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Abstract: Weakly supervised object detection (WSOD) in remote sensing images (RSIs) aims to detect
high-value targets by solely utilizing image-level category labels; however, two problems have not
been well addressed by existing methods. Firstly, the seed instances (SIs) are mined solely relying on
the category score (CS) of each proposal, which is inclined to concentrate on the most salient parts
of the object; furthermore, they are unreliable because the robustness of the CS is not sufficient due
to the fact that the inter-category similarity and intra-category diversity are more serious in RSIs.
Secondly, the localization accuracy is limited by the proposals generated by the selective search or
edge box algorithm. To address the first problem, a segment anything model (SAM)-induced seed
instance-mining (SSIM) module is proposed, which mines the SIs according to the object quality
score, which indicates the comprehensive characteristic of the category and the completeness of
the object. To handle the second problem, a SAM-based pseudo-ground truth-mining (SPGTM)
module is proposed to mine the pseudo-ground truth (PGT) instances, for which the localization is
more accurate than traditional proposals by fully making use of the advantages of SAM, and the
object-detection heads are trained by the PGT instances in a fully supervised manner. The ablation
studies show the effectiveness of the SSIM and SPGTM modules. Comprehensive comparisons with
15 WSOD methods demonstrate the superiority of our method on two RSI datasets.

Keywords: SAM-induced seed instance mining (SSIM); SAM-based pseudo-ground truth mining
(SPGTM); pseudo-fully supervised training; weakly supervised object detection (WSOD); remote
sensing image (RSI)

1. Introduction

Compared with fully supervised object detection (FSOD) [1–8], the major advantage
of weakly supervised object detection (WSOD) is that only image-level category anno-
tations are necessary for training the WSOD model. Considering the low cost of data
labeling, WSOD has been widely researched in recent years [9–17] and has been applied in
scene classification [18,19], disaster detection [20,21], military [22,23], and other applica-
tions [24–29].

Weakly supervised deep detection networks (WSDDNs) [30] firstly combined deep
learning with multiple instance learning (MIL) [30–34], and online instance classifier re-
finement (OICR) [31] introduced the instance classifier refinement (ICR) branch based on
the WSDDN. OICR has been adopted as the baseline framework by many WSOD methods,
and its process is briefly described as follows. Firstly, generate proposals through selective
search (SS) [35], and import them into the backbone network to attain their features. Then,
the instance-level category score (CS) of each proposal is obtained through MIL learning.
Finally, the CSs are continuously optimized by several ICR branches, where the positive
samples of each ICR branch include the seed instance (SI) and its neighbor instance, and the
proposal with the highest CS predicted by the previous ICR branch is defined as the SI.
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So far, there are still two problems that have not been well solved in the above baseline
framework. For the first problem, the SIs that are mined solely relying on the CS are
unreliable. On the one hand, existing methods usually select instances with high CSs
as the SIs [31,32,36–39]; however, these instances usually focus on the most salient parts,
rather than the whole object. On the other hand, compared with natural scene images
(NSIs), remote sensing images (RSIs) have a more complex background; consequently,
the reliability of the predicted CSs and SIs mined by the CSs is insufficient.

For the second problem, the localization capability of existing methods [34,40–42] is
restricted by the proposals generated by the SS or edge boxes (EBs) [43]. As a matter of fact,
most of the WSOD methods focus on improving the CS of each proposal, and the localiza-
tion of each proposal is not changed. Although recent works added a regression branch
for each ICR branch, where the SIs are used as the pseudo-ground truth (PGT) of each
regression branch, the SIs are selected from the proposals; in other words, the localization
of the SIs is still determined by the SS (EB). Considering that the SS (EB) is an early method
in which the deep learning technique is not applied, its localization capability is limited,
which has become a bottleneck of object localization for WSOD.

In order to address the aforementioned problems, a novel segment anything model
(SAM)-induced pseudo-fully supervised learning (SPFS) model is proposed for WSOD in
RSIs. Specifically, to overcome the first problem, as shown in Figure 1, a SAM-induced seed
instance-mining (SSIM) module is proposed. First of all, the SAM-induced bounding boxes
(SAMBs) are generated from the segmentation map inferred by SAM, where each SAMB
tightly encloses one segment. Afterwards, the SAMBs are utilized to calculate the object
completeness score (OCS) of each proposal. Finally, the OCS is integrated with the CS to
obtain the object quality score (OQS), which is more reliable than the CS and can indicate
the comprehensive characteristic of the object category and the object completeness, and the
OQS is used to mine the SIs.

To overcome the second issue, a SAM-based pseudo-ground truth-mining (SPGTM)
strategy is proposed for training the pseudo-fully supervised object-detection (PFSOD)
head. The PGT instances of each PFSOD head are mined from the SAMBs according to
the spatial relationship between the SAMBs and SIs of each ICR branch; consequently,
the localization of mined PGT instances is more accurate than traditional proposals by fully
making use of the advantages of SAM.

The main contributions of our method are as follows:

1. An SSIM module is proposed to address the issue of the SIs that are mined solely
depending on the CS being unreliable. The SSIM module mines the SIs according to
the OQS, which can indicate the comprehensive characteristic of the object category
and the object completeness;

2. An SPGTM strategy is proposed to break the bottleneck of object localization brought
by the SS or EB. The SPGTM strategy is utilized to mine PGT instances, for which the
localization is more accurate than traditional proposals by fully making use of the
advantages of SAM, and then, the PFSOD head is trained by using the PGT instances;

3. To our best knowledge, this is the first attempt to build a WSOD model by using
the vision foundation model. It is worth noting that our SPFS model gives a unified
solution of how to improve the localization capability of the WSOD model by using the
segmentation technique; in other words, SAM is not the only choice for segmentation,
and it can be replaced by better segmentation models in the future.
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Figure 1. The framework of the proposed method. The WSDDN, SSIM, and SPGTM modules and
PFSOD heads are introduced in Sections 3.1, 4.2, 4.3, and 4.4, respectively.

2. Related Works

To handle the problem that a single image contains multiple objects, many methods
have changed from selecting the highest score of proposals to the local highest score for
mining more SIs. On the one hand, some classical methods select the highest score of
proposals as the SI. For example, Tang et al. [31] proposed an OICR model, which selected
the highest prediction CS of the proposals as the SI, and then, the SI with its neighboring
instances were used to train the WSOD model. Wu et al. [40] proposed to combine bottom-
up aggregated attention (BUAA) and a phase-aware loss to select the highest CS of the
proposals as the SI. Other similar works include [34,44], etc.

On the other hand, some improved methods select the local highest score of the
proposals as the SIs. For example, Tang et al. [37] proposed a proposal-cluster-learning
(PCL) scheme, which divided the prediction CS of the proposals into multiple clusters to
mine the SIs for training the WSOD model. Ren et al. [32] proposed a multiple instance
self-training (MIST) strategy, which selected the top prediction CSs as the candidate SIs,
and the final SIs were determined by using the local NMS strategy among the candidate
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SIs. The mining high-quality pseudo-instance soft labels (MHQ-PSL) scheme [9] uses
the proposal quality score to mine PGT instances and assign soft labels to each instance.
Qian et al. [10] proposed an objectness score to mine SIs and incorporated the difficulty
evaluation score into the training loss. The semantic segmentation-guided pseudo-label
mining and instance re-detection (SGPLM-IR) method [11] proposes a class-specific object
confidence score to mine PGT instances and an instance re-detection module to improve
localization accuracy.

3. Basic WSOD Framework
3.1. Weakly Supervised Deep Detection Network

Currently, most of the WSOD methods use the OICR as the basic framework, which
is constructed on the basis of the WSDDN, which is used to infer the initial CS of each
proposal. Then, the OICR uses K ICR branches to continuously refine the CSs. The final
detection results are obtained through non-maximum suppression (NMS) [45–49] in terms
of the CSs.

Specifically, as shown in Figure 1, firstly, a series of proposals of the input image,
denoted as R = {r1, r2, ..., r|R|}, is generated through the SS, where |R| denotes the amount
of proposals. Secondly, the corresponding feature map is obtained by importing the
image into the backbone, and then, the proposal is imported to the region of interest
(RoI) pooling and two fully connected (FC) layers in the proper sequence to acquire the
corresponding feature vector. Thirdly, the classification and detection score matrices are
acquired by inputting the feature vectors into two parallel streams. The final score matrix,
denoted as Z ∈ RV×|R|, is obtained through the elementwise product of two matrices.
The final image-level prediction score of category v, denoted as Iv, can be attained by the
following equation:

Iv =
|R|

∑
j=1

zv,j, v ∈ [1, V] (1)

where V denotes the quantity of the category and zv,j ∈ Z denotes the element in the vth
row and jth column of Z. At this point, the WSDDN can be optimized by the following loss:

LB = −
V

∑
v=1

(yv log Iv + (1 − yv) log(1 − Iv)) (2)

where LB represents the loss function of the WSDDN and yv ∈ {0, 1} represents the
image-level label of category v; yv = 1 if the image contains category v, and otherwise,
yv = 0.

3.2. Online Instance Classifier Refinement

Fourthly, the CS matrices, denoted as Xk ∈ R(V+1)×|R|, are attained by inputting the
feature vectors of all proposals into the kth ICR stream, where k ∈ {1, 2, . . . , K} and the
(V+1)th category represents the background. The index of the proposal with the highest
CS of category v in the (k − 1)th ICR stream is denoted as jk−1

v , and then, rjk−1
v

is defined as
the SI of category v in the kth ICR stream. The assemble of positive samples of category v
in the kth ICR stream, denoted as Pk

v , consists of rjk−1
v

and its neighbor proposals. Finally,

the loss function Lk
ICR of the ICR branch is formulated as follows:

Lk
ICR = − 1

|R|

|R|

∑
j=1

V+1

∑
v=1

ωk
j yk

v,j log xk
v,j (3)

where xk
v,j ∈ Xk represents the CS of rj for category v in the kth ICR stream, ωk

j = xv,jk−1
v

denotes the weight of rj, and xv,jk−1
v

∈ Xk−1 represents the CS of rjk−1
v

for category v in the

(k − 1)th ICR stream; yk
v,j = 1 if rj ∈ Pk

v , and otherwise, yk
v,j = 0.
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3.3. Bounding Box Regression

Similar to recent WSOD methods [10,50], a bounding box regression (BBR) branch is
attached to each ICR branch to improve the localization capability. The loss function Lk

BBR
of the kth BBR stream is defined as follows:

Lk
BBR = − 1

V
∑

v=1

∣∣Pk
v
∣∣

V

∑
v=1

|Pk
v |

∑
i=1

smoothL1

(
tk
v,i, t̂k

v,i

)
(4)

where
∣∣∣Pk

v

∣∣∣ denotes the cardinality of Pk
v , smoothL1(·, ·) denotes the smooth L1 loss func-

tion [1], and tk
v,i and t̂k

v,i denote the predicted and target localization offsets of the ith positive
sample of category v in the kth BBR branch, respectively.

4. Proposed Method
4.1. Overview

As shown in Figure 1 and Section 3, our SPFS model utilizes the “OICR+BBR” as the
basic WSOD framework, and the proposed SSIM and SPGTM modules are incorporated
into it. Firstly, the RSI is fed into the backbone to obtain its feature maps, and the SS
algorithm is used to extract the proposals from the RSI. Secondly, the above proposals are
projected onto the feature maps, and their feature maps with a fixed size are generated
through the RoI pooling operation, then the feature maps of the proposals are fed into two
FC layers to extract the feature vector of each proposal. Thirdly, the feature vectors of all
proposals are fed into the WSDDN trained by image-level labels to acquire the CS of all
proposals, and the related details can be seen in Section 3.1. Fourthly, the segmentation
map of the RSI is generated by using SAM (the related details can be seen in Section 4.2),
and then, the rectangles are marked on it to obtain the SAMBs. Fifthly, the CSs of all
proposals and SAMBs are fed into the SSIM module to mine high-quality SIs, and the
related details can be seen in Section 4.3. Sixthly, the SIs and SAMBs are fed into the
SPGTM module to obtain the PGT instances of the RSI, and the related details can be seen
in Section 4.4. Seventhly, the feature vectors of all proposals are fed into the first PFSOD
head trained by the above PGT instances to refine the CSs of all proposals. Steps 5∼step 7
are repeated K-times to accomplish the training of K PFSOD heads, and the related details
can be seen in Section 4.5. Finally, the K trained PFSOD heads are jointly used to infer the
detection results.

4.2. Segment Anything Model

SAM [51] is a proposed vision foundation model based on deep learning technology.
Over eleven million images with over one billion masks are used to train SAM through
a multi-stage learning scheme; thus, SAM can learn more complex image features and
the morphology of foreground objects. Compared to traditional image-segmentation
methods [52–54], SAM can precisely segment various objects with any shape and category
in more complex scenarios, such as RSIs. Furthermore, SAM has an excellent capability
in terms of being real time and in terms of accuracy, whether on static images or dynamic
videos, which provides powerful support for various practical applications.

4.3. SAM-Induced Seed Instance Mining

First of all, the segmentation map of the input RSI is inferred by SAM, which is a
powerful universal segmentation model, as shown in the top-left corner of Figure 1; each
segment is visualized with different colors. Secondly, the SAMB of each segment is marked
according to the coordinates of the four vertices of each segment; consequently, each
segment is tightly enclosed by its SAMB.

Thirdly, the OCS of proposal rj, denoted as OCSj, is calculated through the follow-
ing equation:
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OCSj = max
{

IOU(rj, bn)
}|B|

n=1, bn ∈ B (5)

where B denotes the assemble of all SAMBs, |B| denotes the number of SAMBs, bn denotes
the nth SAMB in B, IOU(rj, bn) denotes the IoU between rj and bn, and max{·} denotes the
operation of taking the maximum value. Equation (5) is used to measure the completeness
by which each proposal covers the foreground object by using the advantages of SAM,
which can precisely and fully cover each object.

Fourthly, the OQS of rj for category v in the kth ICR branch, denoted as OQSk
v,j, is

calculated through the following equation:

OQSk
v,j = αxk

v,j + (1 − α)OCSj (6)

where α ∈ [0, 1] is used to adjust the relative weight between xk
v,j and OCSj As shown in

Equation (6), the OQS of each proposal is composed of the CS and OCS; consequently,
the SIs mined through the OQS have accurate category information and can cover the
objects as much as possible. Inspired by MHQ-PSLs [9] and SGPLM-IR [11], α is defined
as follows:

α =


ci
TI , ci < T

T
TI , ci ≥ T

(7)

where ci, TI, and T denote the current iteration steps, the total iteration steps, and the
threshold of the iteration steps, respectively. The rationale of using Equation (7) is as follows.
Our model was not well optimized at the beginning of the training; therefore, the reliability
of xk

v,j is not sufficient. At this point, α should be given a small value. As training continues,
the dependability of OCSj increases; thus, the value of α gradually increases. Considering
the importance of OCSj, the upper bound of α should be restricted.

Finally, the assemble of all SIs of category v in the kth ICR branch, denoted as Sk
v ={

sk
v,l

}|Sk
v|

l=1
, is mined by using OQSk

v,j and the mining strategy proposed by MIST [32], where

sk
v,l denotes the lth SI in Sk

v and
∣∣∣Sk

v

∣∣∣ denotes the number of SIs in Sk
v.

4.4. SAM-Based Pseudo-Ground Truth Mining

Guided by the aforementioned SIs, the SPGTM module is used to mine the PGT
instances from the SAMBs. On the one hand, the SIs usually contain accurate category
information, although they only focus on the most salient part of the object. On the
other hand, the foreground objects can be accurately localized by the SAMBs; however,
the category information of the SAMBs is lacking. Consequently, the proposed SPGTM
module mines the PGT instances of each PFSOD head by integrating the advantages of
the SI and SAMB. The core idea of the SPGTM module is as follows. Some SAMBs that
are considered as PGT instances are selected from the assemble of all SAMBs according
to the spatial relationship between the SAMBs and SIs, and the categories of the selected
SAMBs are copied from the matched SIs. The details of the SPGTM module can be seen in
Algorithm 1.

4.5. Pseudo-Fully Supervised Training of Object-Detection Head

The aforementioned Gk is used to train the kth PFSOD head in a fully supervised
manner. The assemble of positive samples of category v in the kth PFSOD head, denoted as
Qk

v, is mined from the proposals according to the spatial distance between the proposals
and Gk. Specifically, the proposal rj is considered as a member of Qk

v if IOU
(

rj, gk
v,m

)
≥ 0.5,

gk
v,m ∈ gk

v ∈ Gk. At this point, Equations (3) and (4) can be reformulated as follows:
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Lk
ICR = − 1

|R|

|R|

∑
j=1

V+1

∑
v=1

ωk
j hk

v,j log xk
v,j (8)

Lk
BBR = − 1

V
∑

v=1

∣∣Qk
v
∣∣

V

∑
v=1

|Qk
v|

∑
i=1

smoothL1

(
tk
v,i, t̂k

v,i

)
(9)

where hk
v,j = 1 if rj ∈ Qk

v, and otherwise, hk
v,j = 0. The training loss of the kth PFSOD head,

denoted as Lk
P, is attained as follows:

Lk
P = Lk

ICR + Lk
BBR (10)

Algorithm 1 SPGTM.

Input: B and
{

Sk
v

}V

v=1
// B denotes the assemble of all SAMBs, and

{
Sk

v

}V

v=1
denotes the

assemble of the SIs of all categories in the kth ICR branch.
Output: Assemble the PGT instance in the kth PFSOD head (Gk)

1: Initialize ψ = ϕ, Gk = ϕ
2: for n=1 to |B| do
3: for v=1 to V do
4: for l=1 to

∣∣∣Sk
v

∣∣∣ do

5: if IoU
(

bn, sk
v,l

)
≥ 0.5 then

6: Append (ψ, sk
v,l) // For each SAMB, the SI for which the IoU between the

SAMB and it is greater than 0.5 is considered as the candidate matching SI of
the SAMB.

7: end if
8: end for
9: end for

10: if ψ ̸= ϕ then
11: v∗ = argmax

v

{
IoU(bn, sk

v,l), sk
v,l ∈ ψ

}
, v∗ ∈ [1, V] // The SI for which the IoU

between SAMB and it is the highest among all candidate matching SIs of the SAMB
is selected as the final matching SI of the SAMB, and the category information of
the matching SI is assigned to the SAMB.

12: A PGT instance of category v∗ in the kth PFSOD head, denoted as gk
v∗ ,m ∈ gk

v∗ , is

obtained by assigning the category v∗ to bn, where m ∈
[
1,
∣∣∣gk

v∗

∣∣∣] and gk
v∗ ∈ Gk

denotes the assemble of PGT instances of category v∗ in the kth PFSOD head.
13: Append (gk

v∗ , gk
v∗ ,m)

14: ψ = ϕ
15: end if
16: end for
17: Gk =

{
gk

v∗

}V

v∗=1
// Gk denotes the assemble of PGT instances in the kth PFSOD head.

4.6. Overall Training Loss and Inference

The total training loss of our SPFS model, denoted as L, is defined as follows:

L = LB +
K

∑
k=1

Lk
P (11)

In the inference stage, SAM is not involved, and the average of the output of K PFSOD
heads is used to infer the final detection results.
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5. Experiments
5.1. Experiment Setup
5.1.1. Datasets

Our method was assessed on two RSI benchmarks, i.e., NWPU VHR-10.v2 [55,56]
and DIOR [57]. The NWPU VHR-10.v2 dataset includes 1172 RSIs of 400 × 400 pixels,
containing 10 categories and 2775 instances. The DIOR dataset includes 23,463 RSIs of
800 × 800 pixels, containing 20 categories and 192,472 instances. The 879 and 11,725 RSIs
are used for training on the NWPU VHR-10.v2 and DIOR datasets, respectively, and the
rest of the RSIs are used for testing. The detailed information of the two datasets is shown
in Figure 2.

Figure 2. The number of object instances for each category in the two datasets.

5.1.2. Metrics

This article utilizes the mean average precision (mAP) and correct localization (Cor-
Loc) [58] to assess the overall detection and localization accuracy, respectively.

5.1.3. Implementation Details

The VGG-16 [59] pre-trained on ImageNet [60] was adopted as the backbone of our
SPFS model. The number of PFSOD heads was set to 3, i.e., K = 3. The IoU threshold of
NMS was set to 0.3 [41,61–64]. The stochastic gradient descent (SGD) algorithm [65–68] was
used to optimize our model. The initial learning rate, batch size, momentum, and weight
decay were set to 0.1, 8, 0.9, and 0.005, respectively. The total training iterations were set to
30K and 60K on the NWPU VHR-10.v2 and DIOR datasets, respectively. A step learning
rate decay strategy was adopted, where the learning rate was reduced by 10% at iterations
20K and 26K on the NWPU VHR-10.v2 dataset, and the learning rate was reduced by 10%
at iterations 50K and 56K on the DIOR dataset. All of training samples were augmented
through rotation with 90° and 180° and horizontally flipping. The input images were
stochastically resized to six scales {480, 576, 688, 864, 1000, 1200} for multi-scale training



Remote Sens. 2024, 16, 1532 9 of 19

and testing. Our experiments were based on the PyTorch framework running on 8 GPUs
(8 × 24-GB memory, Titan RTX, NVIDIA, Santa Clara, CA, USA).

5.2. Parameter Analysis
5.2.1. Parameter α

As shown in Section 4.3, α was used to adjust the weight between two scores, and it
was analyzed on the DIOR dataset, as shown in Figure 3; both the mAP and CorLoc
achieved the highest scores when α was set to 0.5.

(a)

(b)

Figure 3. The values of (a) mAP and (b) CorLoc with respect to different α on the DIOR dataset.

5.2.2. Parameter K

K (the number of PFSOD Heads) was analyzed on the DIOR dataset, as shown in
Figure 4; both the mAP and CorLoc achieved the highest scores when K was set to 3.
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(a)

(b)

Figure 4. The values of (a) mAP and (b) CorLoc with respect to different K on the DIOR dataset.

5.3. Ablation Study

The ablation studies were conducted on the more challenging DIOR dataset to verify
the effectiveness of the SSIM and SPGTM modules. As mentioned before, the “OICR+BBR”
was adopted as the baseline [10,32,50]. As shown in Table 1, the mAP (CorLoc) increased
by 5.63% and 6.71% (5.82% and 7.10%) when the SSIM and SPGTM modules were sep-
arately added to the baseline, respectively, which validates the effectiveness of the two
modules. The mAP (CorLoc) improved by 10.80% (13.62%) when both the SSIM and
SPGTM modules were added to the baseline, which proves the validity of the combination
of the two modules.
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Table 1. Ablation studies of SSIM and SPGTM on the DIOR dataset.

Baseline SSIM SPGTM mAP CorLoc

✓ 20.10 42.79
✓ ✓ 25.73 48.61
✓ ✓ 26.81 49.89
✓ ✓ ✓ 30.90 56.41

5.4. Comparisons with Other Methods
5.4.1. Comparisons in Terms of mAP

As shown in Tables 2 and 3, the mAP of our method achieved 73.4% (30.9%) on the
NWPU VHR-10.v2 (DIOR) dataset, which outperformed the WSDDN [30], OICR [31],
PCL [37], MELM [69], MIST [32], DCL [70], PCIR [41], MIG [34], TCA [42], SAE [64],
SPG [38], MHQ-PSL [9], SGPLM-IR [11], RINet [62], and AE-IS [13]. Obviously, our method
gave the optimal performance in terms of the mAP on the two RSI datasets.

Table 2. The comparisons of average precision (%) with other methods on the NWPU VHR-
10.v2 dataset. The bold font denotes the best result. The same below .

Method Airplane Ship Storage
Tank

Baseball
Diamond

Tennis
Court

Basketball
Court

Ground
Track Field Harbor Bridge Vehicle mAP

Fast R-CNN [1] 90.91 90.60 89.29 47.32 100.00 85.85 84.86 88.22 80.29 69.84 82.72
Faster R-CNN [2] 90.90 86.30 90.53 98.24 89.72 69.64 100.00 80.11 61.49 78.14 84.51

WSDDN [30] 30.08 41.72 35.98 88.90 12.86 23.85 99.43 13.94 1.92 3.60 35.12
OICR [31] 13.66 67.35 57.16 55.16 13.64 39.66 92.80 0.23 1.84 3.73 34.52
PCL [37] 26.00 63.76 2.50 89.80 64.45 76.07 77.94 0.00 1.30 15.67 39.41

MELM [69] 80.86 69.30 10.48 90.17 12.84 20.14 99.17 17.10 14.17 8.68 42.29
MIST [32] 69.69 49.16 48.55 80.91 27.08 79.85 91.34 46.99 8.29 13.36 51.52
DCL [70] 72.70 74.25 37.05 82.64 36.88 42.27 83.95 39.57 16.82 35.00 52.11
PCIR [41] 90.78 78.81 36.40 90.80 22.64 52.16 88.51 42.36 11.74 35.49 54.97
MIG [34] 88.69 71.61 75.17 94.19 37.45 47.68 100.00 27.27 8.33 9.06 55.95
TCA [42] 89.43 78.18 78.42 90.80 35.27 50.36 90.91 42.44 4.11 28.30 58.82
SAE [64] 82.91 74.47 50.20 96.74 55.66 72.94 100.00 36.46 6.33 31.89 60.76
SPG [38] 90.42 81.00 59.53 92.31 35.64 51.44 99.92 58.71 16.99 42.99 62.89

MHQ-PSL [9] 87.60 81.00 57.30 94.00 36.40 80.40 100.00 56.90 9.80 35.60 63.80
SGPLM-IR [11] 90.70 79.90 69.30 97.50 41.60 77.50 100.00 44.40 17.20 33.50 65.20

RINet [62] 90.30 86.30 79.60 90.70 58.20 80.40 100.00 57.70 18.90 41.60 70.40
AE-IS [13] 91.00 88.20 78.30 93.20 60.60 82.40 100.00 60.40 19.60 45.80 72.00

SPFS (ours) 91.23 83.32 73.64 90.56 73.10 85.28 100.00 63.59 10.24 63.52 73.45

Table 3. The comparisons of average precision (%) with other methods on the DIOR dataset.

Method Airplane Airport Baseball
Field

Basketball
Court Bridge Chimney Dam Expressway

Service Area
Expressway
Toll Station Golf Field

Fast R-CNN [1] 44.17 66.79 66.96 60.49 15.56 72.28 51.95 65.87 44.76 72.11
Faster R-CNN [2] 50.28 62.60 66.04 80.88 28.80 68.17 47.26 58.51 48.06 60.44

WSDDN [30] 9.06 39.68 37.81 20.16 0.25 12.28 0.57 0.65 11.88 4.90
OICR [31] 8.70 28.26 44.05 18.22 1.30 20.15 0.09 0.65 29.89 13.80
PCL [37] 21.52 35.19 59.80 23.49 2.95 43.71 0.12 0.90 1.49 2.88

MELM [69] 28.14 3.23 62.51 28.72 0.06 62.51 0.21 28.39 13.09 15.15
MIST [32] 32.01 39.87 62.71 28.97 7.46 12.87 0.31 5.14 17.38 51.02
DCL [70] 20.89 22.70 54.21 11.50 6.03 61.01 0.09 1.07 31.01 30.87
PCIR [41] 30.37 36.06 54.22 26.60 9.09 58.59 0.22 9.65 36.18 32.59
MIG [34] 22.20 52.57 62.76 25.78 8.47 67.42 0.66 8.85 28.71 57.28
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Table 3. Cont.

Method Airplane Airport Baseball
Field

Basketball
Court Bridge Chimney Dam Expressway

Service Area
Expressway
Toll Station Golf Field

TCA [42] 25.13 30.84 62.92 40.00 4.13 67.78 8.07 23.80 29.89 22.34
SAE [64] 20.57 62.41 62.65 23.54 7.59 64.62 0.22 34.52 30.62 55.38
SPG [38] 31.32 36.66 62.79 29.10 6.08 62.66 0.31 15.00 30.10 35.00

MHQ-PSL [9] 29.10 49.80 70.90 41.40 7.20 45.50 0.20 35.40 36.80 60.80
SGPLM-IR [11] 39.10 64.60 64.40 26.90 6.30 62.30 0.90 12.20 26.30 55.30

RINet [62] 26.20 57.40 62.70 25.10 9.90 69.20 1.40 13.30 36.20 51.40
AE-IS [13] 31.80 50.90 63.20 29.40 8.90 68.70 1.30 15.10 35.50 51.60

SPFS (ours) 35.94 62.89 66.08 30.53 9.71 69.77 1.93 12.88 34.90 50.49

Method Ground
Track Field Harbor Overpass Ship Stadium Storage

Tank
Tennis
Court

Train
Station Vehicle Windmill mAP

Fast R-CNN [1] 62.93 46.18 38.03 32.13 70.98 35.04 58.27 37.91 19.20 38.10 49.98
Faster R-CNN [2] 67.00 43.86 46.87 58.48 52.37 42.35 79.52 48.02 34.77 65.44 55.49

WSDDN [30] 42.53 4.66 1.06 0.70 63.03 3.95 6.06 0.51 4.55 1.14 13.27
OICR [31] 57.39 10.66 11.06 9.09 59.29 7.10 0.68 0.14 9.09 0.41 16.50
PCL [37] 56.36 16.76 11.05 9.09 57.62 9.09 2.47 0.12 4.55 4.5 18.19

MELM [69] 41.05 26.12 0.43 9.09 8.28 15.02 20.57 9.81 0.04 0.53 18.65
MIST [32] 49.48 5.36 12.24 29.43 35.53 25.36 0.81 4.59 22.22 0.80 22.18
DCL [70] 56.45 5.05 2.65 9.09 63.65 9.09 10.36 0.02 7.27 0.79 20.19
PCIR [41] 58.51 8.60 21.63 12.09 64.28 9.09 13.62 0.30 9.09 7.52 24.92
MIG [34] 47.73 23.77 0.77 6.42 54.13 13.15 4.12 14.76 0.23 2.43 25.11
TCA [42] 53.85 24.84 11.06 9.09 46.40 13.74 30.98 1.47 9.09 1.00 25.82
SAE [64] 52.70 17.57 6.85 9.09 51.59 15.43 1.69 14.44 1.41 9.16 27.10
SPG [38] 48.02 27.11 12.00 10.02 60.04 15.10 21.00 9.92 3.15 0.06 25.77

MHQ-PSL [9] 48.50 14.00 25.10 18.50 48.90 11.70 11.90 3.50 11.30 1.70 28.60
SGPLM-IR [11] 60.60 9.40 23.10 13.40 57.40 17.70 1.50 14.00 11.50 3.50 28.50

RINet [62] 53.90 28.60 4.80 9.10 52.70 15.80 20.60 12.90 9.10 4.70 28.30
AE-IS [13] 52.30 28.80 13.30 11.20 56.90 16.30 22.40 14.00 8.00 2.60 29.10

SPFS (ours) 56.92 25.29 26.30 15.18 52.29 12.62 25.81 13.88 11.61 3.10 30.90

5.4.2. Comparisons in Terms of CorLoc

As shown in Tables 4 and 5, the CorLoc of our method achieved 78.7% (56.4%) on the
NWPU VHR-10.v2 (DIOR) dataset, which outperformed the WSDDN, OICR, PCL, MELM,
MIST, PCIR, MIG, TCA, SAE, SPG, MHQ-PSL, SGPLM-IR, RINet, and AE-IS. Obviously,
our method also gave the best performance in terms of CorLoc on the two RSI datasets.

Table 4. The comparisons of correct localization (%) with other methods on the NWPU VHR-
10.v2 dataset.

Method Airplane Ship Storage
Tank

Baseball
Diamond

Tennis
Court

Basketball
Court

Ground
Track Field Harbor Bridge Vehicle mAP

WSDDN [30] 22.32 36.81 39.95 92.48 17.96 24.24 99.26 14.83 1.69 2.89 35.24
OICR [31] 29.41 83.33 20.51 81.76 40.85 32.08 86.60 7.41 3.70 14.44 40.01
PCL [37] 11.76 50.00 12.82 98.65 84.51 77.36 90.72 0.00 9.26 15.56 45.06

MELM [69] 85.96 77.42 21.43 98.33 10.71 43.48 95.00 40.00 11.76 14.63 49.87
MIST [32] 90.20 82.50 80.30 98.60 48.50 87.40 98.30 66.50 14.60 35.80 70.30
PCIR [41] 100.00 93.06 64.10 99.32 64.79 79.25 89.69 62.96 13.26 52.22 71.87
MIG [34] 97.79 90.26 87.18 98.65 54.93 64.15 100.00 74.07 12.96 21.57 70.16
TCA [42] 96.91 91.78 95.13 88.65 66.90 62.83 95.98 54.18 19.63 55.50 72.76
SAE [64] 97.06 91.67 87.81 98.65 40.86 81.13 100.00 70.37 14.81 52.22 73.46
SPG [38] 98.06 92.67 70.08 99.65 51.86 80.12 96.20 72.44 12.99 60.02 73.41

MHQ-PSL [9] 94.40 86.60 68.50 97.80 69.80 87.50 100.00 68.60 16.00 56.60 74.60
SGPLM-IR [11] 98.20 93.80 89.30 99.10 50.20 88.90 100.00 71.00 12.30 51.20 75.40

AE-IS [13] 98.30 94.20 72.40 100.00 56.80 83.60 98.40 76.80 18.20 62.40 76.10
SPFS (ours) 95.49 90.32 81.53 90.18 70.10 89.94 100.0 78.90 19.38 70.81 78.67
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Table 5. The comparisons of correct localization (%) with other methods on the DIOR dataset.

Method Airplane Airport Baseball
Field

Basketball
Court Bridge Chimney Dam Expressway

Service Area
Expressway
Toll Station Golf Field

WSDDN [30] 5.72 59.88 94.24 55.94 4.92 23.40 1.03 6.79 44.52 12.75
OICR [31] 15.98 51.45 94.77 55.79 2.63 23.89 0.00 4.82 56.68 22.42
PCL [37] 61.14 46.86 95.39 63.61 7.32 95.07 0.21 5.71 5.14 50.77

MELM [69] 76.98 28.94 92.66 63.01 13.00 90.09 0.21 37.88 16.96 44.62
MIST [32] 91.60 53.20 93.50 66.30 10.80 30.70 1.50 14.03 35.20 47.50
PCIR [41] 93.10 45.60 95.50 68.30 3.60 92.10 0.20 5.40 58.40 47.50
MIG [34] 76.98 46.86 95.39 63.61 23.00 95.07 0.21 16.96 57.88 50.77
TCA [42] 81.58 51.33 96.17 73.45 5.03 94.69 15.89 32.79 45.95 48.56
SAE [64] 91.20 69.37 95.48 67.52 18.88 97.78 0.21 70.54 54.32 51.43
SPG [38] 80.48 32.04 98.68 65.00 15.20 96.08 22.52 16.99 46.08 50.96

MHQ-PSL [9] 85.50 68.90 96.80 75.80 11.60 94.70 0.80 67.50 60.50 46.50
SGPLM-IR [11] 92.20 58.30 97.80 74.20 16.20 95.20 0.30 51.30 56.20 52.30

RINet [62] 92.70 80.90 92.70 69.50 8.60 90.10 0.20 71.30 62.00 65.50
AE-IS [13] 91.40 78.60 96.10 68.80 16.00 92.30 22.80 68.90 60.60 62.70

SPFS (ours) 90.82 80.13 98.59 65.50 19.45 90.38 2.35 70.61 62.24 66.51

Method Ground
Track Field Harbor Overpass Ship Stadium Storage

Tank
Tennis
Court

Train
Station Vehicle Windmill mAP

WSDDN [30] 89.90 5.45 10.00 22.96 98.54 79.61 15.06 3.45 11.56 3.22 32.44
OICR [31] 91.41 18.18 18.70 31.80 98.28 81.29 7.45 1.22 15.83 1.98 34.77
PCL [37] 89.39 42.12 19.78 37.94 97.93 80.65 13.77 0.20 10.50 6.94 41.52

MELM [69] 88.08 49.39 15.65 28.19 98.28 82.97 22.75 10.34 4.62 2.23 43.34
MIST [32] 87.10 38.60 23.40 50.70 80.50 89.20 22.40 11.50 22.20 2.40 43.60
PCIR [41] 88.60 15.80 5.20 39.50 98.10 85.60 13.40 56.50 9.70 0.60 46.10
MIG [34] 89.39 42.12 19.78 37.94 97.93 80.65 13.77 10.34 10.50 6.94 46.80
TCA [42] 85.26 38.91 20.17 30.63 84.59 91.46 56.28 3.79 10.45 1.25 48.41
SAE [64] 88.28 48.03 2.28 33.56 14.11 83.35 65.59 19.88 16.41 2.85 49.42
SPG [38] 89.18 49.45 22.00 35.16 98.61 90.04 32.56 12.73 9.98 2.34 48.30

MHQ-PSL [9] 75.20 50.50 28.30 39.70 92.60 77.00 55.10 10.10 20.90 5.60 53.20
SGPLM-IR [11] 91.70 48.60 23.00 32.70 98.80 89.30 43.50 19.50 18.30 4.00 53.20

RINet [62] 85.10 51.40 15.70 44.60 98.60 80.30 14.80 22.70 6.90 2.60 52.80
AE-IS [13] 88.20 50.90 23.40 40.20 98.80 91.50 33.20 18.40 12.30 2.50 55.90

SPFS (ours) 93.28 50.81 25.56 42.61 95.78 83.55 49.54 15.69 18.89 5.88 56.41

In conclusion, the overall capability of our method was superior to the other WSOD
methods.

In addition, as shown in Tables 2 and 3, our model was compared with two FSOD
methods, i.e., fast R-CNN [1] and faster R-CNN [2]; the comparison results showed that
our model significantly narrowed the gap between the WSOD and FSOD methods. Note
that the capability of our method was almost comparable with the 2 FSOD methods on the
NWPU VHR-10.v2 dataset.

5.5. Subjective Evaluation

Some detection results of our SPFS model on two RSI datasets are visualized in Figure 5
and Figure 6, respectively. Obviously, our model gave excellent results for most of the
categories, which intuitively verified the effectiveness of our method.
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Figure 5. Visualization of some results of the SPFS model on the NWPU VHR-10.v2 dataset.
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Figure 6. Visualization of some results of the SPFS model on the DIOR dataset.

6. Conclusions

A novel SPFS model that includes the SSIM and SPGTM modules is proposed in
this article. First of all, the SIs mined by the CS tend to concentrate on the most signif-
icant parts of the target; moreover, they are unreliable because the reliability of the CS
is not sufficient for RSIs with complex backgrounds. The SSIM module was proposed
to address the aforementioned problem, which mines the SIs by using the OQS, which
can represent the comprehensive characteristic of the category and the completeness of
the target. Secondly, the localization capability of current methods is restricted because
it solely depends on the proposals generated by the SS or EB, which is an early method
and does not use the deep learning techniques. The SPGTM module was proposed to
address the aforementioned problem, which can make full use of the advantages of SAM to
obtain good-quality PGT instances, for which the localization was more accurate than the
traditional proposals, and the PFSOD heads were trained by the PGT instances in a fully
supervised manner. The ablation experiments verified the validity of the SSIM, SPGTM,
and their integration. The quantitative comparisons with 15 WSOD methods demonstrated
the excellent capability of our method.



Remote Sens. 2024, 16, 1532 16 of 19

Author Contributions: Conceptualization, X.Q.; formal analysis, X.Q.; funding acquisition, X.Q.;
methodology, X.Q. and C.L.; project administration, W.W.; resources, W.W.; software, C.L.; supervi-
sion, W.W.; validation, W.W. and Z.C.; writing—original draft, C.L.; writing—review and editing,
X.Q. and Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No.
62076223), the Key Research Project of Henan Province Universities (Grant No. 24ZX005), and the
Key Science and Technology Program of Henan Province (Grant No. 232102211018).

Data Availability Statement: The NWPU VHR-10.v2 and DIOR datasets are available at the fol-
lowing URLs: https://drive.google.com/file/d/15xd4TASVAC2irRf02GA4LqYFbH7QITR-/view
(accessed on 15 March 2023) and https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ546
7iT-UqNPpx__CC (accessed on 15 March 2023), respectively.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

WSOD weakly supervised object detection
RSI remote sensing image
SI seed instance
PGT pseudo-ground truth
SSIM SAM-induced seed instance mining
SPGTM SAM-based pseudo-ground truth mining
OCS object completeness score
OQS object quality score
PFSOD pseudo-fully supervised object detection

References
1. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Washington, DC, USA, 7–13

December 2015; pp. 1440–1448.
2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef]
3. Qian, X.; Wu, B.; Cheng, G.; Yao, X.; Wang, W.; Han, J. Building a Bridge of Bounding Box Regression Between Oriented and

Horizontal Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–9. [CrossRef]
4. Li, L.; Yao, X.; Wang, X.; Hong, D.; Cheng, G.; Han, J. Robust Few-Shot Aerial Image Object Detection via Unbiased Proposals

Filtration. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [CrossRef]
5. Cheng, G.; Li, Q.; Wang, G.; Xie, X.; Min, L.; Han, J. SFRNet: Fine-Grained Oriented Object Recognition via Separate Feature

Refinement. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–10. [CrossRef]
6. Xie, X.; Lang, C.; Miao, S.; Cheng, G.; Li, K.; Han, J. Mutual-Assistance Learning for Object Detection. IEEE Trans. Pattern Anal.

Mach. Intell. 2023, 45, 15171–15184. [CrossRef]
7. Xie, X.; Cheng, G.; Li, Q.; Miao, S.; Li, K.; Han, J. Fewer is more: Efficient object detection in large aerial images. Sci. China Inf. Sci.

2024, 67, 112106. [CrossRef]
8. Liang, Y.; Feng, J.; Zhang, X.; Zhang, J.; Jiao, L. MidNet: An anchor-and-angle-free detector for oriented ship detection in aerial

images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [CrossRef]
9. Qian, X.; Huo, Y.; Cheng, G.; Gao, C.; Yao, X.; Wang, W. Mining High-Quality Pseudoinstance Soft Labels for Weakly Supervised

Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [CrossRef]
10. Qian, X.; Huo, Y.; Cheng, G.; Yao, X.; Li, K.; Ren, H.; Wang, W. Incorporating the completeness and difficulty of proposals into

weakly supervised object detection in remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1902–1911.
[CrossRef]

11. Qian, X.; Li, C.; Wang, W.; Yao, X.; Cheng, G. Semantic segmentation guided pseudo label mining and instance re-detection for
weakly supervised object detection in remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103301. [CrossRef]

12. Qian, X.; Wang, C.; Li, C.; Li, Z.; Zeng, L.; Wang, W.; Wu, Q. Multiscale Image Splitting Based Feature Enhancement and Instance
Difficulty Aware Training for Weakly Supervised Object Detection in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2023, 16, 7497–7506. [CrossRef]

13. Xie, X.; Cheng, G.; Feng, X.; Yao, X.; Qian, X.; Han, J. Attention Erasing and Instance Sampling for Weakly Supervised Object
Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–10. [CrossRef]

https://drive.google.com/file/d/15xd4TASVAC2irRf02GA4LqYFbH7QITR-/view
https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ5467iT-UqNPpx__CC
https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ5467iT-UqNPpx__CC
http://doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TGRS.2023.3256373
http://dx.doi.org/10.1109/TGRS.2023.3300071
http://dx.doi.org/10.1109/TGRS.2023.3277626
http://dx.doi.org/10.1109/TPAMI.2023.3319634
http://dx.doi.org/10.1007/s11432-022-3718-5
http://dx.doi.org/10.1109/TGRS.2023.3280973
http://dx.doi.org/10.1109/TGRS.2023.3266838
http://dx.doi.org/10.1109/JSTARS.2022.3150843
http://dx.doi.org/10.1016/j.jag.2023.103301
http://dx.doi.org/10.1109/JSTARS.2023.3304411
http://dx.doi.org/10.1109/TGRS.2023.3339956


Remote Sens. 2024, 16, 1532 17 of 19

14. Wu, Z.; Wen, J.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. Enhanced spatial feature learning for weakly supervised object detection. IEEE
Trans. Neural Netw. Learn. Syst. 2022, 35, 961–972. [CrossRef]

15. Wu, Z.; Wen, J.; Xu, Y.; Yang, J.; Zhang, D. Multiple instance detection networks with adaptive instance refinement. IEEE Trans.
Multimed. 2021, 25, 267–279. [CrossRef]

16. Zhang, D.; Li, H.; Zeng, W.; Fang, C.; Cheng, L.; Cheng, M.M.; Han, J. Weakly Supervised Semantic Segmentation via Alternate
Self-Dual Teaching. IEEE Trans. Image Process. 2023, 72, 1. [CrossRef]

17. Zhang, D.; Guo, G.; Zeng, W.; Li, L.; Han, J. Generalized weakly supervised object localization. IEEE Trans. Neural Netw. Learn.
Syst. 2022, 35, 5395–5406. [CrossRef]

18. Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-attention-based DenseNet network for remote sensing image scene
classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 60, 4121–4132. [CrossRef]

19. Chen, W.; Ouyang, S.; Tong, W.; Li, X.; Zheng, X.; Wang, L. GCSANet: A global context spatial attention deep learning network
for remote sensing scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 60, 1150–1162. [CrossRef]

20. Tekumalla, R.; Banda, J.M. TweetDIS: A large twitter dataset for natural disasters built using weak supervision. In Proceedings of
the 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 17–20 December 2022; Volume 60, pp. 4816–4823.
[CrossRef]

21. Presa-Reyes, M.; Tao, Y.; Chen, S.C.; Shyu, M.L. Deep learning with weak supervision for disaster scene description in low-altitude
imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [CrossRef]

22. Tang, W.; Deng, C.; Han, Y.; Huang, Y.; Zhao, B. SRARNet: A unified framework for joint superresolution and aircraft recognition.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 327–336. [CrossRef]

23. He, Q.; Sun, X.; Yan, Z.; Li, B.; Fu, K. Multi-object tracking in satellite videos with graph-based multitask modeling. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

24. Lin, S.; Zhang, M.; Cheng, X.; Shi, L.; Gamba, P.; Wang, H. Dynamic Low-Rank and Sparse Priors Constrained Deep Autoencoders
for Hyperspectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2023, 73, 2500518. [CrossRef]

25. Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Hyperspectral Anomaly Detection via Sparse Representation and
Collaborative Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 946–961. [CrossRef]

26. Lin, S.; Zhang, M.; Cheng, X.; Zhou, K.; Zhao, S.; Wang, H. Dual Collaborative Constraints Regularized Low-Rank and Sparse
Representation via Robust Dictionaries Construction for Hyperspectral Anomaly Detection. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2023, 16, 2009–2024. [CrossRef]

27. Cheng, X.; Zhang, M.; Lin, S.; Li, Y.; Wang, H. Deep Self-Representation Learning Framework for Hyperspectral Anomaly
Detection. IEEE Trans. Instrum. Meas. 2023, 73, 5002016. [CrossRef]

28. Cheng, X.; Zhang, M.; Lin, S.; Zhou, K.; Zhao, S.; Wang, H. Two-Stream Isolation Forest Based on Deep Features for Hyperspectral
Anomaly Detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

29. Huo, Y.; Qian, X.; Li, C.; Wang, W. Multiple Instance Complementary Detection and Difficulty Evaluation for Weakly Supervised
Object Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [CrossRef]

30. Bilen, H.; Vedaldi, A. Weakly supervised deep detection networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2846–2854.

31. Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple instance detection network with online instance classifier refinement. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2843–2851.

32. Ren, Z.; Yu, Z.; Yang, X.; Liu, M.Y.; Lee, Y.J.; Schwing, A.G.; Kautz, J. Instance-aware, context-focused, and memory-efficient
weakly supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 13–19 June 2020; pp. 10598–10607.

33. Yin, Y.; Deng, J.; Zhou, W.; Li, L.; Li, H. Fi-wsod: Foreground information guided weakly supervised object detection. IEEE Trans.
Multimed. 2022, 25, 1890–1902. [CrossRef]

34. Wang, B.; Zhao, Y.; Li, X. Multiple instance graph learning for weakly supervised remote sensing object detection. IEEE Trans.
Geosci. Remote Sens. 2021, 60, 1–12. [CrossRef]

35. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013,
104, 154–171. [CrossRef]

36. Wei, Y.; Shen, Z.; Cheng, B.; Shi, H.; Xiong, J.; Feng, J.; Huang, T. Ts2c: Tight box mining with surrounding segmentation context
for weakly supervised object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich,
Germany, 8–14 September 2018; pp. 434–450. [CrossRef]

37. Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; Yuille, A. PCL: Proposal Cluster Learning for Weakly Supervised Object
Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 176–191. [CrossRef]

38. Cheng, G.; Xie, X.; Chen, W.; Feng, X.; Yao, X.; Han, J. Self-guided proposal generation for weakly supervised object detection.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [CrossRef]

39. Xia, R.; Li, G.; Huang, Z.; Meng, H.; Pang, Y. CBASH: Combined backbone and advanced selection heads with object semantic
proposals for weakly supervised object detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6502–6514. [CrossRef]

40. Wu, Z.; Liu, C.; Wen, J.; Xu, Y.; Yang, J.; Li, X. Selecting high-quality proposals for weakly supervised object detection with
bottom-up aggregated attention and phase-aware loss. IEEE Trans. Image Process. 2022, 32, 682–693. [CrossRef]

http://dx.doi.org/10.1109/TNNLS.2022.3178180
http://dx.doi.org/10.1109/TMM.2021.3125130
http://dx.doi.org/10.1109/TIP.2023.3343112
http://dx.doi.org/10.1109/TNNLS.2022.3204337
http://dx.doi.org/10.1109/JSTARS.2020.3009352
http://dx.doi.org/10.1109/JSTARS.2022.3141826
http://dx.doi.org/10.1109/BigData55660.2022.10020214
http://dx.doi.org/10.1109/TGRS.2021.3129443
http://dx.doi.org/10.1109/JSTARS.2020.3037225
http://dx.doi.org/10.1109/TGRS.2022.3152250
http://dx.doi.org/10.1109/TIM.2023.3323997
http://dx.doi.org/10.1109/JSTARS.2022.3229834
http://dx.doi.org/10.1109/JSTARS.2022.3214508
http://dx.doi.org/10.1109/TIM.2023.3330225
http://dx.doi.org/10.1109/LGRS.2023.3271899
http://dx.doi.org/10.1109/LGRS.2023.3283403
http://dx.doi.org/10.1109/TMM.2022.3198018
http://dx.doi.org/10.1109/TGRS.2021.3123231
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1007/978-3-030-01252-6_27
http://dx.doi.org/10.1109/TPAMI.2018.2876304
http://dx.doi.org/10.1109/TGRS.2022.3181466
http://dx.doi.org/10.1109/TCSVT.2022.3168547
http://dx.doi.org/10.1109/TIP.2022.3231744


Remote Sens. 2024, 16, 1532 18 of 19

41. Feng, X.; Han, J.; Yao, X.; Cheng, G. Progressive contextual instance refinement for weakly supervised object detection in remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8002–8012. [CrossRef]

42. Feng, X.; Han, J.; Yao, X.; Cheng, G. TCANet: Triple context-aware network for weakly supervised object detection in remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6946–6955. [CrossRef]

43. Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13, 2014; pp. 391–405. [CrossRef]

44. Lin, C.; Wang, S.; Xu, D.; Lu, Y.; Zhang, W. Object instance mining for weakly supervised object detection. Proc. AAAI Conf. Artif.
Intell. 2020, 34, 11482–11489. [CrossRef]

45. Feng, J.; Liang, Y.; Zhang, X.; Zhang, J.; Jiao, L. SDANet: Semantic-embedded density adaptive network for moving vehicle
detection in satellite videos. IEEE Trans. Image Process. 2023, 32, 1788–1801. [CrossRef]

46. Feng, J.; Bai, G.; Li, D.; Zhang, X.; Shang, R.; Jiao, L. MR-selection: A meta-reinforcement learning approach for zero-shot
hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2022, 61, 1–20. [CrossRef]

47. Qian, X.; Zeng, Y.; Wang, W.; Zhang, Q. Co-Saliency Detection Guided by Group Weakly Supervised Learning. IEEE Trans.
Multimed. 2023, 25, 1810–1818. [CrossRef]

48. Feng, J.; Gao, Z.; Shang, R.; Zhang, X.; Jiao, L. Multi-complementary generative adversarial networks with contrastive learning
for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [CrossRef]

49. Qian, X.; Zhang, N.; Wang, W. Smooth giou loss for oriented object detection in remote sensing images. Remote Sens. 2023,
15, 1259. [CrossRef]

50. Seo, J.; Bae, W.; Sutherland, D.J.; Noh, J.; Kim, D. Object Discovery via Contrastive Learning for Weakly Supervised Object
Detection. In Proceedings of the Computer Vision—ECCV 2022; Springer Nature: Cham, Switzerland, 2022; pp. 312–329.

51. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
anything. arXiv 2023, arXiv:2304.02643. [CrossRef]

52. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 15–17 June 2016; pp. 2921–2929.

53. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

54. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

55. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical
Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [CrossRef]

56. Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-Insensitive and Context-Augmented Object Detection in Remote Sensing Images. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 2337–2348. [CrossRef]

57. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark.
ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

58. Deselaers, T.; Alexe, B.; Ferrari, V. Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 2012,
100, 275–293. [CrossRef]

59. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
60. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
61. Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515.
62. Feng, X.; Yao, X.; Cheng, G.; Han, J. Weakly Supervised Rotation-Invariant Aerial Object Detection Network. In Proceedings of

the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 14126–14135. [CrossRef]

63. Chen, Z.; Fu, Z.; Jiang, R.; Chen, Y.; Hua, X.S. Slv: Spatial likelihood voting for weakly supervised object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12995–13004.
[CrossRef]

64. Feng, X.; Yao, X.; Cheng, G.; Han, J.; Han, J. SAENet: Self-Supervised Adversarial and Equivariant Network for Weakly
Supervised Object Detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [CrossRef]

65. Yang, K.; Zhang, P.; Qiao, P.; Wang, Z.; Dai, H.; Shen, T.; Li, D.; Dou, Y. Rethinking Segmentation Guidance for Weakly Supervised
Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 4069–4073. [CrossRef]

66. Wang, G.; Zhang, X.; Peng, Z.; Jia, X.; Tang, X.; Jiao, L. MOL: Towards accurate weakly supervised remote sensing object detection
via Multi-view nOisy Learning. ISPRS J. Photogramm. Remote Sens. 2023, 196, 457–470. [CrossRef]

67. Chen, M.; Tian, Y.; Li, Z.; Li, E.; Liang, Z. Online Progressive Instance-Balanced Sampling for Weakly Supervised Vibration
Damper Detection. IEEE Trans. Instrum. Meas. 2023, 72, 1–14. [CrossRef]

68. Wang, G.; Zhang, X.; Peng, Z.; Tang, X.; Zhou, H.; Jiao, L. Absolute wrong makes better: Boosting weakly supervised object
detection via negative deterministic information. arXiv 2022, arXiv:2204.10068. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2020.2985989
http://dx.doi.org/10.1109/TGRS.2020.3030990
http://dx.doi.org/10.1007/978-3-319-10602-1_26
http://dx.doi.org/10.1609/aaai.v34i07.6813
http://dx.doi.org/10.1109/TIP.2023.3251026
http://dx.doi.org/10.1109/TGRS.2022.3231870
http://dx.doi.org/10.1109/TMM.2022.3167805
http://dx.doi.org/10.1109/TGRS.2023.3304836
http://dx.doi.org/10.3390/rs15051259
https://doi.org/10.48550/arXiv.2304.02643
http://dx.doi.org/10.1109/TGRS.2016.2601622
http://dx.doi.org/10.1109/TGRS.2017.2778300
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.1007/s11263-012-0538-3
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR52688.2022.01375
http://dx.doi.org/10.1109/CVPR42600.2020.01301
http://dx.doi.org/10.1109/TGRS.2021.3105575
http://dx.doi.org/10.1109/CVPRW50498.2020.00481
http://dx.doi.org/10.1016/j.isprsjprs.2023.01.011
http://dx.doi.org/10.1109/TIM.2023.3273655
https://doi.org/10.48550/arXiv.2204.10068


Remote Sens. 2024, 16, 1532 19 of 19

69. Wan, F.; Wei, P.; Jiao, J.; Han, Z.; Ye, Q. Min-entropy latent model for weakly supervised object detection. In Proceedings of the
IEEE Conference Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1297–1306.

70. Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic weakly supervised object detection from high spatial resolution remote
sensing images via dynamic curriculum learning. IEEE Trans. Geosci. Remote Sens. 2020, 59, 675–685. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2020.2991407

	Introduction
	Related Works
	Basic WSOD Framework
	Weakly Supervised Deep Detection Network
	Online Instance Classifier Refinement
	Bounding Box Regression

	Proposed Method
	Overview
	Segment Anything Model
	SAM-Induced Seed Instance Mining
	SAM-Based Pseudo-Ground Truth Mining
	Pseudo-Fully Supervised Training of Object-Detection Head
	Overall Training Loss and Inference

	Experiments
	Experiment Setup
	Datasets
	Metrics
	Implementation Details

	Parameter Analysis
	Parameter 
	Parameter K

	Ablation Study
	Comparisons with Other Methods
	Comparisons in Terms of mAP
	Comparisons in Terms of CorLoc

	Subjective Evaluation

	Conclusions
	References

