0.810 0.768 0.660 0.891

storage tank 0.496 0.643 0.561 0.532 0.566 0.603 0.708 0.716
tennis court 0.771 0.862 0.833 0.840 0.856 0.864 0.872 0.854
train station 0.538 0.475 0.583 0.579 0.605 0.645 0.614 0.603

vehicle 0.375 0.424 0.443 0.430 0.456 0.415 0.528 0.317
windmill 0.674 0.767 0.757 0.759 0.765 0.802 0.882 0.710

mAP 0.602 0.658 0.673 0.677 0.698 0.712 0.720 0.722

In Figure 11, we illustrate the detection results of our proposed approach using diverse
representative objects, specifically the harbor, tennis court, and track field. Distinctly col-
ored bounding frames signify different object categories. The integration of our proposed
MFIL-FCOS enhances the extraction of features, providing more comprehensive and tar-
geted feature representations. Furthermore, the utilization of Sim Box Refine contributes to
improved outcomes in box regression. This collaborative approach empowers our model to
effectively handle the recognition and localization of objects across various scales, resulting
in predicted bounding boxes closely aligned with the ground truth. Nevertheless, it is
important to highlight that instances of misdetection and false detection predominantly
occur in scenarios with small scales and indistinct boundaries.

4.5. Discussions

Limitation of MFIL-FCOS. Although our approach has achieved satisfactory results
in object detection in multi-scale scenes, there has been limited exploration of the problems
that arise during the detection of real objects. In addition to detecting small objects and
dense scene objects, we also need to consider the occlusion problem in the detected scene
and the leakage problem in low-light detection scenarios. In addition to this, we found that
some complex objects also appear frequently in other tasks, such as 3D object detection and
text detection, which leaves a lot of room for further exploration. Our work combines multi-
scale feature integration with interactive learning to solve multi-scale detection problems
in real detection scenarios. We hope to attract more researchers to focus on the problems
that arise in real detection scenarios.
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Figure 11. Examples of the MFIL-FCOS detection results on the DIOR dataset. It can be seen that, for
some small-scale objects such as ships, MFIL-FCOS is able to detect them well.

5. Conclusions

In this paper, we adhere to the one-stage anchor-free framework and propose a novel
multi-scale feature fusion interactive learning network (MFIL-FCOS), which includes a
multi-scale feature fusion module MF and an interactive learning module IL. By using
the ResNet-50 backbone network, the mAP of our method in the COCO detection dataset
reached 41.6, and our method achieves an accuracy of 72.2 on the DIOR remote sensing
detection dataset and maintains high detection accuracy in different categories. These
findings not only confirm the efficacy of our innovative approach but also highlight its sub-
stantial potential for application in tasks related to 2D object detection and remote sensing
image detection. Nonetheless, it is imperative to acknowledge that additional research
is necessary to tackle the complexities presented by a broader range of intricate image
tasks. Our future endeavors will be focused on enhancing and extending our methodology,
thereby contributing to the ongoing progress in remote sensing image detection and 2D
object detection techniques.
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