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Abstract: Anthocyanins have gained significant popularity in recent years for their diverse health
benefits, yet their limited bioavailability poses a challenge. To address this concern, technologies have
emerged to enhance anthocyanin concentration, often isolating these compounds from other food
constituents. However, the extent to which isolated anthocyanins confer health benefits compared
to their whole-food counterparts remains unclear. This review explores the current literature on
anthocyanin bioavailability and metabolism in the body, with a focus on comparing bioavailability
when consumed as extracts versus whole foods rich in anthocyanins, drawing from in vitro, in vivo,
and human clinical studies. While direct comparisons between anthocyanin bioavailability in whole
foods versus isolates are scarce, prevailing evidence favours whole-food consumption over antho-
cyanin extracts. Further clinical investigations, preferably with direct comparisons, are needed to
validate these findings and elucidate the nuanced interplay between anthocyanins and food matrices,
informing future research directions and practical recommendations.
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1. Introduction

In the quest for optimal health and longevity, phytonutrients have emerged as remark-
able bioactive compounds found abundantly in various plant-based foods. Anthocyanins,
a major class of flavonoids and a phenolic phytonutrient, have gained significant attention
for their beneficial health-promoting properties, including anti-inflammatory [1–3], antioxi-
dant [4,5], anticancer [6–8], immunomodulatory [9,10], antimicrobial [11], antiaging [12],
cardioprotective [13], hypoglycaemic, and hypolipemic properties [14]. With increasing
evidence supporting their health benefits, the 21st century has witnessed a resurgence in
research studies focused on anthocyanins [15]. As a result, anthocyanins have attracted
significant attention from the food, medicine, and therapeutic industries. Their applications
extend from being used traditionally as food colourants to functional foods. However, due
to their poor stability and solubility properties, their bioavailability is often limited. More-
over, the concentration of these bioactive phytonutrients can vary significantly due to a
range of factors, such as differences in plant species and cultivars, seasonal and environmen-
tal factors, agricultural practices, food processing techniques, and storage methods [16]. As
a result, various food processing methods and techniques have been specifically employed
in an attempt to preserve or enhance these bioactive compounds, thereby maintaining
their stability and bioactivity [17]. In addition to the focus on enhancing the anthocyanin
availability in fresh foods, the incorporation of these compounds in the form of functional
foods or dietary supplements such as tablets, powders, capsules, and food products has
become widespread. Since the advent of advanced chromatography systems to extract and
purify substantial amounts of specific bioactive compounds from complex food matrices,
a significant concern has arisen regarding their bioefficacy, with a special focus on the
potential health benefits of consuming isolated forms compared to whole food sources.

Nutrients 2024, 16, 1403. https://doi.org/10.3390/nu16101403 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16101403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-1412-6715
https://orcid.org/0000-0002-1580-2925
https://orcid.org/0000-0001-8990-6607
https://doi.org/10.3390/nu16101403
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16101403?type=check_update&version=2


Nutrients 2024, 16, 1403 2 of 28

Isolated phytonutrients are often marketed as dietary supplements, which are also
referred to as nutraceuticals, a term that combines the features of “nutrition” and “phar-
maceuticals”. The nutraceuticals market has been growing dramatically in recent years,
particularly following the COVID outbreak, and the anticipated growth from 2023 to 2030
is projected to be at a compounded annual growth rate of 9.4% globally [18]. Anthocyanin
supplements have gained a substantial portion of the current nutraceutical market [19].
Supplements, or pure forms of phytonutrients, are consumed for various reasons, such as
convenience, absence of sugar content, limited access to certain foods, dislike for certain
foods, and persuasive marketing strategies. However, with this kind of shift to supple-
ments over whole foods, individuals may miss out on benefits due to ‘food synergy’, which
represents the overall effect of the food resulting from the interaction of multiple nutrients
present in the food [20]. This is because studies have shown that the food matrix, referring
to the composition and structure of the food itself, plays an important role and signifi-
cantly affects bioavailability. While numerous studies have been conducted to analyse
the bioavailability of pure forms of phytonutrients and whole foods separately, it can be
challenging to compare their effects and draw conclusive findings due to variations in
doses, inter-laboratory differences, the use of different methodologies, and the lack of stan-
dardised protocols. There is a notable lack of studies that directly compare the efficacy and
bioavailability of isolated anthocyanin with whole foods rich in anthocyanins. Therefore,
in light of the increasing interest from both the food and pharmaceutical industries in
isolating bioactive compounds from whole foods and promoting them as dietary supple-
ments or nutraceuticals, it has become imperative to investigate the effectiveness of these
isolated compounds in comparison to their natural forms. This review aims to address this
research gap by conducting a literature review on the bioavailability of anthocyanins based
on in vitro, in vivo, and human studies with an attempt to compare their efficacy when
consumed in isolated form versus whole foods rich in anthocyanins.

2. Anthocyanins: Sources, Types, and Structure

The term anthocyanin originates from the Greek words “anthos”, meaning “flower”,
and “kyáneos”, meaning “blue” [15]. Anthocyanins are phytonutrients that belong to the
flavonoid class under polyphenols and are water-soluble pigments widely distributed in
nature responsible for the purple, blue, and red hues in various plant tissues [21]. They
predominantly occur in the outer skin/cell layers of a variety of fruits and vegetables, as
well as some grains, roots, and tubers [22].

Anthocyanins are commonly found in plant structures, including leaves, fruits, stems,
and flowers [23]. Some examples of fruits that are rich in anthocyanins include blackcur-
rants, cranberries, raspberries, strawberries, blueberries, bilberries, red and black grapes,
and plums. Vegetable sources include red-coloured cabbage, onions, and radishes, and
purple-coloured eggplant, cauliflower, and corn. Even legumes and grains such as black-
coloured beans, soy, and rice are some prominent dietary sources of anthocyanins [24].
These natural food sources of anthocyanins contribute to both visual appeal and various
health benefits upon consumption.

To date, over 650 different anthocyanin compounds have been identified in plants, of
which 90% are represented by 6 types of anthocyanidins: cyanidin, delphinidin, pelargoni-
din, petunidin, peonidin, and malvidin [21] (Figure 1). In nature, cyanidin appears as a
red-purple or magenta pigment and is predominantly found in berries and vegetables such
as purple corn and red sweet potatoes. Similarly, delphinidin appears as a purple or a
blue-reddish pigment, giving blue colour to flowers and berries. The pigment pelargonidin
is present freely in nature as a red pigment in fruits but gives an orange hue in flowers.
Petunidin appears as a dark red or purple pigment and is abundant in blackcurrants and
purple flowers. Peonidin appears as a magenta pigment and is found in grapes, berries,
and red wines. Lastly, malvidin, a purple pigment, is notably found in blue-coloured
flowers and is a major component of red wines [21]. Other less commonly encountered
anthocyanidins include apigeninidin, aurantinidin, europinidin, and rosinidin. Each of
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these compounds exhibits a specific colour in nature and is susceptible to alterations due to
factors such as temperature, light, pH, oxygen, copigmentation, enzymes, water activity,
sugar content, other food constituents, and food processing techniques.
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Figure 1. Chemical structure, percentage distribution, and properties of six anthocyanidins.

Anthocyanins are derived from the flavylium (2-phenyl benzopyrylium) ion, con-
sisting of two benzoyl rings separated by a heterocyclic ring (Figure 1). The number and
positions of methyl and hydroxyl groups present as substituents in this flavylium structure
give rise to anthocyanidins, the precursors of anthocyanins. The addition of a sugar moiety
or a glucoside group to anthocyanidins forms anthocyanins. The presence of glucose in
the structure makes anthocyanins more stable, and they are more abundantly found in
nature compared to their aglycone counterpart, anthocyanidin. The most common sugars
present that form the α or β linkages are rutinose, glucose, galactose, arabinose, rhamnose,
and xylose. All forms of anthocyanins are almost exclusively glycosylated, except for
3-deoxyanthocyanin [25]. The number and positions of sugars, hydroxyl groups, and the
presence of aliphatic or aromatic acids attached to these groups may all contribute to many
derivatives of anthocyanins. Glycosylation of hydroxyl groups is often observed at the
C3 position, but derivatives with glycosylation at the 3,5 and 3,7 positions, as well as
replacements at 3′ and 5′, have also been identified [26]. Further, acylation of sugar residues
occurs by organic acids. Some common acylating agents include cinnamic acid derivatives,
including p-coumaric, caffeic, sinapic, and ferulic acids, in addition to various aliphatic
acids, including malic, acetic, malonic, succinic, and oxalic acids [27]. As a result, several
chemical combinations of anthocyanidins exist because of glycosylation and acylation by a
variety of sugars and acids at various locations. In addition to this, anthocyanins can also
interact with each other, which changes the colour and structural balance [28]. The specific
modulating effects or functions of anthocyanins can be assessed by the number of hydroxyl
groups and the presence of a sugar moiety [29].

Considering the low stability and sensitivity of anthocyanins to various factors, as
mentioned above, several measures and techniques have been applied to enhance the
stability as well as bioavailability of anthocyanins [30]. Some of them include copigmenta-
tion techniques using phenolic acids such as hydroxybenzoic acids or hydroxycinnamic
acids [31], use of yeast mannoproteins at higher pH (7) [32], inclusion of suitable metal ions
such as calcium ions [33], optimising food matrices using protein-binding approaches (55),
and encapsulation techniques within the drug delivery system, including microencapsula-
tion, liposomes, and nanoparticles [34–36], some of which have demonstrated promising
results in terms of digestion stability and bioavailability.

3. Bioavailability: Definition and Study Designs

The concept of bioavailability initially emerged in pharmacology and is defined by
the U.S. Food and Drug Administration as “the rate and extent to which the active in-
gredient or active moiety is absorbed from a drug product and becomes available at
the site of drug action” [37]. Bioavailability examines four important processes/stages:
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Liberation, Absorption, Distribution, Metabolism, and Elimination (generally known as
LADME) [38–40]. A similar concept is applied in the context of nutrition, where micronu-
trients and bioactive compounds are studied to understand their ability to be released
by the food matrix (food structure or composition), absorbed within the body (including
the bloodstream, small intestine, tissues, and organs), reach the colon, and ultimately be
excreted [41]. The term bioavailability has been given various definitions by researchers;
nonetheless, for phytonutrients in particular, these processes are studied in two stages,
namely, (a) bioaccessibility, which is the ability of a bioactive compound to be able to
withstand the digestion process and reach the colon, and (b) bioactivity, which is defined
as the ability of a bioactive compound to exert a beneficial physiological effect [40].

Phytonutrients exhibit diverse chemical structures and properties, leading to varia-
tions in their bioavailability. Therefore, assessing the bioavailability of phytonutrients is
crucial for understanding their potential health benefits and optimising their dietary intake.
Various methods are being employed to assess phytonutrient bioavailability, including in
silico, in vitro, and in vivo models [42,43].

The in silico method uses computational models to study the fate of phytonutrients in
humans, similar to pharmaceutical drugs. One useful way to estimate the bioavailability of
a novel phytonutrient or its metabolite is the computational method given by Lipinski’s
‘rule of five’. According to this, “for a compound to have good oral bioavailability, it should
have a molecular mass of ≤500 Daltons, ≤5 hydrogen bond donors, ≤10 hydrogen bond
acceptors, and a lipophilicity of ≤5 (expressed as logP)” [44].

In vitro studies often encompass the evaluation of three key parameters: 1. simulated
gastrointestinal digestion, incorporating simulated digestion models; 2. absorption; and
3. biological activities, both assessed using cell lines. Simulated digestion models, depend-
ing on the study purpose and food type, may include oral, gastric, small intestine, and, in
some cases, colonic fermentation stages. Various in vitro digestion models have been used
in the literature that can be categorised as batch (or static) and continuous (or dynamic)
models [45]. A batch model of digestion system is used more often for its convenience
and cost-effectiveness. The simulated fluids are prepared to mimic human gastrointestinal
digestion, and food products at each stage are incubated for a specified time at a specified
temperature and pH. Owing to its simplicity, this method has been widely used in the
literature with many modifications and variations, leading to inter-laboratory differences
that make the results difficult to compare. To address this issue, a standard in vitro diges-
tion model called INFOGEST has been established by a group of experts [46]. This model
is widely adopted by researchers today, improving the comparability and reliability of
results. However, despite their convenience, static digestion models may not accurately
reproduce the dynamic, complex in vivo conditions that continuously change, along with
the physical forces causing the breakdown of food particles. This limitation is addressed by
dynamic digestion models such as the Dynamic Gastric Model (DGM) [47], the Human
Gastric Simulator (HGS) [48], the commercial TNO™ gastrointestinal model TIM-1 [49],
and the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) [50], which
are computer-controlled to continuously monitor and regulate gastrointestinal conditions.
These models incorporate continuous peristaltic contractions, enzymes, and digestive juice
secretions and maintain appropriate pH, time, and temperature [49–51].

Different cell culture models are used to study intestinal absorption, transport effi-
ciency, and bioactivity. The most commonly studied biological activities include antioxidant,
vascular function, antiproliferative, antimicrobial, and anti-inflammatory effects. The MKN-
28 (gastric cell) and Caco-2 (intestinal cell) cells have been frequently used, simulating the
gastric and intestinal environments, respectively [52–55], while VSMC (vascular smooth
muscle cells) and HUVECs (human umbilical vein endothelial cells) have been used to
study vascular function [56–58]. Other cells such as HepG2 (human liver cancer cell),
BRL-3A (rat liver cell), SH-SY5Y (human neuronal cell), and prostate cancer cells are being
used to assess the antiproliferative and anticancer effects of anthocyanins [59,60].
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Both animal and human studies involve tracking the concentration of phytonutrients
and their metabolites in blood, urine, faeces, or other biological fluids over a specific period
after consumption [61,62]. Biomarker assessments can examine the impact of phytonutrient
consumption on specific biological markers or endpoints related to health outcomes [63].
However, with human studies, it is not always possible to study the digestibility and
some biological activities due to ethical considerations. To address this gap, researchers
commonly employ a combination of in vitro, in vivo, and in situ models [64–67]. These
models allow for the exploration of absorption at different stages and the investigation of
biological activities. For instance, the various stages of anthocyanin digestion, including
oral, gastric, and intestinal processes, cannot be adequately examined through human
or animal studies in isolation. Therefore, employing an in vitro digestion model as an
additional step can provide insights into these stages. Similarly, inclusion of in vivo
models can give information on absorption or bioaccessibility in different tissues and
organs in addition to plasma, urine, and faeces. Therefore, a comprehensive phytonutrient
bioavailability study includes digestion, absorption, metabolism, biotransformation, and
elimination of anthocyanins in the system, and lastly, the ability to exert a beneficial
physiological effect.

4. Metabolism of Anthocyanins in the Body

The absorption and metabolism of an anthocyanin mainly depend on its chemical
structure, whether or not it is attached to a sugar moiety, the presence of methyl or acyl
groups, the food matrix, the presence of other phytonutrients, the extent of food processing,
and individual factors such as nutrition, health status, and genetics [21,26]. Previous studies
have shown that absorption mainly takes place in the small intestine following enzymatic
breakdown during gastrointestinal digestion [68]. However, recent findings have revealed
a more complex picture where anthocyanins undergo biotransformation into different
metabolites, including glycosides, esters, and polymers [69–72]. This transformation does
not exclusively occur in the small intestine but also involves enzymatic and gut microbial
modifications, thereby continuing their journey into the large intestine [73,74]. In addition
to this, several in vivo studies have shown the detection of anthocyanins and their metabo-
lites in different tissues and organs, including the brain, liver, kidneys, and pancreas [75].
Hence, the exploration into the metabolism of anthocyanins is still ongoing and not
fully established.

The section below will briefly discuss the digestion, absorption, and metabolism of
anthocyanins at each stage in the gastrointestinal tract.

4.1. Oral Cavity

Anthocyanins undergo a process of bioactivation and partial degradation, primarily
influenced by β-glucosidase activity. This process is significantly affected by the oral mi-
crobiota as well as oral epithelial cells and other salivary enzymes. However, substantial
inter-individual differences exist in β-glucosidase activities [76]. In an ex vivo study where
the oral metabolism of anthocyanins from five different berries was assessed using saliva
from 14 healthy subjects, partial degradation of anthocyanins of up to 50% was observed.
It showed that the glycosides of delphinidin and petunidin were more susceptible to degra-
dation compared to malvidin, peonidin, pelargonidin, and cyanidin [77]. Additionally, di-
and trisaccharide forms were found to be more resistant to degradation than monosac-
charides [77]. However, the brief exposure time in the oral cavity makes it difficult to
accurately assess the metabolism affected by enzymes and the oral microbiome.

4.2. Gastric Digestion

The gastric environment, characterised by a low pH ranging from 1.5 to 2, is well
suited for anthocyanins as they are highly stable under acidic conditions [78]. Some
studies have shown a surprisingly high recovery rate, even higher than 100% [79,80].
This exceptional stability arises from the acidic conditions within the stomach, which
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facilitate the conversion of anthocyanins into red flavylium cations. These flavylium cations
absorb a greater amount of light at 520 nm compared to native anthocyanins, leading
to an overestimation of anthocyanin species [80]. Upon ingestion, the anthocyanins are
readily detected in the plasma as well as urine in their intact form, along with methylated,
glucuronidated, and sulphoconjugated forms, during the gastric phase [68,81]. This rapid
appearance of anthocyanins in the plasma is attributed to their capacity to pass through
the gastric mucosal barrier through bilirubin translocation enzymes or bilitranslocase-
mediated mechanisms, with no detection of anthocyanin metabolites or aglycones in the
stomach [67,82]. Bilitranslocase has a higher affinity for the parent anthocyanins glycosides
than aglycones and is considered an important delivery tool for the systemic circulation to
exert acute effects. Further, an in-situ study on rats administered with anthocyanins into
the stomach showed approximately 25% of absorption for anthocyanin monoglycoside
from the stomach [67].

4.3. Small Intestinal Absorption

The pH of the small intestine, ranging from 6 to 8, significantly reduces the stability of
anthocyanins and transforms the red coloured flavylium cation into colourless or nearly
colourless compounds such as chalcones, quinone bases, and carbinol pseudobases [83,84].
While the primary site of absorption is in the jejunum, a small portion is absorbed in the
duodenum, and negligible absorption occurs in the ileum and colon [67,68].

The glycosides of anthocyanins undergo rapid and efficient absorption within the
small intestine, which is then followed by rapid metabolism and excretion in the bile and
urine as both the intact form and metabolised derivatives (methylated, glucuronidated,
or sulphated) [67,68,85]. Two potential mechanisms have been proposed for intestinal
absorption: one through active transportation facilitated by multiple transporters expressed
in the intestinal epithelial cells, such as specific glucose transporters (SGLT1 and GLUT2),
while the other involves intracellular hydrolysis of anthocyanins by brush border enzymes,
such as lactase-phlorizin hydrolase, followed by passive diffusion of the aglycone [86,87].

An in-situ study involving the perfusion of pure anthocyanin glycosides and antho-
cyanin extracts from blackberry and bilberry into rats showed rapid and efficient absorption
up to 22.4%, depending on the chemical structure [68].

In vitro investigations commonly utilise the Caco-2 cell line derived from a human
colon adenocarcinoma, which serves as a well-established model for simulating the absorp-
tion process in the small intestine. Even though these cells are of colonic origin, they exhibit
functional and morphological characteristics typical of small intestinal cells. This model
is used to investigate the absorption rate and transport efficiency of anthocyanins [88].
For example, the transport efficiency of blueberry anthocyanins averaged 3–4%, while the
absorption rates of anthocyanin extracts (glucosides of Mv, Pt, Peo, Del, and Cy) from
grape/blueberry extract were found to be as low as 0.005–0.06% [89].

4.4. Gut–Microbiota Interaction and Colonic Metabolism

Recent research has revealed that phytonutrients have prebiotic potential, enabling
them to interact with the gut microbiota to produce beneficial metabolites as well as mod-
ulate the microbiome composition [90,91]. Unabsorbed anthocyanins, along with their
metabolites, interact with the intestinal microbiota and serve as substrates for several
enzymes present in the small intestine, liver, colon, and kidney [92]. The majority of intesti-
nal bacteria, including Lactobacillus spp. and Bifidobacterium spp., possess β-glucosidase
activity, enabling the conversion of anthocyanins to more bioavailable forms. This can also
occur by the process of conjugation with the addition of methyl, hydroxyl, sulphuric, or
glycosidic groups [92]. Therefore, it is crucial to consider these breakdown products when
assessing the bioavailability of anthocyanins. Some highly bioactive derivatives include
aldehydes and phenolic acids, mainly vanillic acid, protocatechuic acid, phloroglucinol
aldehyde, and gallic acid, which are absorbed by epithelial tissues, excreted to the jejunum
via bile, and recycled through the enterohepatic circulation system [92,93]. Other pheno-



Nutrients 2024, 16, 1403 7 of 28

lic acid derivatives reported as produced by in vitro digestion comprising a chemostat
(continuous fermentation system) include cinnamic acid, chlorogenic acid, caffeic acid,
quercetin arabinoside, kaempferol 3-rhamnoside, syringetin-3-galactoside, hippuric acid,
and rhamnetin [94]. In vitro fermentation using microbiota from pig cecum showed that
all anthocyanins were hydrolysed within 20 min, which was evident by decreased parent
anthocyanins and increased anthocyanin degradation products [95]. These phenolic acid
metabolites have been shown to have good anti-inflammatory, antioxidant, and antitumour
properties [96].

Furthermore, anthocyanins are able to profoundly modulate the gut microbial compo-
sition. In vitro, animal and human studies have demonstrated that anthocyanins stimulate
the growth of beneficial bacteria, such as Lactobacillus spp. and Bifidobacterium spp., while
inhibiting the growth of harmful bacteria such as Salmonella typhimurium and Staphylococ-
cus aureus [97]. In addition to this, anthocyanins have also been shown to enhance the
proliferation of Lactobacillus acidophilus, Bifidobacterium adolescentis, Bifidobacterium infantis,
and Bifidobacterium bifidum [92,98]. These beneficial bacteria have the ability to produce
beneficial metabolites such as short-chain fatty acids, compete for substrates, and exert
antimicrobial effects [92]. In another study, anthocyanin-rich black raspberry extract was
fermented with the gut microbiota of infants, human adults, mice, and rats to investigate
its effects on gut microbial diversity and microbial community structure [71]. An increase
in alpha diversity was observed solely in the adult and rat microbiota, while it remained
relatively stable in the infant and mouse microbiota, indicating that anthocyanins have
varied effects on different microbiota sources. Higher alpha diversity, as evidenced in
the literature, has been linked to better overall health outcomes compared to lower diver-
sity, which is associated with chronic diseases such as inflammatory disorders [99,100].
Similarly, significant variation in beta diversity was observed across all samples, along
with notable differences in microbial community structures in all samples except for the
mouse microbiota, underscoring the inter-individual differences in microbial community
composition across these sources [71]. Furthermore, the black raspberry extract inhibited
the growth of the pathogenic genus Escherichia/Shigella and promoted beneficial bacteria,
particularly Fusicatenibacter and Lachnoclostridium, in all microbiota sources [71]. These
results validate the ability of anthocyanins to modulate gut microbiota composition and
diversity, thereby contributing to potential health-promoting effects, including reducing
insulin resistance, obesity, inflammation, and cardiovascular issues [101–103].

5. Effects of Food Matrix on Anthocyanin Bioavailability

The concept of a food matrix encompasses not only the physical and chemical con-
stituents of a given food but also the intricate molecular relationships and complex interac-
tions between these components [104]. These interactions play a crucial role in shaping how
a food is digested, metabolised, and exerts a beneficial effect upon consumption. With the
increase in phytonutrient-based nutraceuticals on the market, a pressing question emerges:
Are these concentrated forms of phytonutrients truly superior to whole foods? Address-
ing this query necessitates a comprehensive understanding of the food matrix’s impact
on bioavailability to discern the advantages/disadvantages of consuming isolated forms
of phytonutrients.

5.1. Effects of Food Matrix on Bioaccessibility, Digestion, and Absorption

The digestion and absorption capacities of anthocyanins from different food sources
are summarised in Table 1. An in vitro study conducted to determine the effect of food
matrix on anthocyanin digestibility, comparing whole red cabbage and anthocyanin rich-
extract from red cabbage, found that anthocyanin stability during the digestion process was
strongly dependent on the food matrix [105]. The recovery of anthocyanins after digestion
from red cabbage was reported to range from 18 to 113%, whereas for anthocyanin-rich
extract, it was from 3 to 31%. Consequently, the whole red cabbage digesta (both gastric
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and intestinal) showed significantly higher antioxidant properties compared to digests
from anthocyanin-rich extracts.

Another study examined the impact of the food matrix, particularly glucose, proteins,
and starch, on purple-fleshed sweet potatoes and red wine [53]. The study revealed that
the anthocyanin levels in purple-fleshed sweet potatoes decreased by 27–43% without
matrix components and by 22–31% with matrix components during digestion. A similar
trend was observed in red wine, where the reduction in anthocyanins was 49–52% without
matrix components and 30–45% with added matrix components. In addition to this, it was
revealed that the presence of glucose and proteins reduced the transport efficiency, while
the presence of starch did not have any effect [53]. These findings suggest that different
food components may exert varying effects on anthocyanin absorption.

Findings from two separate studies investigating the bioavailability of anthocyanins in
blueberries, one in purified form and the other using freeze-dried fruit, revealed opposite
results [94,106]. In the study focusing on purified anthocyanins from wild blueberries,
in vitro intestinal digestion caused a degradation of 42% of anthocyanins, that is, recovering
58% of total anthocyanins [106]. Conversely, in another study, when frozen blueberries
were subjected to in vitro intestinal digestion, the total anthocyanin content recovered
was only 15% [94]. However, direct comparisons are needed to confirm whether purified
extracts are superior to whole fruit in terms of digestion in order to eliminate differences in
doses, inter-laboratory variations, and blueberry cultivars.

The general notion is that the food matrix may exert a protective effect against the
degradation of anthocyanins until they reach the intestinal digestion environment, thereby
enhancing anthocyanin stability against various enzymes and digestive fluids. This is
because the anthocyanin entrapped in the complex food matrix is released slowly into the
system compared to its isolated counterparts. This protective effect can also be achieved by
encapsulation techniques. For example, a study found that purified blueberry anthocyanins
released after 2.5 h of in vitro digestion were lowest when encapsulated in microcapsules
made of soy protein isolate (27%) followed by gelatine (28.7%), arabic gum (54.2%), and mal-
todextrin (63.0%), compared to anthocyanins that had not been encapsulated (70.9%) [107].
In addition to this, food composition, processing techniques involved, and anthocyanin
structure can also affect bioavailability. Therefore, each phytonutrient behaves or interacts
differently with the other food components, influencing their stability during digestion and
subsequent absorption or transportation across the intestine.

5.2. Effects of the Food Matrix on the Bioactivity of Anthocyanins
5.2.1. Antioxidant Properties

It has been well-documented in the literature that anthocyanins inherently possess
antioxidant properties, as evident from several in vitro studies where they consistently ex-
hibit antioxidant efficacy irrespective of their form—whether purified, in crude extracts, or
within whole foods [54,58–60,78,94]. These studies, summarised in Table 1, predominantly
employ cell models to assess antioxidant activity. Examples include investigations into the
antioxidant effects of delphinidin chloride on HUVEC cells [58], cyanidin-3-glucoside and
protocatechuic acid on SH-SY5Y cells [59], anthocyanin extract from purple rice on BRL-3A
cells [60], commercial Chinese red wine on Caco-2 cells [54], and frozen wild blueberries
on CRL 1790 and HT 29 cells [94]. This remarkable antioxidant capacity is attributed to the
structural characteristics of anthocyanins, particularly their conjugated rings and phenolic
hydroxyl groups, as substantiated by existing research [108].

Evidence from animal studies (Table 2) includes the intraperitoneal administration
of 100% cranberry juice in hamsters, which demonstrated notably elevated antioxidant
properties across various organs, including the liver, heart, brain, bladder, and kidney,
compared to baseline [109]. The anthocyanin content in cranberry juice was noted to be only
31% of its total polyphenol content, suggesting that the observed effect could be attributed
to the presence of other polyphenols and components along with anthocyanins [109].
Another study investigated the impact of the food matrix in black currant on antioxidant
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activity in Watanabe heritable hyperlipidaemic rabbits [110]. The treatments included
black currant juice concentrate, pure anthocyanins derived from black currants (63% and
79% purity, respectively), and a control group. While the Trolox equivalent antioxidant
capacity assay showed no significant differences in antioxidant activity among the samples,
the ferric reducing ability of plasma assay showed a significant increase in antioxidant
activity in the group fed with black currant juice compared to rabbits fed with purified
anthocyanins between 0.25 and 2 h after dosage [110]. The author attributes this effect to
other components present in the juice besides anthocyanins, or it could also be caused by
interactions between anthocyanins and the food matrix [110].

Human clinical trials (Table 3) investigating the antioxidant effects of grape juice
and wine consumption, revealed a higher antioxidant activity in grape juice compared
to wine, potentially attributed to its higher glucose content [111]. The presence of sugar
is presumed to have a synergistic effect in the juice and may have a protective action on
anthocyanin by increasing its stability, thereby increasing its antioxidant properties, as
shown by other studies [112,113]. Further, the consumption of acai pulp demonstrated
significantly increased antioxidant effects in plasma compared to acai clarified juice [114],
reinforcing the hypothesis that whole solid foods may offer greater health benefits than
products lacking essential constituents.

Notably, the antioxidant nature of anthocyanins is highest in either gastric or in-
testinal digests compared to undigested forms, with the gastric environment being more
favourable [78,115]. This indicates that the digestion process has a prominent role in en-
hancing the antioxidant property. Therefore, studying the bioactivity of these compounds
directly on the cells without subjecting them to the digestion process may not accurately
reflect the outcomes observed within the human body.

5.2.2. Anti-Inflammatory Properties

Anthocyanins are widely studied for their ability to alleviate inflammation in ani-
mals, as depicted in Table 2, and are considered a potential therapeutic option for inflam-
matory bowel diseases. Anthocyanin-rich extracts from black rice [116], bilberry [103],
blueberry [117], and Portuguese blueberry [118] all showed anti-inflammatory effects in
mice with induced colitis. This is achieved by their ability to inhibit the pro-inflammatory
cytokine secretions of TNF-α, IL-6, and IL-8, improving intestinal permeability, colonic
MPO activity, and mRNA expression [119]. Remarkably, Portuguese blueberry exhibited
not only significant anti-inflammatory effects but also a remarkably high antioxidant effect
in mice, surpassing the effectiveness of the commonly used aminosalicylate drug, even
at a concentration 30 times lower [118]. Furthermore, purified anthocyanins from mul-
berry [120], crude anthocyanin rich extracts of blueberry [117], purple yam [121], and black
rice [116] supplemented diets in mice reduced colonic inflammation, oxidative stress, and
tissue damage and improved intestinal barrier functions. Purified anthocyanin, cyanidin-3-
O-β-glucoside, improved liver function by inhibiting liver fibrosis and activating hepatic
stellate cells [122].

Concerning whole foods, two studies on freeze-dried purple potatoes [123,124] and
one study on lingonberry juice [125] have shown that these food sources reduce inflam-
mation in a mouse model of colitis. However, interestingly, in one study where male
Fischer 344 rats were fed with anthocyanin-rich grape–bilberry juice, no change in immune
function or improvement of inflammation markers was observed [126]. Although all forms
of anthocyanins, including purified, crude extracts, and anthocyanin-rich whole foods,
have demonstrated anti-inflammatory effects in animal models, there are currently no
direct comparison studies confirming which form of anthocyanins may be most beneficial
in terms of anti-inflammatory effects.

Lastly, a randomised human clinical trial, as summarised in Table 3, examined the
effect of pigmented potatoes, namely, white, yellow (rich in carotenoids), and purple (rich
in anthocyanins), on oxidative stress and inflammation markers [127]. While consumption
of both yellow and purple potatoes reduced oxidative stress and plasma IL-6 in men,
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purple potato consumption also lowered the C-reactive protein concentration in plasma
significantly compared to white potatoes. This effect was attributed to the presence of
anthocyanins, which is almost undetectable in white and yellow potatoes.

5.2.3. Anticancer Properties

While phytonutrients in general are widely recognised for their anticancer properties,
the evidence supporting these claims is primarily derived from cell models. Unfortunately,
there is a lack of comprehensive data from animal and human clinical studies, often due to
challenges related to dosing and bioavailability limitations.

In in vitro studies (Table 1), purified anthocyanins from red wine showed anticancer
properties in gastric (MKN-28) [52] and intestinal (Caco-2) [57] cell lines, while crude
anthocyanin extract from black raspberry failed to show anticancer effects on prostate
cells [128]. This suggests that the anticancer properties of anthocyanins may depend on
their source as well as the target region.

Further, two studies have consistently shown that freeze-dried blueberry and black
raspberry dietary supplementation in rats effectively reduced mammary tumour volume
up to 69% [129,130]. In a separate investigation, rats were fed commercial anthocyanin-rich
extracts from bilberry, chokeberry, and grapes to assess their anticancer effects. Interestingly,
only chokeberry and bilberry exhibited significant anticancer effects against colonic cancer,
while grape extract did not produce the same outcome [6].

5.2.4. Obesity and Antidiabetic Properties

Two animal studies (Table 2) conducted on mice using bilberry air-dried powder [103]
and freeze-dried jaboticaba peel powder [131] demonstrated improved insulin sensitivity
and regulated glucose and cholesterol levels. Furthermore, an investigation into the impact
of jaboticaba peel powder on obesity in mice revealed reduced insulin resistance, increased
HDL cholesterol levels, and no discernible effects on energy intake, weight gain, or body
fat [131]. Similarly, in mice, incorporating bilberry into a high-fat diet partially prevented
the elevation of serum cholesterol, glucose, and insulin levels, concurrently reducing
inflammation, while weight gain remained unchanged [103]. These findings from animal
studies align with those of a human clinical trial (Table 3), in which the antidiabetic effect of
commercially available anthocyanin capsules, purified from bilberry and blackcurrant, was
investigated in 58 diabetic adults [132]. The consumption of anthocyanin capsules showed
improvements in dyslipidaemia, prevented insulin resistance, and increased antioxidant
effects in plasma [132]. From the above two studies, it can be noted that bilberry could
serve as an effective antidiabetic agent when consumed in both purified (as capsules) and
whole fruit forms. However, further investigation is required, considering equivalent doses
and the use of the same clinical model.

5.2.5. Antiplatelet Effects

In a comparative study, the combined use of grape seed extract and grape skin extract
exhibited a heightened antiplatelet effect on human platelets, both in vitro and in ex vivo
feeding studies on dog platelets, in comparison to when these extracts were employed indi-
vidually [133]. This enhanced effect is attributed to the interaction of specific polyphenolic
compounds found in grape seed with those in grape skin, suggesting an additive influence
that contributes to the observed antiplatelet effect [133].

5.2.6. Other Effects

Other widely studied biological effects of anthocyanin extracts and anthocyanin-
rich foods include enhanced vascular function [8,134–137], cardioprotective effects [138],
antimicrobial activity [11,139,140], osteoprotective [141], neuroprotective [142], and gut
health-promoting properties [98].
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Table 1. Literature on the bioavailability of anthocyanins—in vitro studies.

ACN Form Anthocyanin Source Digestion Absorption (Transport Efficiency) Bioactivity/Health
Effects Ref.

Stability (S)/recovery
(R)/degradation (D) Dose Cell model/dose Transport efficiency

Pure Commercial
delphinidin chloride 1 nM to 100 µM. HUVEC ND Antioxidant [58]

Pure Cy-3G, and PA ND NA SH-SY5Y ND Antioxidant and
neuroprotective [59]

Purified Chinese Vitis davidii red
wine ND 200 µM/3 h Caco-2; MKN-28 3–5%; 4–9% Anticancer [52]

Purified vs. whole Purple-fleshed sweet
potato

D: 27–43% (no food matrix)
22–31% (food matrix) 150 µL MKN-28 (3 h)

Caco-2 (2 h)
5%
8% ND [53]

Purified vs. whole Red grape D: 49–52% (no food matrix)
30–45% (food matrix) ND ND [53]

Purified Strawberry ND Pg3G: 10 µg/mL
Pg3R: 50 µg/mL Caco-2 Pg3R: 1.13%;

Pg3G 0.28% ND [143]

Purified Wild Chinese blueberries D: 42% 50 mg/mL; 2 h Caco-2 1.59% to 4.22% ND [106]

Purified Hibiscus sabdariffa L. Gastric: 49% d3s, 70% c3s
Intestine: 3% d3s, 10% c3s ND Antimicrobial [140]

Crude extract Red grape/bilberry MO-fermented ACNs 50 µmol/L Co-culture: Caco-2
and HUVECs ND Anti-inflammatory

and antiadhesive [56]

Crude extract Raspberry ~5% in serum; ~70% in GIT ND ND [144]

Crude extract Blueberry 50 µg/mL Caco-2 ∼3–4% ND [55]

Crude extract Cornelian cherry Stomach: 107.23%
Intestine: 26.46% Antioxidant [78]

Crude extract Purple rice 76% degraded BRL-3A Antioxidant [60]

Crude extract
(separate)

Blackberries, red apples,
strawberries, and grapes.

S: gastric: 114–179%
Intestine: 1.6–82.5% ND ND [79]
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Table 1. Cont.

ACN Form Anthocyanin Source Digestion Absorption (Transport Efficiency) Bioactivity/Health
Effects Ref.

Crude extract Black raspberries ND 1 mg/mL

6 prostate cancer
cells: LNCaP,

LAPC-4, VCaP,
22Rv1, PC-3,

and C4-2

No effect on prostate
cancer [128]

Concentrate Commercial
Montmorency tart cherry ND PCA: 32 µM;

VA: 4 µM VSMC Vascular protective [57]

Extract Commercial
Bilberry and blackcurrant Gastric > oral > intestine 0.18, 0.37, 0.75, and

1.5 µg/mL Caco- 2 ND Anti-inflammatory [145]

Extract Commercial
Black currant ND 180.3 ± 19.3 µmol/L;

20 min Caco-2 11% at 20 min;
Del > Cy ND [146]

Juice Pomegranate R: 2.4–15.3% ND ND [147]

Wine Commercial
Chinese red wine D: 14.5–28.3% 0.5 ml Caco-2 2.08–24.01%. Antioxidant [54]

Wine Commercial
red wine R: serum: 3.7%; colon: 37% ND ND [115]

Freeze-dried powder Purple carrots (PC) and
purple potatoes (PP) R: PC: 45; PP: 71.8%

200 µg/mL
(semi-purified

extract)
Caco-2 BBe; THP-1 PC: 6%; PP: 36% Anti-inflammatory [119]

Frozen Wild blueberries R: gastric: 97%; intestine:
17%; fermented: 1.5%

10, 25, 50, 75, or 100
µg/ml CRL 1790; HT 29 ND Antioxidant and

anticancer [94]

W: whole food; E: extract; MKN-28: human gastric cancer cell; Caco-2 and HT-29: human colorectal cancer cell; HUVEC: human umbilical vein endothelial cell; SH-SY5Y: human
neuronal cell; BRL-3A: rat liver cell; THP-1: human monocytic leukaemia cell; CRL-1790: human foetal colon epithelial cell; HepG2: human liver cancer cell; VSMC: vascular smooth
muscle cells; Cy-3G: cyanidin-3-glucoside; Pg3R: Pg3G: pelargonidin-3-glucoside; pelargonidin-3-o-rutinoside; Mv-3-glu: malvidin-3-glucoside; Pt-3-glu: Dp-3-glu: delphinidin
3-O-glucoside; petunidin 3-O-glucoside; PCA: protocatechuic acid; VA: vanillic acid; PC: polyphenolic content; ACN: anthocyanin; GIT: gastrointestinal tract; TAC: total anthocyanin
content; TNF-α: tumour necrosis factor alpha; Nrf2: nuclear factor erythroid 2–related factor 2; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; IL-8: interleukin-8.
Food or food products that have undergone single-stage extraction, such as solvent extraction, are classified as crude extracts, whereas those that have undergone more than three stages
of extraction, including chromatographic technique, solid-phase extraction, and adsorption resins, are classified as purified forms of anthocyanins.
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Table 2. Literature on the bioavailability of anthocyanins—animal studies.

ACN Form ACN Source Treatment and Dose Model Bioavailability Bioactivity Ref.

>99% pure Cy-3G Commercial
(blackberry)

500 mg/kg gavage (n = 21); C3G at
1 mg/kg via tail vein injection

(n = 40)
C57BL6J mice

Systemic bioavailability: parent
Cy-3G and total ACNs were 1.7%

and 3.3%, respectively.
NA [7]

>96.5% pure
Cy-3G Black rice

3 groups
Control (vehicle) olive oil only, 10%

CCl4 in olive oil, CCl4 plus
800 mg/kg of C3G.

Male C57BL/6 mice
(8 wks old)

Serum and liver: no Cy-3G but PCA
detected, which was confirmed to

be a metabolite of C3G.

Liver function: Cy-3G with CCL4
inhibited liver fibrosis and the

activation of hepatic stellate cells.
[122]

Purified
Cy-3G Commercial

2 groups (n = 22)
Control (0.2 mL of PBS), PBS with
668 nmol Cy-3G at specific time

points (0.25, 5, 10, 15, 20 min)

Male Wistar rats
(15 wks old); BW:

293–390 g

Plasma: Cy-3G > Mv-3G > Peo-3G >
Pel-3G (AUC)

Brain: Cy-3G > Pet-3G > Peo-3G
(AUC)

Liver: Cy-3G, Peo-3G, Pet-3G
Kidney: Cy-3G, Peo-3G, Pet-3G

Urine: Cy-3G, Peo-3G

NA [148]

Purified
Cy-3G Commercial

Cy-3G (50 mg/kg BW), PCA (5
mg/kg BW), or Cy-3G (50 mg/kg

BW) plus PCA (5 mg/kg BW).
14 days; 4 weeks.

ApoE−/− mice NA
PCA: antiatherogenic effect by
inducing ABCA1 and ABCG1
expression in macrophages.

[149]

Purified ACNs Blackberry and
bilberry

In situ perfusion, 45 min
Purified ACNs: 9.2 nmol/min,

blackberry ACNs: 9.0 nmol/min,
and bilberry ACNs: 45.2 nmol/min.

Male Wistar rats,
~200 g BW

Small intestine: rate of absorption:
10.7 to 22.4%

Plasma and urine: native cyanidin
3-glucoside was recovered in urine,

and plasma from the aorta and
mesenteric vein along with

methylated and/or
glucuronidated derivatives.

Bile: cyanidin 3-glucoside and its
methylated derivatives.

NA [68]

Purified Commercial
delphinidin chloride

sRANKL-induced osteoporosis
model mice: (n = 17), 10

mg/kg/day. 17 days
Ovariectomised (OVX) mice (n = 24)

Control, 1 mg/kg, 3 mg/kg,
10 mg/kg; 28 days (n = 6 each)

Female C57BL/
6 mice (7 wks old) NA

Osteoprotective: ↓ bone loss in
both RANKL-induced

osteoporosis and OVX mice by
suppressing the activity of NF-kB,

c-Fos, and NFATc1, master
transcriptional factors
for osteoclastogenesis.

[141]
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Table 2. Cont.

Purified Blueberry and
bilberry

Study 1: 5% blueberry powder and
an AIN-93 M diet for 10 days.

Study 2: 10 mg bilberry ACNs in
10% dimethyl sulphoxide 2 h.

Female athymic nude
mice (5–6 wks old)

Plasma: recovered 55–95% of ACNs,
63–100% of anthocyanidins.

Lungs: Cy is readily detected.
NA [75]

Purified Commercial
(blackcurrant) (BC)

4 groups (n = 5 each)
Control, 63% BC juice concentrate,

and 79% pure ACN.

Watanabe heritable
hyperlipidaemic

rabbits (6 wks old)

Plasma: detected at tmax 30 min
Urine: 0.035% in the first 4 h

Antioxidant activity: TEAC: no
effect; FRAP: BC juice >

pure ACNs
[110]

Purified Mulberry ACN
(MAS)

4 groups, oral, 17 days
Control, DSS-fed, DSS + 100 mg/kg
BW of MAS, DSS + 200 mg/kg BW

of MAS.

Male C57BL/6J mice
(6–7 weeks old;
20 ± 2 g BW)

NA

Weight loss: p < 0.001; ↓ Disease
activity index

Anti-inflammatory and
↓ gut dysbiosis

[120]

Crude extract
Black rice

anthocyanin extract
(BRAE)

3 groups (n = 10 each)
Control, DSS, and DSS + BRAE (200

mg/kg/day) by gavage.

The DSS murine
model of colitis

Male C57BL/6 mice
(8 wks old)

NA

Inflammation: BRAE ↓
DSS-induced colonic

inflammatory phenotypes,
maintained colon length in mice,
↓ intestinal permeability, and
improved intestinal barrier

dysfunction in mice with colitis.
Gut: BRAE ↓ inflammatory

bacteria, and ↑ anti-inflammatory
probiotics, including

Akkermansia spp.

[116]

ACN-rich
extracts (AREs)

Commercial bilberry,
chokeberry, and

grape

2 groups, 14 weeks
Control diet and control diet

with AREs.

Fischer 344 male rats
(4 wks old)

Serum: detectable below
quantifiable levels

Urine: 7.8 mg/L to 23.6 mg/L
Faeces: up to 2.0 mg/L in bilberry

and chokeberry, and 0.7 mg/L
in grape.

Colon cancer: bilberry ARE
(p = 0.008) and chokeberry ARE

(p = 0.015); grape ARE has
no effect

[6]

Crude extract Bilberry

Study 1: 100 mg/kg BW and vehicle
control group after 12 h of

starvation. (n = 5 each)
Study 2: 500 mg/kg body weight
(n = 5) without prior starvation.

Study 3: 0.5% by weight. (n = 10)
and control.

Male C57BL/6 mice

Plasma: total ACNs peaked at 1.18
± 0.3 µM after 15 min; Urine: 1.88%.
Tissues: detected in the liver, kidney,
testes, and lung, with a maximum
of 605, 207, 149, and 116 pmol/g,
respectively. not detectable in the

spleen, thymus, heart, muscle, brain,
white fat, or eyes.

NA [150]
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Table 2. Cont.

Crude extract
(32%) Blueberry

5 groups (n = 10 each), 6 days
1 vehicle group, a TNBS control

group (inducing colitis), and three
ACN groups receiving daily doses
of 10, 20, and 40 mg/kg of ACNs.

Female C57BL/
6 mice NA

Anti-inflammatory (colon)
also prevented weight loss,
improved diarrhoea scores,
morphology, and histology,

[117]

Crude extract Mulberry

6 groups (n = 10 each) oral gavage;
8 weeks.

1. Young rats—normal diet and 300
mg/kg mulberry extract

2. Aging rats—normal diet, 100, 200,
and 300 mg/kg mulberry extract.

Male
Sprague-Dawley rats

at 8 and 80 wks
of age.

Cardiovascular protection
alleviated endothelial senescence,
oxidative stress in the aorta, and

improved eNOS function in
aging rats.

[151]

Crude extract Purple yam

7 groups (n = 10 each)
Control; TNBS; TNBS with 75

mg/kg 5-aminosalicylic acid; 20, 40,
and 80 mg/kg ACNs; 75 mg/kg

5-aminosalicylic acid without TNBS
induction; and 80 mg/kg ACNs

without TNBS induction.

Male C57BL/6 mice
(6 wks old); colitis
induced by TNBS

intra-rectally.

NA

Anti-inflammatory: the
TNBS-A80 group showed a

stronger protective effect. TNF α,
interferon γ in serum ↓. All doses

of ACN reduced iNOS
concentrations.

Body weight: TNBS-A80 rapid
weight recovery from day 3

[121]

ACN-rich extract Portuguese
blueberries

4 groups (n = 10 each)
Noncolitic control, TNBS-colitic

control, TNBS-induced rats treated
10 mg/kg with ARF, and

TNBS-induced rats treated with 100
mg/kg 5-5-aminosalicylic acid.

Male Wistar rats
(4 weeks old); 2,4,6-

trinitrobenzenesulphonic
acid (TNBS)-induced

colitis rat model.

NA
Anti-inflammatory, ↓ leukocyte
infiltration, antioxidant activity

ARF > 5-ASA.
[118]

Anthocyanin-
extract

Commercial
(bilberry)

3 groups (n = 50)
Control diet and diet with 1% and

10% bilberry extract.

Female BALB/c mice
(20–22 g BW) colonic

cancer induced by
azoxymethan (AOM)

and DSS (3 or 5%)

NA Anticancer and anti-inflammatory [152]

ACN extract
powder

Commercial
(blackberry)

2 groups (n = 6 each)
Control diet, 15 g BB per kg diet
(14.8 mmol ACNs per kg diet),

15 days

Male Wistar rats,
250 g BW

Stomach: 91.7%, jejunum: 80.2%,
kidney: 66.1%, liver: 13.2%, brain:

84%, plasma: 41.7%
urine: 0.19 ± 0.02%.

NA [153]
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Table 2. Cont.

100% juice Commercial
(cranberry) CJ

2 groups (n = 7 each)
administered i.p. daily for 7 days.

Control, 1 mL of CJ

14 Syrian
golden hamsters

Liver, kidney, heart, bladder,
and brain Antioxidant activity [109]

Juice Lingonberry (LBJ)
5 groups, 3 weeks

Control, control + 33% LBJ, IR,
IR + 33% LBJ, and IR + 20% LBJ

Sprague–Dawley rats
Ischemia–

reperfusion-induced
(IR)

NA Anti-inflammatory: kidney [125]

Juice Grape–bilberry
(80:20)

2 groups (n = 24 each), 10 weeks
Control and ACN-rich juice.

Male Fischer 344 rats
(10 wks old)

Plasma and urine: low
nanomolar concentrations.
Small intestine: 570 ng/g

No effect on inflammation (serum) [126]

Individually
quick

freeze-dried
Tart cherry

2 groups (n = 9 each)
1% tart cherry diet, 10% tart cherry

diet (n = 9)

Male Wistar rats
(6 wks old)

Tissues: the highest total ACNs
found in the bladder and kidney for
both groups, followed by the liver,

heart, and brain.

NA [154]

Air-dried powder Bilberry

3 groups (n = 20)
Low-fat diet (10%), high-fat diet

(46%), and bilberry
powder-supplemented high-fat diet

(20% w/w).

Male C57BL/6N
mice (8 wks old) NA

Weight: no effect
Hepatoprotective

Metabolism: partially prevented
the increase in serum cholesterol,

glucose, and insulin levels.

[103]

Baked and
freeze-dried

Purple-fleshed
potato (PFP)

3 groups
Control (AIN-93G diet) and 15%

and 25% PFP diet.

The DSS murine
model of colitis NA Anti-inflammatory (colon)

↓ gut dysbiosis [123]

Baked and
freeze-dried

Purple-fleshed
potatoes

3 groups
Control diet, 20% PFP

supplemented diet,
microbiota-ablated group.

Four-week-old male
mice (C57BL6) NA Anti-inflammatory [124]

Freeze-dried
powder Blackberry

2 groups (n = 18 each)
Control diet and control diet
supplemented with 200 g/kg

blackberry powder plus 20 g/kg
citric acid, 8 days

Male Wistar rats
BW: ~170 g

Plasma: NIL
Urine: cyanidin: ~0.26%;

malvidin: 0.67%
Caecal: recovered low amounts of

glucosides and cyanidin

NA [155]
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Table 2. Cont.

Freeze-dried
powder Jaboticaba peel

5 different diets: (n = 8 each)
Standard AIN-93G diet with 12%

protein, modified AIN-93G high-fat
diet (HF diet) with 12% protein and
35% lipids, and 3 groups of high-fat

diet supplemented with 1%, 2%,
and 4% freeze-dried jaboticaba peel

powder.

Swiss male mice and
Sprague-Dawley

males
NA

Obesity: reduced insulin
resistance. 2% FJP ↑

HDL-cholesterol levels by 41.65%.
compared to the HF control

freeze-dried
No effect on energy intake, weight

gain, and body fat.

[131]

Freeze-dried
powder

Blueberry (BB) and
black raspberry

(BRB)

3 treatments, 6 groups
Control diet, 5% w/w BB powder,

5% w/w BRB powder.

Female ACI rats
(6 wks old) NA

Anticancer (mammary)
BB diet: 50.7% reduction; BRB

diet: 42.4% reduction.
[129]

Freeze-dried
powder

Blueberry and black
raspberry

4 groups
1. AIN-93M diet (n = 25), BB diet
(2.5% wt/wt) (n = 19), BRB diet

(2.5% wt/wt); (n = 19), ellagic acid
diet (400 ppm) (n = 22)

Female ACI rats
(7–8 wks old) NA

Anticancer (mammary)
Tumour volume reduction

BRB: 69%,
BB: 40%.

[130]

Freeze-dried
powder Blueberry Control, 2% (w/w) BB. 8 wks,

Neutered male
Yorkshire X Landrace
pig (32–41 days old)

Brain: detected 279–432 fmol/g of
tissue in the brain. NA [156]

AIN: American Institute of Nutrition; Cy-3G: cyanidin-3-glucoside; Pg3R: Pg3G: pelargonidin-3-glucoside; pelargonidin-3-o-rutinoside; Mv-3-glu: malvidin-3-glucoside; Pt-3-
glu: Dp-3-glu: delphinidin 3-O-glucoside; petunidin 3-O-glucoside; PCA: protocatechuic acid; VA: vanillic acid; PC: polyphenolic content; ACN: anthocyanin; BW: body weight;
HFD: high-fat diet; LFD: low-fat diet; DSS: dextran sulphate sodium; NO, MPO: myeloperoxidase, IL-12: interleukins-12, and IFN-γ: interferon-gamma; SAA: serum amyloid A;
MCP1: monocyte chemoattractant protein-1; JNK: c-Jun N-terminal kinase; COX: cyclooxygenase; NO: nitric oxide; TNF-α: tumour necrosis factor alpha; IL-8: TNBS: 2,4,6-trinitrobenzene
sulphonic acid; eNOS: endothelial nitric oxide synthase; TEAC: Trolox equivalent antioxidant capacity; FRAP: ferric reducing ability of plasma; ↓: decreased; ↑: increased. Food or food
products that have undergone single-stage extraction, such as solvent extraction, are classified as crude extracts, whereas those that have undergone more than three stages of extraction,
including chromatographic technique, solid-phase extraction, and adsorption resins, are classified as purified forms of anthocyanins.

Table 3. Literature on the bioavailability of anthocyanins—human studies.

ACN Form ACN Source Treatment and Dose Study Design Participants Bioaccessibility/Absorption
Findings Bioactivity Findings Ref.

Capsule Commercial
(aronia berry) 500 mg Single-dose

pharmacokinetic trial

6 adults
Age: 8–65 y

BMI: 18.5–39 kg/m2

Former smokers

Plasma: 70–110%
Urine: 43–119%

Tmax: 1.0 h to 6.33 h
NA [157]
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Table 3. Cont.

ACN Form ACN Source Treatment and Dose Study Design Participants Bioaccessibility/Absorption
Findings Bioactivity Findings Ref.

Capsule
Commercial

(bilberry,
blackcurrant)

320 mg Random, double-blind
58 adults

Age: 56–67 y
24 wks

Plasma: 9.37 nmol/L Antidiabetic, antioxidant,
anti-dyslipidaemia [132]

Juice Commercial (20%
blackcurrant)

250 mL of juice or
control drink.

Randomised,
cross-over,

double-blind,
placebo-controlled
acute meal study.

9 males, 11 females;
Age: 44.6 ± 13.3 y

BMI: 23.9 ± 2.5 kg/m2

Plasma: ↑ plasma ascorbic acid,
insulin, and urinary ACNs.

Microbial metabolites
were detected.

Urine: (p < 0.001)

Vascular function: no effect [136]

Juice
Commercial

(blueberry, 216 mg
cy)

250 mL daily for 28 days. Randomised 4 males, 13 females;
Age: 24–60 y

Urine: Total and parent
anthocyanin varied 10-fold among

all participants.
NA [158]

Juice Commercial
Concord grape juice

200 mL of purple grape
juice, control

Randomised,
placebo-controlled,

double-blind,
counterbalanced-
crossover study.

7 males, 13 females;
Age: 18–35 y NA ↑ Cognitive function [142]

Juice Red grape
400 mL red grape juice,
organic red grape juice,

and water (control).

Randomised,
controlled, crossover

study

5 males, 19 females;
Age: 20–55 y

BMI: 18–30 kg/m2.
NA Antioxidant activity [159]

Pulp, juice

Commercial
(acai berry)
Pulp, juice;

972 ± 27 mg/kg,
531 ± 0.2 mg/L

ACN

7 mL/kg BW of acai
pulp, clarified acai juice,

and applesauce
(negative control).

Acute four-way
crossover

11 adults;
Age: 21–31 y

BMI: 17.8–25.9 kg/m2.

Plasma: Cmax 2321 and 1138 ng/L
at tmax 2.2 and 2.0 h for pulp

and juice
Tmax 3 h for apple sauce, clarified
acai juice, and acai pulp, and 2 h

for the control beverage.

Antioxidant activity: in
plasma pulp > juice. In

urine, there is
no difference.

[114]

Juice Blood orange 600 mL juice; diet
without juice for 21 days. Crossover study

16 females
Age: 20–27 y

BMI: 16.0–23.3 kg/m2.

Plasma: ↑ plasma vitamin C,
cyanidin-3-glucoside,

â-cryptoxanthin, and zeaxanthin.

Oxidative stress: improved
resistance of lymphocyte
DNA to oxidative stress.
whereas no effect was
observed on the lipid
oxidation biomarker.

[160]
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Table 3. Cont.

ACN Form ACN Source Treatment and Dose Study Design Participants Bioaccessibility/Absorption
Findings Bioactivity Findings Ref.

Juice Purple grumixama
fruit 10 mL juice/kg BW.

Observational
In vitro: breast cancer

cells MDA-MB-231

10 females.
Age: 29.3 ± 7.7 y

BMI: 23 ± 3 kg/m2.
Urine: no significant difference. Anticancer (breast) [161]

Juice Blueberry 250 mL juice (~216 mg
C3G)

4 males, 13 females.
Age: 24–60 y

Urine: 4% parent ACNs, and 96%
ACN metabolites at 24 h.

226 known ACN and predicted
ACN metabolites were identified,

of which 91% were aglycones.
AcnM persisted even after 5 days
of abstaining from dietary Acn.

[162]

Juice Blood orange 1 L of juice and control,
4 weeks.

Randomised,
controlled, and

crossover.

4 males, 4 females.
Age: 23–44 y

BMI: 18–27 kg/m2.

Plasma: Nil
Urine: ↑ urinary excretion of ACN

at 24 h
Cardioprotective: no effect [163]

Concentrate Montmorency tart
cherry (MC) 30- or 60-mL

Randomised,
double-blinded,
and crossover.

12 males;
Age: 26 ± 3 y

BMI: 26.7 ± 3.2 kg/m2.

Plasma: ↑ ACN metabolites PCA,
and VA at 1–2 h

Proliferation: no effect.
Vascular function: ↑ only
in combination with PCA

and VA.

[57]

Wine and
juice

Commercial
Red wine, red grape

juice; (279.6,
283.5 mg ACN)

400 mL of red wine or
red grape juice Non-randomised

4 males, 5 females;
Age: 24–34 y

BMI: 19.7–26.3 kg/m2.

Urine: <1% for both treatments
after 7 h.

Plasma: red wine > red grape juice
(76.3% relative bioavailability)

NA [164]

Urine: TACNs are 0.18% in red
wine and 0.23% in red grape juice.

Antioxidant activity: ↑
grape juice > wine [111]

Smoothie,
juice, and

extract

Grape/blueberry
(80:20)

0.33 litres of juice (841
mg ACN/L) or smoothie

(983 mg ACN/L)

Randomised,
double-blind,

cross-over.

5 males, 5 females;
Age: 23–27 y

BMI: 19.6–25.1 kg/m2

in vitro: Caco-2

Plasma: Mal and peo > del, cy, pet
juice > smoothie (80% relative

bioavailability)
Urine: juice > smoothie (71%

relative bioavailability)
Absorption: <0.1%.

NA [89]
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Table 3. Cont.

ACN Form ACN Source Treatment and Dose Study Design Participants Bioaccessibility/Absorption
Findings Bioactivity Findings Ref.

Puree Strawberry
100 g, 200 g, and 400 g
(~15 mmol, 30 mmol,
and 60 mmol ACN)

Randomised, crossover
6 males, females;
Age: 45 ± 8.4 y

BMI: 24.4 ± 3.31 kg/m2.

Urine: 50% in the first 4 h. Pel-3g
major ACN and are not saturated

at dose ≤ 60µmol.
Recovery increased linearly with

increasing doses.

[165]

Fruit Bilberry 180 g Human
13 males

Age: 22–24 y
BMI: 18.3–22.8 kg/m2.

Plasma: AUC 0–6 h = 386.0 nmol
h/mL; Cmax = 139.1 nM.

Urine: 0.21%.
NA [166]

Freeze-
dried

powder
Wild blueberries 25 g or placebo beverage.

A single-blind,
randomised, two-arm
crossover-controlled

study

6 males, 6 females;
Age: 20–45 y

BMI: 25–33 kg/m2.

Plasma: ACNs were 1.1% and
3-CGA was 0.2%.

Absorption: peonidin glycosides
are the highest, and malvidin is

the lowest.

[167]

Freeze-
dried

powder
Wild blueberry 240, 400, and 560 g and

control drink.

Randomised
controlled,

double-blind,
crossover.

21 males;
Age: 18–40 y

Plasma: polyphenol metabolites
(73% ± 2%)

32 total polyphenol metabolites
were identified.

↑ Vascular function [137]

Individually
quick-

frozen fruit
Blueberry 300 g (348 mg ACNs),

control jelly
Randomised,

crossover.

10 males;
Age: 20.8 ± 1.6 y

BMI: 22.5 ± 2.1 kg/m2

Plasma: ↑ at 1 and 2 h after
consumption.

No ACNs were detected after 24 h.

Antioxidant,
Vascular function: no effect [168]

Steamed Red cabbage 100, 200, and 300 g Randomised, crossover
6 males, 6 females;

Mean age: 46 y
Mean BMI: 25.4 kg/m2

Urine: 11 red cabbage ACNs and 4
CAN metabolites detected.

Recovery: a linear decrease with
increasing doses.

Nonacylated anthocyanins 4 times
higher than the acylated type.

NA [169]

Cooked
whole Pigmented potatoes

150 g white (WP), yellow
(YP), and purple (PP)

potatoes, 6 wks.

Randomised,
controlled, placebo, or

crossover.

36 adults;
Age: 18–40 y NA

Anti-inflammatory: YP, PP
Antioxidant activity:

PP (160%)
[127]

Cy-3G: cyanidin-3-glucoside; PCA: protocatechuic acid; VA: vanillic acid; PC: polyphenolic content; ACN: anthocyanin; ACN-M: anthocyanin metabolites; TAC: total anthocyanin content;
FMD: flow-mediated dilation; CRP: C-Reactive Protein; TBAR: thiobarbituric acid reactive substances; NADPH: nicotinamide adenine dinucleotide phosphate; CVD: cardiovascular
disease; ↑: increased. Food or food products that have undergone single-stage extraction, such as solvent extraction, are classified as crude extracts, whereas those that have undergone
more than three stages of extraction, including chromatographic technique, solid-phase extraction, and adsorption resins, are classified as purified forms of anthocyanins.
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6. Conclusions

The growing body of research underscores the health benefits of anthocyanin con-
sumption, leading to a surge in the availability of anthocyanin-rich extracts, or isolates,
and encapsulated supplements. Despite extensive research on anthocyanin bioavailability,
a critical gap exists in the literature, lacking simultaneous comparisons of anthocyanin
bioavailability in whole foods versus isolates or extracts. As revealed in the current litera-
ture, the intricate interplay of anthocyanins with the food matrix has a profound impact
on bioavailability, and therefore, this should not be overlooked when choosing between
anthocyanin-rich whole foods and extracts. Further, it is difficult to compare the bioeffica-
cies of anthocyanins from current individual studies due to variations in doses, extraction
methods, methodologies, and the use of clinical models. This is also a limitation of this
review, as it includes mostly individual studies due to the lack of parallel studies examining
anthocyanin bioavailability when consumed as whole foods versus extracts. In addition,
an in-depth evaluation of the role of biomarkers should be considered to understand the
food matrix effect and mechanisms involved in the absorption of these compounds, which
were not covered in this review.

Current findings, however, lean towards whole food consumption over purified or
crude extracts of anthocyanins. Although there may not be any harm in consuming the
purified form of phytonutrients such as anthocyanins as a dietary supplement, there may
be less or no considerable benefit due to potentially missing out on synergistic interactions
between anthocyanin compounds and the food matrix.

Direct comparative studies are imperative to decipher the nature of this inter-
relationship between anthocyanins and food matrices—whether synergistic, neutral, or
antagonistic. At the same time, it is important to consider the effects of processing tech-
niques, encapsulation, and gut–microbiota interactions. Addressing this gap with robust
study designs will not only benefit the food and nutraceutical industries but also empower
health professionals to optimise the practical applications of anthocyanins, leveraging their
therapeutic attributes. Moreover, such studies will eliminate interlaboratory differences
and make the results more reliable and comparable. There is also a need to standardise the
bioavailability study protocol with a study design that involves these stages: digestion, in-
testinal absorption, colonic fermentation, ability to exert a biological effect, and, if possible,
a recommended standard unit of measurement.
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