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Abstract: Chlorogenic acid (CGA) is a powerful antioxidant polyphenol molecule found in many
diets and liquid beverages, playing a preventive and therapeutic role in various diseases caused by
oxidative stress and inflammation. Recent research has found that CGA can not only improve clinical
symptoms in PCOS patients but also improve follicular development, hormone status, and oxidative
stress in PCOS rats, indicating the therapeutic effect of CGA on PCOS. Notably, our previous series
of studies has demonstrated the expression changes and regulatory mechanisms of HIF-1alpha
signaling in PCOS ovaries. Considering the regulatory effect of CGA on the HIF-1alpha pathway, the
present article systematically elucidates the therapeutic role and molecular mechanisms of HIF-1alpha
signaling during the treatment of PCOS by CGA, including follicular development, steroid synthesis,
inflammatory response, oxidative stress, and insulin resistance, in order to further understand the
mechanisms of CGA effects in different types of diseases and to provide a theoretical basis for further
promoting CGA-rich diets and beverages simultaneously.

Keywords: chlorogenic acid; hypoxia inducible factor-1alpha; follicular development; hormone
synthesis; inflammatory response; oxidative stress; polycystic ovarian syndrome

1. Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine disease, with female
infertility, anovulation, and hyperandrogenism, which even affects the quality of life after
menopause [1–5]. The main clinical symptoms include hormonal imbalances, irregular
menstrual cycles, dysfunction of follicle maturation, and miscarriage [6–8]. It is worth
noting that the systemic low-grade inflammation in PCOS patients is closely related to
oxidative stress [9–11]. While oxidative stress is typically present in PCOS patients, leading
to an increase in the number of lipid peroxidation products and other highly toxic products
such as malondialdehyde [8], it also plays an important role in infertility [12–14]. Therefore,
alternative treatment strategies to reduce oxidative stress can improve the reserve and
developmental ability of ovarian follicles in PCOS patients [15–18].

At present, in-depth research has been conducted on PCOS pathogenesis and treatment
strategies. We have clearly demonstrated that the hypoxia-inducible factor (HIF)-1alpha
signaling pathway plays an important regulatory role during this process [19–24]. HIF-
1alpha is a regulatory alpha-subunit of heterodimeric transcription factor HIF-1, mainly
expressed in granulosa cells, regulated by the hypothalamus-pituitary-gonad axis, and
involved in follicular development, ovarian ovulation, and hormone synthesis [20,21,24–26].
HIF-1alpha is indispensable in the dimethyldiguanide (DMBG) treatment of PCOS as a
novel therapeutic target [20,27–29].

In recent years, the importance of food-based alternative drugs and free drugs in the
treatment of PCOS has received widespread attention. Phytochemical substances in medic-
inal plants are the source of effective treatment for diseases such as PCOS [30–37]. They
can improve insulin sensitivity, promote ovulation, and reduce hyperandrogenism without
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side effects [30,32,34,38]. Among them, chlorogenic acid (CGA) is a widely distributed
natural compound with many pharmacological activities, mainly extracted from natural
plants such as honeysuckle, Eucommia ulmoides, coffee beans, and sunflowers [33,39–41].
It has been widely used in industries such as medicine, health, and food chemicals.

CGA is a polyphenol molecule with a strong antioxidant effect that is widely present
in many diets and liquid drinks. It can eliminate free radicals in the body and plays a
preventive and therapeutic role in many diseases, such as diabetes, hypertension (HPT),
and atherosclerosis (AS) [39,40,42–44]. CGA not only has antioxidant activity but also
has a series of biological functions such as liver anti-inflammatory protection and neuro-
protection [39–44]. Recent studies have found that CGA also has therapeutic effects on
PCOS [30,34–37]. However, the molecular regulatory mechanism of CGA in the treatment
of PCOS still needs to be systematically elucidated.

Given the regulatory effect of CGA as an antioxidant on the HIF-1alpha signaling
pathway, this article takes HIF-1alpha as a breakthrough point to systematically elucidate
the role and molecular mechanisms of HIF-1alpha signaling during the treatment of PCOS
with CGA, including follicular development and ovulation, steroid hormone synthesis,
inflammatory response, oxidative stress, and insulin resistance.

2. Overviews of Chlorogenic Acid (CGA)

CGA is widely distributed in the plant kingdom as coffee tannic acid, ranging from
dicotyledonous plants to ferns, and is mainly present in Lonicera and Artemisia plants [44].
A high content of CGA exists in plants such as Eucommia ulmoides, honeysuckle, coffee,
and chrysanthemum [45]. In addition, vegetables and fruits also contain CGA, such as
potatoes, carrots, spinach, and apples [44–46].

The chemical name of CGA is 3-O-caffeoylquinic acid, C16H18O9, with a molecular
weight of 354.30 [21,47]. Its semihydrate is a white or yellow needle shaped crystal that
becomes an anhydrous compound at 110 ◦C, with a melting point of 206–208 ◦C [48].
At 25 ◦C, the solubility in water is relatively low, about 4% [48]. In hot water, solubility
increases and changes with temperature. CGA is a polar organic acid that is unstable and
prone to isomerization during the extraction process [44,47,48].

The catechol hydroxyl contained in the molecular structure of chlorogenic acid is the
most suitable reaction substrate for phenolase catalysis (Figure 1). It is easily oxidized under
heat and light, which is also the key reason for the browning of many fruits containing
CGA, such as peaches and apples [21,45]. Under alkaline conditions, CGA can undergo
hydrolysis to form green quinones. CGA present in plants is often a mixture rather than a
single component, including monocaffeioyl quinic acid, dicaffeioyl quinic acid, tricaffeioyl
quinic acid, and methyl chlorogenic acid [44,47].
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CGA is a kind of phenylpropanoids, which are effective phenolic antioxidants [1,44].
As we know, CGA can effectively eliminate free radicals, maintain normal functions, and
also prevent disease occurrence [43,48]. For example, CGA can up-regulate the expressions
of PPARα and SREBP-1, which are involved in liver lipid metabolism and restore diabetes
and oleic acid-induced NAFLD [39,46]. Similarly, CGA can prevent protein glycosylation
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by regulating glycogen production and gluconeogenesis, thus participating in glucose
metabolism [44].

Recently, some studies on CGA have found that CGA not only improves follicular de-
velopment and oxidative stress in PCOS rats but also improves the inflammatory response
in PCOS patients, indicating that CGA also has therapeutic effects on PCOS.

3. Polycystic Ovary Syndrome (PCOS)

In 1935, Stein and Leventhal first described female PCOS [49], characterized by
ovulatory dysfunction, hyperandrogenism, and polycystic ovary, accompanied by neu-
roendocrine features such as increased serum luteinizing hormone (LH) concentrations
(Figure 2) [5,50–54]. Subsequently, a series of studies were conducted on the etiology,
diagnosis, and treatment of PCOS [8,55–57].
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The etiology of PCOS is very complex, mainly caused by genetic and environmental
factors [6,8,58]. Unhealthy lifestyles, dietary habits, and infectious agents all increase the
risk of its onset [58]. Due to insulin resistance and its elevated levels, ovarian function
is disrupted, and androgen levels are elevated, leading to anovulation [8]. GnRH, FSH,
LH, and prolactin levels in PCOS patients can also be disrupted [50,51,59]. The severity
of PCOS increases with increasing levels of insulin and androgen. On the one hand,
hyperinsulinemia can affect the synthesis and secretion of androgen levels in ovarian theca
cells, reducing the biosynthesis of liver SHBG and IGFBP-1 [5,8,60]. On the other hand, an
increase in androgen levels can stimulate visceral adipose tissue (VAT) and produce free
fatty acids (FFA), leading to insulin resistance [5,8,54]. In addition, genetic predisposition,
autoimmune disorders, and chronic inflammation are also important pathogenic factors for
PCOS [61–64].

The diagnosis of PCOS is currently made according to the phenotypes of PCOS patients
as described in the Rotterdam criteria (Table 1), which should be clearly indicated when di-
agnosing PCOS, including irregular menstrual cycles, elevated androgen levels, and exited
cysts. The medical history and examination of suspected PCOS patients will be evaluated,
while their hormone concentrations will also be tested to rule out similar diseases [65–67].
For example, in anovulatory patients, thyroid hormone is measured to exclude thyroid
dysfunction, and prolactin is detected to exclude hyperprolactinemia [7,68]. Additionally,
17-hydroxyprogesterone is measured during the preovulation phase to confirm adrenal
21-hydroxylase deficiency or ovarian androgen excess [12,69].
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Table 1. Diagnostic criteria, clinical phenotype, and treatment focus of PCOS.

Items Specific Descriptions

Diagnostic Criteria
(Rotterdam 2003)

Oligo or anovulation
Hyperandrogenism
Polycystic ovaries

Diagnostic Criteria
(AE-PCOS Society 2006)

Biochemical and clinical evidence of hyperandrogenism
Dysfunctional ovaries
Polycystic ovary morphology

Clinical Phenotype

Hyperandrogenism + Oligo-Anovulation + Polycystic ovaries
Hyperandrogenism + Oligo-Anovulation
Hyperandrogenism + Polycystic ovaries
Oligo-Anovulation + Polycystic ovaries

Treatment Focus

Suppressing and counteracting androgen secretion and action
Protecting the endometrium and improving menstrual dysfunction
Improving metabolic status
Improving ovulatory fertility

The treatment of PCOS depends on the phenotype, focus, and goals of these patients.
The purpose of PCOS treatment is to normalize the endometrium, counteract the effects
of androgen, and reduce insulin resistance [12,17]. For example, androgen blockade is
only related to hirsutism, while androgen inhibition is typically associated with acne [6].
In addition, for patients who do not pursue conception and are not contraindicated by
hormone contraception, combined oral contraceptive therapy should be considered as part
of the initial treatment [46]. Transdermal combination contraceptives or contraceptives
containing only progesterone can be considered for patients intolerant to contraceptives,
while slimming and fitness should be their first-line treatment for obese patients [46,65–67].
For PCOS patients with metabolic disorders, insulin sensitizers should also be considered,
especially DMBG [28,29,62,70]. For patients who wish to have immediate fertility, oral
ovulation agents should be considered [71]. PCOS treatment usually means lifelong follow-
up and multiple treatments, including various treatment methods, depending on the
patient’s performance, complications, wishes, and goals [15–17,26,72,73].

Finally, although PCOS is a heterogeneous disease that is not caused by a single factor,
a deeper understanding of the underlying mechanisms behind ovarian pathophysiological
changes in PCOS patients can help us develop effective treatment methods to prevent
it. Therefore, our findings about the role and regulation of ovarian HIF-1alpha signaling
provide important clues and directions.

4. Hypoxia Inducible Factor-1alpha (HIF-1alpha)

HIF-1alpha is a central regulator of eukaryotic cell and organism metabolism, which
is a signaling pathway activated by hypoxia, regulating many gene expressions involved
in cell metabolism [74–77], and playing a critical role in cell survival and normal func-
tions [22–24,74–76]. Notably, Gregg L. Semenza was awarded the 2019 Nobel Prize owing
to his contribution to HIF signaling in cell perception and adaptation to oxygen supply.

4.1. The Structure and Function of HIF-1alpha

In 1995, HIF-1alpha cDNA was successfully cloned during the study of erythropoietin
(EPO), and subsequent research further elucidated the molecular mechanism by which
hypoxia activates HIF-1alpha signaling [19–25,74–76].

Transcription factor HIF-1 is a heterodimer with inducible alpha and constitutive
beta subunits, whose amino terminal is composed of bHLH and PAS domains for DNA
binding [74]. Its carboxyl terminal is composed of an ODD domain for regulating its
stability and a TAD domain for its transcriptional activity (Figure 3) [74]. In addition, the
HIF-1alpha terminus has nuclear localization signals, guiding it to the nucleus [23,74,78].
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Under hypoxic conditions, HIF-1alpha is transferred to the nucleus and then bonds
with HIF-1beta to form a transcriptional activity heterodimer, which binds to the hypoxia
response element (HRE) in the target gene promoter, thereby activating transcription and
participating in the regulation of various physiological activities, including cell prolifera-
tion [79–81], metastasis [82–84], glycolysis [81,85,86], and angiogenesis [83,87,88].

4.2. The Expression and Regulation of HIF-1alpha

HIF-1alpha is expressed in almost all histiocytes, including ovarian granulosa cells [19–23].
HIF-1alpha is the main regulatory factor of cells responses to hypoxic environments by
activating its target gene expressions for enhancing tissue oxygen transport or promoting
cell metabolism, such as VEGF, EPO, GLUT1, phosphofructose kinase, and lactate dehy-
drogenase A [89–92]. It should be emphasized that the selectivity of HIF-1alpha for many
genes is highly specific for cell type [89–93]. The difference in HIF-1alpha’s tissue-specific
effects on target genes is attributed to the interaction of the HIF-1alpha TAD domain with
other transcription cofactors [89–94].

HIF-1alpha expression is regulated at different levels (Figures 4 and 5) [95–106].
(1) At the transcriptional level, ROS can induce HIF-1alpha mRNA transcription in an
NF-κB-dependent manner [95]. HIF-1alpha transcription also depends on the binding of
the specific transcription factor to the SP1 site in their promoter (Figure 4) [96]. (2) At
the post-transcriptional level, miRNA-155 targets HIF-1alpha [97], while miRNA 30c-2-3p
targets EPAS1 in hypoxia-induced hypoxemia (Figure 4) [98–100]. (3) At the translation
level, Ang II increases ROS-PI-3K-mediated translation of HIF-1alpha (Figure 4) [101].
(4) At the post-translational level, the E3 ligase complex recruited by VHL is effective against
HIF-1alpha hydroxylation, which is the main modification regulating its stability [102]. In
addition, HIF-1alpha phosphorylation, acetylation, SUMO acylation, S-nitrosylation, and
methylation also affect its stability and activity (Figure 5) [103–106].

HIF-1alpha activity is affected by many factors, including the accessibility and mod-
ification of chromatin DNA, but at least HRE is required in these target gene promot-
ers [107–109]. Additionally, HIF-1alpha transcriptional complexes also affect their transcrip-
tional activity, which requires the assembly of HIF-1alpha coactivators and the recruitment
of RNA polymerase (Figure 4) [110–112].
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HIF-1alpha degradation is mainly mediated by the pVHL-mediated ubiquitin pro-
teasome pathway, while hypoxia can block this degradation, leading to HIF-1alpha accu-
mulation [93]. HIF-1alpha ODD domain contains two hydroxylation sites, Pro 402 and
Pro 564, which can be hydroxylated by HIF proline hydroxylase [94]. Acetyltransferase
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ARD1 can also interact with the HIF-1alpha ODD domain and acetylate HIF-1alpha Lys
532 (Figure 5) [113].

Notably, there is a negative feedback regulation mechanism in the body that can
prevent HIF-1alpha from continuously activating [19,74,78,94]. For example, activated
HIF-1alpha induces PHD2 mRNA expression, which can inhibit HIF-1alpha-dependent
gene responses, and this regulation is independent of oxygen concentration [78,94]. Addi-
tionally, our previous research found that catalase and ascorbate can block the inhibitory
effect of ROS on PHD2 activity [93], demonstrating that antioxidants can regulate HIF-
1alpha signaling.

Together, it can be seen that CGA, as an antioxidant, may exert the therapeutic effect of
PCOS by inhibiting PHD2 activity and regulating HIF-1alpha-mediated ovarian functions.

5. Therapeutic Effect and Regulation of CGA on PCOS

Recently, some research on PCOS has found that CGA can not only improve the clinical
symptoms of PCOS patients but also the ovarian functions of PCOS rats, indicating the
therapeutic effect of CGA on PCOS [10,30,34–37,45,114]. Based on our previous research
on HIF-1alpha signaling during PCOS development and treatment, the present article will
systematically elucidate the role and molecular mechanisms of HIF-1alpha signaling during
CGA treatment of PCOS from aspects such as ovarian follicle development, steroid hormone
synthesis, inflammatory response, oxidative stress, and insulin resistance (Figure 6).
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5.1. Effect of CGA on Follicular Development in PCOS

Abedpour et al. first discovered that CGA can enhance the in vitro developmental
potential of ovarian follicles by reducing oxidative stress and enhancing antioxidant capac-
ity [32], and then they also found that CGA can significantly improve the development of
ovarian follicles and the functions of PCOS neuroendocrine in 2022 [30]. In the second year,
Shah et al. found that CGA can restore ovarian functions in letrozole-induced PCOS [34].
Intraperitoneal injection of 100 mg/kg CGA improved ovarian structure and resulted in
the growth of preantral follicles and the absence of large cysts in the ovarian cortex [34]. In
addition, a small amount of corpus luteum was observed in the presence of CGA [37,45].
These research results have shown the therapeutic effect of CGA on PCOS. Therefore, we
will elaborate on the molecular mechanism by which CGA improves follicular development
in PCOS ovaries in this section based on our previous research.

During the development of ovarian follicles, the cumulus-oocyte complex is sur-
rounded by the follicular structure, and blood supply is limited to the follicular theca
and does not penetrate the basal membrane [19,21,22]. The granulosa cell layer remains
avascular until the basal membrane ruptures [19,21]. Therefore, compared to atmospheric
oxygen tension, granulosa cells are considered to be in a state of low oxygen tension, or
hypoxia [22]. After ovulation, due to bleeding and immature angiogenesis, the ruptured
follicle is also considered to be in a hypoxic state [22]. With the expanded blood vessels
passing through the basement membrane, a luteal vascular network is established, provid-
ing a channel for each luteal cell to enter the capillary [23]. Therefore, all these processes
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are related to the increased steroidogenic activity that occurs under hypoxic conditions
(Figure 7).

Nutrients 2023, 15, x FOR PEER REVIEW 8 of 21 
 

 

providing a channel for each luteal cell to enter the capillary [23]. Therefore, all these pro-

cesses are related to the increased steroidogenic activity that occurs under hypoxic condi-

tions (Figure 7). 

 

Figure 7. The hypoxic condition and HIF-1alpha-induced genes during the development of ovarian 

follicles. 

HIF-1alpha is an oxygen-regulated transcriptional activator, which is an important 

factor during hypoxic responses [74]. Under hypoxic conditions, HIF-1alpha becomes sta-

ble and then transfers into the nucleus for dimerization with the beta subunit [74,78], 

which can bind to the HRE of target genes, initiate their transcriptional expressions, and 

then participate in the regulation of many physiological functions [76,78]. In addition to 

hypoxia, many inflammatory factors and reproductive hormones can also induce HIF-

1alpha expression under normoxic conditions, such as prostaglandins, interferon, or 

growth factors [74]. More and more evidence suggests that HIF-1alpha participates in the 

processes of follicular differentiation and ovarian ovulation [22–24]. 

Currently, a large number of studies have shown that HIF-1alpha is mainly expressed 

in granulosa cells, regulating ovarian functions by the transcription of specific target genes 

[19,21–23]. For example, PMSG not only induces follicle development but also increases 

HIF-1alpha/PCNA expression, indicating that HIF-1alpha can participate in the regula-

tory process of follicle development through PCNA-dependent proliferation. In addition, 

vascular proliferation is accompanied by follicle development. FSH can not only induce 

VEGF expression in granulosa cells, but this induction can also be blocked by echinomy-

cin, indicating that HIF-1alpha can also participate in the regulatory process of follicle 

development through VEGF-dependent angiogenesis [22–24]. 

Endothelin-2 is another HIF-1alpha target gene during ovulation [115,116]. Endo-

thelin-2 can induce rapid rupture since it can diffuse to the smooth muscle cells in the 

outer membrane through the weakened follicle walls [24,116,117]. The contraction of 

smooth muscle cells leads to follicle contraction, increasing follicle pressure, resulting in 

rupture at the lowest integrity of the follicular structure [115,116]. In addition to follicle 

Figure 7. The hypoxic condition and HIF-1alpha-induced genes during the development of ovarian
follicles.

HIF-1alpha is an oxygen-regulated transcriptional activator, which is an important
factor during hypoxic responses [74]. Under hypoxic conditions, HIF-1alpha becomes
stable and then transfers into the nucleus for dimerization with the beta subunit [74,78],
which can bind to the HRE of target genes, initiate their transcriptional expressions, and
then participate in the regulation of many physiological functions [76,78]. In addition
to hypoxia, many inflammatory factors and reproductive hormones can also induce HIF-
1alpha expression under normoxic conditions, such as prostaglandins, interferon, or growth
factors [74]. More and more evidence suggests that HIF-1alpha participates in the processes
of follicular differentiation and ovarian ovulation [22–24].

Currently, a large number of studies have shown that HIF-1alpha is mainly expressed
in granulosa cells, regulating ovarian functions by the transcription of specific target
genes [19,21–23]. For example, PMSG not only induces follicle development but also
increases HIF-1alpha/PCNA expression, indicating that HIF-1alpha can participate in
the regulatory process of follicle development through PCNA-dependent proliferation.
In addition, vascular proliferation is accompanied by follicle development. FSH can not
only induce VEGF expression in granulosa cells, but this induction can also be blocked by
echinomycin, indicating that HIF-1alpha can also participate in the regulatory process of
follicle development through VEGF-dependent angiogenesis [22–24].

Endothelin-2 is another HIF-1alpha target gene during ovulation [115,116]. Endothelin-
2 can induce rapid rupture since it can diffuse to the smooth muscle cells in the outer mem-
brane through the weakened follicle walls [24,116,117]. The contraction of smooth muscle
cells leads to follicle contraction, increasing follicle pressure, resulting in rupture at the
lowest integrity of the follicular structure [115,116]. In addition to follicle rupture, increased
endothelin-2 may promote angiogenesis, cell proliferation, and differentiation [117,118].
Therefore, a decrease in endothelin-2 production in PCOS women may interfere with follicle
rupture and subsequent ovulation.
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5.2. Effect of CGA on Steroid Synthesis in PCOS

The disorder of GnRH pulse frequency in PCOS is a heterogeneous hormonal im-
balance disorder [119–121]. In normal ovaries, estrogen is mainly produced by androgen
conversion, when LH binds to its receptors on thecal cells of follicles, converting cholesterol
into androstenedione and accelerating its secretion into granulosa cells, which convert
androstenedione into estrogen through aromatase under the action of FSH. This is the
theory of “two cells and two gonadotropins” (Figure 8). Compared with the control, serum
progesterone and estrogen concentrations are significantly lower in PCOS patients, while
serum androstenedione concentrations are significantly higher [8,58], which may be caused
by the abnormal functions of PCOS ovaries.

Nutrients 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

 

Figure 8. The synthesis of estradiol by two cells and two gonadotropins. 

Recently, research on CGA has found that, compared with the control of PCOS, CGA 

treatment significantly reduces the concentrations of serum LH and testosterone and sig-

nificantly increases the concentrations of FSH and progesterone [30,34]. Antioxidants can 

activate the expression of aromatase, thereby improving follicular development [34,114]. 

On the one hand, CGA stimulates the expression of cytochrome P450 aromatase in gran-

ulosa cells and thecal cells of follicles. On the other hand, CGA reduces serum LH levels 

in PCOS mice by inhibiting nitric oxide synthase activity and balances the LH/FSH ratio, 

promoting the development of ovarian follicles [32,35,45]. 

Together, CGA can regulate the neuroendocrine system of PCOS patients through 

HIF-1alpha-mediated synthesis of steroid hormones and thus exert its therapeutic effect 

on PCOS. 

5.3. Effect of CGA on Inflammatory Response in PCOS 

PCOS patients often have chronic inflammatory reactions, while CGA has anti-in-

flammatory effects. Therefore, CGA treatment may eliminate PCOS inflammation (Figure 

9) [32–35,125–127]. 

 

Figure 9. Effect of CGA on the inflammatory response. 

Figure 8. The synthesis of estradiol by two cells and two gonadotropins.

HIF-1alpha participates in the development of ovarian follicles by regulating the
transcription of steroidogenic genes such as StAR, HSD3B, and CYP19A1 [122–124]. StAR
is one of the key proteins during progesterone synthesis, which can transfer cholesterol
through the mitochondrial membrane and is a rate limiting step during steroid synthe-
sis [122,123]. In addition, HSD3B catalyzes the conversion of pregnenolone to progesterone,
and aromatase CYP19A1 converts androgen into estrogen, which is an essential hormone
for females. Interestingly, the regulation of HIF-1alpha on these three steroidogenic genes
is dynamic and tissue-dependent [122]. HIF-1alpha can induce StAR expression in mouse
KK1 cells but inhibit StAR expression in mouse Leydig cells [123]. HIF-1alpha can induce
HSD3B expression in Leydig cells but inhibit HSD3B expression in canine luteal cells. Simi-
larly, HIF-1alpha can induce CYP19A1 expression in breast adipose stromal cells but inhibit
CYP19A1 expression in cortical cells H295R that produce adrenal steroids. In ovarian
granulosa cells, hypoxia can induce the expression of STAR and HSD3B through increasing
HIF-1alpha activity, leading to an increase in progesterone synthesis [124]. Further research
has found that StAR is also a HIF-1alpha target, which can directly bind to the promoter
of StAR in granulosa cells under hypoxic conditions, participate in the regulation of StAR
transcription, and then increase the steroidogenic capacity of granulosa cells [122,123].
CYP19A1 is a key gene for the production of estradiol in granulosa cells and a downstream
target gene of HIF-1alpha [122,124]. In FSH-treated granulosa cells, HIF-1alpha can directly
bind to the CYP19A1 promoter and then regulate transcription, leading to an increase in
estradiol production in a dose-dependent manner [122].
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Recently, research on CGA has found that, compared with the control of PCOS, CGA
treatment significantly reduces the concentrations of serum LH and testosterone and
significantly increases the concentrations of FSH and progesterone [30,34]. Antioxidants can
activate the expression of aromatase, thereby improving follicular development [34,114]. On
the one hand, CGA stimulates the expression of cytochrome P450 aromatase in granulosa
cells and thecal cells of follicles. On the other hand, CGA reduces serum LH levels in PCOS
mice by inhibiting nitric oxide synthase activity and balances the LH/FSH ratio, promoting
the development of ovarian follicles [32,35,45].

Together, CGA can regulate the neuroendocrine system of PCOS patients through
HIF-1alpha-mediated synthesis of steroid hormones and thus exert its therapeutic effect
on PCOS.

5.3. Effect of CGA on Inflammatory Response in PCOS

PCOS patients often have chronic inflammatory reactions, while CGA has anti-inflammatory
effects. Therefore, CGA treatment may eliminate PCOS inflammation (Figure 9) [32–35,125–127].
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Inflammation is a defensive response regulated by multiple signaling pathways, while
excessive inflammation can damage healthy tissues, leading to organ dysfunction [128–130].
Inflammation is always triggered and is involved in the progression of many diseases [128].
Interestingly, HIF-1alpha activation can promote barrier function enhancement [131] and
epithelial mesenchymal transition [132]. And artificial activation of HIF-1alpha can improve
the prognosis, as demonstrated by the therapeutic effects of HIF proline hydroxylase in-
hibitors FG-4497 and AKB-4924 in a trinitrobenzene sulfonic acid-induced mouse ulcerative
colitis model [133–135].

The inflammatory response is triggered and initiated by exogenous stimuli, leading to
adaptive changes like the leukocyte exuding and the macrophage activating. Additionally,
multiple cytokines and chemical mediators are secreted, and many immunoglobulins are
produced during the inflammatory process [136,137]. TNF-α is a major inflammatory
initiating factor that induces other cytokines that initiate polymorphonuclear leukocytes
and also up-regulates adhesion molecules [138].

The NF-κB signaling pathway can be activated by various inflammatory stimuli and
then translocated for increasing specific gene expressions, leading to immune regula-
tion and cell survival [129,138,139]. NF-κB also induces iNOS expression, resulting in
the production of the pro-inflammatory mediator NO, which contributes to inflamma-
tory pathogenesis [130,140]. Therefore, more attention was drawn to the characterization
of new substances adjusting the excessive production of NF-κB and pro-inflammatory
mediators [141].

The immunomodulatory effect of herbal medicine has recently attracted the attention
of researchers based on plant immune modulators used to prevent the progression of
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inflammatory diseases [142]. CGA may be a promising agonist for treating inflammatory
diseases due to its powerful immune regulatory effect. Shi et al. found that supplementing
CGA can regulate liver fibrosis and inflammation by inhibiting NF-κB activation, serum
TNF-α levels, and IL-1β expression [143,144]. CGA can inhibit isoproterenol-induced
cardiomyocyte hypertrophy by reducing NF-κB activation [145]. Similarly, CGA can inhibit
the migration of neutrophil cells during inflammation [144,146].

5.4. Effect of CGA on Oxidative Stress in PCOS

CGA contains orthophenolic hydroxyl groups, which are easily oxidized, resulting in
its strong ability to capture and eliminate reactive oxygen species (ROS) and other free radi-
cals [147]. CGA can also block the production of ROS by inhibiting oxidase activity [144,147].
At the same time, it has indirect antioxidant effects by protecting endogenous antioxidant
enzymes [148]. Therefore, CGA is widely used because of its good antioxidant activity.

Currently, CGA has been used to improve the treatment of various diseases. For
example, CGA can effectively reduce blood and liver lipid accumulation by enhancing its
antioxidant activity and regulating lipid metabolism in hyperlipidemic mice [149,150]. CGA
can also activate Nrf2/HO-1 and block NF-κB signaling, preventing diabetic nephropa-
thy [151]. CGA can improve NO bioavailability by inhibiting NADPH oxidase activity
produced by ROS and the production of superoxide anion, thereby improving vasodilation
and endothelial dysfunction in SHR rats [152]. Tsai et al. found that CGA can increase
SIRT1 and PGC-1 activity to improve mitochondrial function in HUVECs, thereby reduc-
ing Ox-LDL-induced apoptosis [153]. Additionally, CGA can reduce ROS production by
increasing intracellular storage of glutathione in human liver cancer cells, thereby limiting
oxidative stress-induced apoptosis [30].

Importantly, CGA can effectively improve the structure of ovarian cells and reduce
the number of follicular cysts in PCOS ovaries, playing a therapeutic role in PCOS [34,35].
CGA can limit the apoptosis associated with oxidative stress by reducing ROS production
and increasing intracellular glutathione levels [154]. For example, CGA, as an effective
antioxidant, can enhance the developmental ability of pig oocytes and protect them from
DNA breakage caused by H2O2 exposure [125]. Glutathione is an important regulator of
DNA repair activity, so CGA can play an important role in preventing DNA breakage by
increasing glutathione levels to combat oxidative stress [155–157]. In addition, CGA can
provide hydrogen atoms to eliminate hydroxyl radicals, thus protecting DNA from H2O2-
induced damage [158,159]. CGA can also increase antioxidant system contents, including
SOD, catalase, and glutathione [160], which may be one of the mechanisms of CGA in
treating PCOS.

5.5. Effect of CGA on Insulin Resistance in PCOS

PCOS women typically have insulin resistance, which is related to high androgen
levels and anovulation, indicating the important role of insulin resistance in the pathophys-
iology of PCOS [161–165]. In PCOS ovaries, selective insulin resistance mainly affects PI-
3K-mediated insulin metabolism rather than MAPK-mediated mitogenic effects [166–168].
Defects in the PI-3K signaling pathway inhibit its downstream signaling in PCOS ovaries,
thereby affecting the uptake of insulin on glucose [21].

Insulin activates the insulin receptor substrate (IRS) by binding to its receptor. The
phosphorylated tyrosine residue interacts with PI-3K, leading to the phosphorylation of
PIP2, producing the second messenger PIP3, which then activates PDK-1 (Figure 10) [169].
After PI-3K activation, signal transduction can propagate to various substrates, such as
mTOR [170]. In addition, when mTOR is inhibited in preovulatory follicles, hCG-induced
ovulation is also affected [171]. Wang et al. reported that PI-3K p85 significantly reduced
mRNA and protein levels in PCOS ovaries, while DMBG can rescue PI-3K expression [21].
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DMBG is a common insulin sensitizer that can control the blood sugar of type 2
diabetes, alleviate the clinical symptoms of PCOS patients, and reduce LH levels and
hyperandrogenism. DMBG can regulate insulin sensitivity and glucose metabolism in the
target tissue of PCOS patients and restore ovulation by enhancing glucose uptake, resulting
in reduced insulin synthesis and secretion [20,21,28,29].

CGA is a novel insulin sensitizer like DMBG. Therefore, CGA can improve insulin-
mediated PI-3K/mTOR signaling defects in PCOS ovaries.

6. Clinical Development of HIF Proline Hydroxylase Inhibitors

HIF-1alpha was hydroxylated by 2-oxoglutarate (2-OG)-dependent HIF proline hy-
droxylases and then degraded through the E3 ubiquitin ligase complex recruited by VHL
(Figure 11). HIF proline hydroxylases are called oxygen sensors; their substrates are HIF-
1alpha, 2-OG, and O2, and their cofactors are Fe2+ and ascorbic acid [110,172,173]. In
specific cell types or environments, HIF-1alpha activity is regulated by many cellular sig-
nals, including the availability of physiological gases other than oxygen (such as NO, CO2,
and H2S), ROS, and HIF hydroxylase cofactors (such as Fe2+ and 2-OG).

Nutrients 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

HIF-1alpha was hydroxylated by 2-oxoglutarate (2-OG)-dependent HIF proline hy-

droxylases and then degraded through the E3 ubiquitin ligase complex recruited by VHL 

(Figure 11). HIF proline hydroxylases are called oxygen sensors; their substrates are HIF-

1alpha, 2-OG, and O2, and their cofactors are Fe2+ and ascorbic acid [110,172,173]. In spe-

cific cell types or environments, HIF-1alpha activity is regulated by many cellular signals, 

including the availability of physiological gases other than oxygen (such as NO, CO2, and 

H2S), ROS, and HIF hydroxylase cofactors (such as Fe2+ and 2-OG). 

 

Figure 11. The hydroxylation of HIF-1alpha by 2-oxoglutarate (2-OG)-dependent HIF proline hy-

droxylase (PHD) and the degradation of HIF-1alpha through the E3 ubiquitin ligase complex. 

HIF-1alpha protein can be accumulated by some small-molecule compounds, in-

crease their transcriptional activity, and be independent of oxygen concentration [174–

176]. But they are nonspecific to HIF proline hydroxylase, and specific to other iron-de-

pendent signaling, leading to excessive toxicity [174–176]. For example, Co2+, Cu2+, and 

Ni2+ salts act as antagonists of Fe2+ to inhibit HIF proline hydroxylase activity [177,178]. 

Iron chelating agents, such as deferoxamine and quercetin, can also inhibit the activity of 

HIF proline hydroxylases [174–176]. 

Dimethylglycine (DMOG) is a 2-OG antagonist and N-Oxylglycine (NOG) precursor 

that can inhibit the activity of HIF proline hydroxylases and is mainly used as an HIF-

1alpha activator in basic experiments [179]. At present, the molecules entering clinical ap-

plications are their derivatives of 2-OG (Table 2), which are specific inhibitors of HIF pro-

line hydroxylase and have negligible inhibitory effects on HDAC and other enzymes [180]. 

Therefore, considering the therapeutic effect of CGA on PCOS through HIF-1alpha 

signaling, HIF proline hydroxylase-specific inhibitors alone or in combination are ex-

pected to be used for the clinical treatment of PCOS. 

Table 2. Specific inhibitors of HIF proline hydroxylase available in the clinical field. 

Product Chemical Name 
Molecular 

Formula 
Canonical SMILES 

Molecular 

Weight 
Molecular Structure 

Daprodustat 

2-(1,3-dicyclohexyl-2,4,6-tri-

oxohexahydropyrimidine-5-

carboxamido)acetic acid 

C19H27N3O6 

O=C(O)CNC(C(C(N1C

2CCCCC2)=O)C(N(C1=

O)C3CCCCC3)=O)=O 

393.43 

 

Enarodustat 

N-[7-Hydroxy-5-(2-phe-

nylethyl)[1,2,4]triazolo[1,5-

a]pyridine-8-carbonyl]glycine 

C17H16N4O4 

O=C(C(C1=NC=NN1C(

CCC2=CC=CC=C2)=C3)

=C3O)NCC(O)=O 

340.33 

 

Roxadustat 

2-[(4-hydroxy-1-methyl-7-phe-

noxyisoquinoline-3-car-

bonyl)amino]acetic acid 

C19H16N2O5 

CC1=NC(=C(C2=C1C=

C(C=C2)OC3=CC=CC=

C3)O)C(=O)NCC(=O)O 

352.34 

 

Figure 11. The hydroxylation of HIF-1alpha by 2-oxoglutarate (2-OG)-dependent HIF proline hy-
droxylase (PHD) and the degradation of HIF-1alpha through the E3 ubiquitin ligase complex.



Nutrients 2023, 15, 2833 13 of 21

HIF-1alpha protein can be accumulated by some small-molecule compounds, increase
their transcriptional activity, and be independent of oxygen concentration [174–176]. But
they are nonspecific to HIF proline hydroxylase, and specific to other iron-dependent
signaling, leading to excessive toxicity [174–176]. For example, Co2+, Cu2+, and Ni2+

salts act as antagonists of Fe2+ to inhibit HIF proline hydroxylase activity [177,178]. Iron
chelating agents, such as deferoxamine and quercetin, can also inhibit the activity of HIF
proline hydroxylases [174–176].

Dimethylglycine (DMOG) is a 2-OG antagonist and N-Oxylglycine (NOG) precursor
that can inhibit the activity of HIF proline hydroxylases and is mainly used as an HIF-1alpha
activator in basic experiments [179]. At present, the molecules entering clinical applica-
tions are their derivatives of 2-OG (Table 2), which are specific inhibitors of HIF proline
hydroxylase and have negligible inhibitory effects on HDAC and other enzymes [180].

Table 2. Specific inhibitors of HIF proline hydroxylase available in the clinical field.

Product Chemical Name Molecular
Formula

Canonical
SMILES

Molecular
Weight Molecular Structure

Daprodustat

2-(1,3-dicyclohexyl-2,4,6-
trioxohexahydrop-
yrimidine-5-carboxamido)
acetic acid

C19H27N3O6

O=C(O)CNC(C(C
(N1C2CCCCC2)=O)C
(N(C1=O)C3CCCCC3)
=O)=O

393.43
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