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Abstract: A 16-channel front-end readout chip for a radiation detector is designed for portable or
wearable healthcare monitoring applications. The proposed chip reads the signal of the radiation
detector and converts it into digital serial-out data by using a nonbinary successive approximation
register (SAR) analog-to-digital converter (ADC) that has a 1-MS/s sampling rate and 10-b resolution.
The minimum-to-maximum differential and integral nonlinearity are measured as −0.32 to 0.33
and −0.43 to 0.37 least significant bits, respectively. The signal-to-noise-and-distortion ratio and
effective number of bits are 57.41 dB and 9.24 bits, respectively, for an input frequency of 500 kHz
and a sampling rate of 1 MS/s. The SAR ADC has a 38.9-fJ/conversion step figure of merit at the
sampling rate of 1 MS/s. The proposed chip can read input signals with peak currents ranging
from 20 to 750 µA and convert the analog signal into a 10-bit serial-output digital signal. The input
dynamic range is 2–75 pC. The resolution of the peak current is 208.3 nA. The chip, which has an
area of 1.444 mm × 10.568 mm, is implemented using CMOS 0.18-µm 1P6M technology, and the
power consumption of each channel is 19 mW. This design is suitable for wearable devices, especially
biomedical devices.

Keywords: bioelectronics; wearable sensors; healthcare monitoring; radiation detector; nonbinary
SAR ADC

1. Introduction

As integrated chip technology has developed, many large and costly machines have
become smaller and less expensive. In the biomedical field, progressive wireless technology
and modalities such as electroencephalography [1], electrocardiography [2–6], and magnetic
resonance imaging [7] are being integrated into wireless body sensor networks [5,6,8].
Wearable devices are becoming even smaller because digital signal processors and data
storage can be outsourced to external devices. Technological developments are leading to
considerable benefits in terms of wearable healthcare monitoring.

The use of radiation detector devices in medicine [9,10] is limited by the large size
of these devices. Integrated chip technology offers a means of scaling down instruments,
and smaller radiation detector devices would have a greater scope of application. Commu-
nication within the Internet of Things (IoT) is convenient and rapid, and integrated chip
technology enables the use of radiation detector devices in wearable healthcare monitoring
and the IoT [11–14]. The conversion blocks that have been employed to convert analog sig-
nals to digital signals are analog-to-digital converters (ADCs) [11–13], digital delay-locked
loop circuits [14], and time-to-digital converters [15].

In designing wearable healthcare monitoring applications, the objectives are a sam-
pling rate of several megasamples per second and low power consumption.

Pipeline ADCs have high speed, with high sampling rates (~100 MS/s), medium
resolution (8–12 b), and high power consumption (dozens of milliwatts). Delta-sigma
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ADCs have low speed, with sampling rates in the dozens of kilosamples per second, high
resolution (12–20 b), and moderate power consumption (several milliwatts). SAR ADCs
have medium speed, with sampling rates of several megasamples per second, moderate
resolution (8–12 b), and low power consumption (dozens of microwatts). SAR ADCs are
thus more suitable than pipelined ADCs or delta-sigma ADCs for wearable healthcare
monitoring applications.

This study proposes a front-end readout circuit for a radiation detector; this circuit
contains a nonbinary successive approximation register (SAR) ADC [16]. In radiation
applications, a particle can cause bit flips in digital circuits and voltage spikes in analog
circuits. These flips and spikes can be considered a noise effect. Because of its nonbinary
structure, the SAR ADC has a correction mechanism that can minimize the effect of the
digital-to-analog converter (DAC), settling incomplete errors and the effects of noise from
the DAC and comparator [17]. The results of simulations are depicted in Figures 1 and 2.
Figure 1 presents a comparison of the effective number of bits (ENOB) for a binary SAR
ADC versus a nonbinary SAR ADC when some noise is present in the comparator input.
The ENOB of the nonbinary SAR ADC is 0.17 b higher than that of the binary SAR ADC
with an 8-least-significant-bit (LSB) noise effect. Figure 2 presents a comparison of the
ENOB for binary and nonbinary SAR ADCs for various settling ratios. The settling ratio
means that the ratio of DAC voltage settles to the correct value. The ENOB of the nonbinary
SAR is still 9 b when the DAC settling ratio is 80%. The ENOB of the binary SAR ADC is
9 b at a settling ratio of 97.5%, whereas at an 80% settling ratio, it is only 5.12 b.
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Figures 3 and 4 present the results of Matlab simulations quantifying the performance
of a radiation detection front-end circuit using a nonbinary SAR ADC versus that using a
binary SAR ADC. The ideal conversion code count in this simulation is 552, and the result
for the binary SAR ADC case is a 1-LSB error, even when the noise effect is only at 0.25 LSB.
Conversely, for the nonbinary SAR ADC case, correct conversion results are obtained with
up to a 1.5-LSB noise effect. With up to a 7.5-LSB noise effect, the conversion errors for the
binary and nonbinary SAR ADCs are 10 and 2 LSB, respectively. With incomplete DAC
settling, no conversion errors are found to occur for the binary and nonbinary SAR ADC
cases until the settling ratios of 87.5% and 83.8%, respectively, are reached. For the binary
SAR ADC case, a 1-LSB conversion error occurs until a settling ratio of 72% is reached, at
which point the error increases to an 11-LSB conversion error. By contrast, the nonbinary
SAR ADC continues to have a conversion error of only 1 LSB.
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binary versus nonbinary SAR ADC with DAC incomplete settling in Matlab simulations.

Because most applications of radiation detector front-end readout chips require mul-
tiple channels, the chip proposed in the present study is a 16-channel front-end readout
chip. The use of multiple channels causes a cross-talk effect and reduces the accuracy of an
SAR ADC. The cross-talk signal is noise to the SAR ADC, and the SAR ADC thus requires
a correction mechanism to reduce the effect of this noise. Section 2 of this paper describes
the block diagram of the proposed chip. Section 3 describes how the chip is implemented.
Section 4 discusses the chip’s performance in tests. Finally, Section 5 concludes the paper.



Micromachines 2024, 15, 143 4 of 21Micromachines 2024, 15, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 4. Conversion error versus seĴling ratio for a radiation detector front-end readout chip con-
taining a binary versus nonbinary SAR ADC with DAC incomplete seĴling in Matlab simulations. 

Because most applications of radiation detector front-end readout chips require mul-
tiple channels, the chip proposed in the present study is a 16-channel front-end readout 
chip. The use of multiple channels causes a cross-talk effect and reduces the accuracy of 
an SAR ADC. The cross-talk signal is noise to the SAR ADC, and the SAR ADC thus re-
quires a correction mechanism to reduce the effect of this noise. Section 2 of this paper 
describes the block diagram of the proposed chip. Section 3 describes how the chip is im-
plemented. Section 4 discusses the chip’s performance in tests. Finally, Section 5 concludes 
the paper. 

2. Proposed Structure 
The block diagram of a 16-channel front-end readout circuit for a radiation detector 

is depicted in Figure 5. The circuit comprises an amplifier, a trigger generator, an integra-
tor, an ADC, a reset signal generator (RSG), a parallel-in serial-out shifter register (PSSR), 
and a bias circuit. When the radiation detector responds to radiation, a current signal is 
generated and sent to the amplifier. The amplifier converts the current signal into a volt-
age signal and transfers this signal to the trigger generator and integrator. The integrator 
then begins integration, and simultaneously, the ADC begins tracking the integrator’s out-
put signal. The trigger generator is a differential difference comparator and thus has two 
differential inputs and a single output. The trigger signal is high when the input signal is 
higher than the reference voltage and low otherwise. When the radiation detector turns 
off, the trigger generator’s output signal ceases. The ADC then stops its signal tracking 
and conversion. After it has converted an analog signal, the ADC transfers the parallel 
digital data to the PSSR and sends a reset signal to the RSG. The RSG resets the integrator 
after turning off the signal of the trigger generator and the reset signal of the ADC. The 
amplifier, trigger generator, ADC, and RSG enter into sleep mode until the radiation de-
tector responds again. A flowchart of this process is depicted in Figure 6. The input sig-
nal’s CLK periodically controls the PSSR’s renewal of parallel-in digital data from the 
ADC and transferal of serial-out data, a serial-out clock, and a sampling clock. The sam-
pling clock is the time at which parallel-in digital data should be renewed, whereas the 
serial-out clock is the time at which serial digital data are read out. Each serial-out datum 
follows each trigger signal. 

Figure 4. Conversion error versus settling ratio for a radiation detector front-end readout chip
containing a binary versus nonbinary SAR ADC with DAC incomplete settling in Matlab simulations.

2. Proposed Structure

The block diagram of a 16-channel front-end readout circuit for a radiation detector is
depicted in Figure 5. The circuit comprises an amplifier, a trigger generator, an integrator,
an ADC, a reset signal generator (RSG), a parallel-in serial-out shifter register (PSSR), and a
bias circuit. When the radiation detector responds to radiation, a current signal is generated
and sent to the amplifier. The amplifier converts the current signal into a voltage signal
and transfers this signal to the trigger generator and integrator. The integrator then begins
integration, and simultaneously, the ADC begins tracking the integrator’s output signal.
The trigger generator is a differential difference comparator and thus has two differential
inputs and a single output. The trigger signal is high when the input signal is higher than
the reference voltage and low otherwise. When the radiation detector turns off, the trigger
generator’s output signal ceases. The ADC then stops its signal tracking and conversion.
After it has converted an analog signal, the ADC transfers the parallel digital data to the
PSSR and sends a reset signal to the RSG. The RSG resets the integrator after turning off
the signal of the trigger generator and the reset signal of the ADC. The amplifier, trigger
generator, ADC, and RSG enter into sleep mode until the radiation detector responds again.
A flowchart of this process is depicted in Figure 6. The input signal’s CLK periodically
controls the PSSR’s renewal of parallel-in digital data from the ADC and transferal of
serial-out data, a serial-out clock, and a sampling clock. The sampling clock is the time at
which parallel-in digital data should be renewed, whereas the serial-out clock is the time at
which serial digital data are read out. Each serial-out datum follows each trigger signal.

The integrator comprises an amplifier, an input resistor, and multiple-integrated-
slope switched capacitors. The multiple integrated slopes of these switched capacitors are
changed by switches S1 and S2. The original integrated slope works with one capacitor
when the control signals s1 and s2 are low. The integrated slope works with two capacitors
when the control signals s1 and s2 are high and low, respectively. When the control signals
s1 and s2 are respectively low and high or are both high, the integrated slope works with
three or four capacitors. The multiple integrated slopes can cover a substantial input-signal-
to-digital-output conversion range and thus support numerous applications.
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A 4-bit binary SAR ADC with a split capacitor DAC [18] is depicted in Figure 7. The
power efficiency of the SAR ADC with split capacitor technology is greater than that of
a conventional SAR ADC. The capacitors in a conventional 4-bit SAR ADC are denoted
C2, C1, C0, and CD, and the weighted sizes are 8, 4, 2, and 2. By contrast, in the SAR
ADC with split capacitor technology, the DAC structure contains C2 and C2b instead of C2,
C1 and C1b instead of C1, and C0 and C0b instead of C0. The normal conversion process
of a binary SAR ADC with split capacitors is depicted in Figure 8a, and the conversion
process with most significant bit (MSB) error decisions is illustrated in Figure 8b. The
digital outputs of the 4-bit binary SAR ADC with split capacitors are b3, b2, b1, and b0,
and the mapping code weights are 8, 4, 2, and 1, respectively. Thus, the digital result
is 8 × b3 + 4 × b2 + 2 × b1 + 1 × b0. The correction results of conversion—b3, b2, b1, and
b0—are 1, 0, 0, and 1, respectively, leading to a calculation result of 9. If an MSB error
decision occurs, however, the conversion results are 0, 1, 1, and 1, and the calculation result
is 7. The MSB error decision causes an incorrect conversion result.
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structure splits two redundant capacitors, C3 and C3b, to obtain more redundancy code
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for error correction. The capacitors of the 4-bit nonbinary SAR ADC with split capacitors
are C3, C3b, C2, C2b, C1, C1b, C0, C0b, and CD, and their respective weight sizes are 3,
3, 2, 2, 1, 1, 1, 1, and 2. The digital outputs of the 4-bit nonbinary SAR ADC with split
capacitors are b4, b3, b2, b1, and b0, and the respective mapping code weights are 6, 4, 2, 2,
and 1. Thus, the digital result is 6 × b4 + 4 × b3 + 2 × b2 + 2 × b1 + 1 × b0. The redundant
code weight of b4 is the summation of the other code weights minus the code weight of b4
(4 + 2 + 2 + 1 + 1 − 6 = 4). The other redundant code weights are 2, 2, and 0 (calculations:
2 + 2 + 1 + 1 − 2 = 2; 2 + 1 + 1 − 2 = 2; and 1 + 1 − 2 = 0). Because the binary SAR ADC
with split capacitors has no redundant capacitors, it has no redundant code weights. The
normal conversion process of a 4-bit nonbinary SAR ADC with split capacitors is depicted
in Figure 10a. The correction conversion results are 1, 0, 1, 0, and 1, and the calculation
result is 9. The conversion process of a 4-bit nonbinary SAR ADC with split capacitors and
MSB error decisions is presented in Figure 10b. The conversion results are 0, 1, 1, 1, and 1,
and the calculation result is 9. The MSB error decision can be corrected with redundant
code weights.
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The code weights and redundant code weights of 10-bit binary and nonbinary SAR
ADCs are listed in Table 1. When redundant code weights are larger, more redundant
bits must be added in the conversion process. In the case of the 10-bit SAR ADC, adding
two redundant bits leads to a 20% gain in redundant code weights available for correcting
error decisions. The large values of the redundant code weights listed in Table 1 can
guarantee larger error correction ranges. Series capacitor technology is employed in this
study to reduce the capacitor array of the DAC, which is depicted in Figure 11. The
capacitors C0 and C0b comprise two series unit capacitors; this means that the size of the
capacitor array in the DAC is halved because the equivalent capacitance of this array with
two series unit capacitors is a half-unit capacitor [17,19].

Table 1. Bit weights of binary and nonbinary SAR ADCs.

Bit Binary Code
Weight

Redundant
Code Weight

Nonbinary
Code Weight

Redundant
Code Weight

b11 - - 404 216
b10 - - 248 124
b9 512 0 152 68
b8 256 0 88 44
b7 128 0 52 28
b6 64 0 32 16
b5 32 0 20 8
b4 16 0 12 4
b3 8 0 8 0
b2 4 0 4 0
b1 2 0 2 0
b0 1 0 1 0

Dummy 1 0 1 0
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Figure 11. DAC of a nonbinary SAR ADC.

3. Circuit Design and Implementation

This section describes the circuit structure and how each stage of the block diagram
is designed and implemented, from the input signal to the first stage to the output signal
from the last stage.
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3.1. Amplifier

The amplifier, which is the signal-receiving stage in the proposed block diagram, has
the circuit structure depicted in Figure 12. It comprises input resistors Ri and Rd, a fully
differential amplifier M1–M5, and common feedback resistors R1 and R2. The current signal
is converted into a voltage signal by input resistor Ri, and the voltage signal is amplified by
the amplifier. A trade-off is made between the noise contributed by the input resistance and
the range over which the received current signal is converted into the voltage signal. When
the input resistance is 1 kΩ, it contributes noise of 13 µVrms when the operating frequency
is 10 MHz, as revealed in Equation (1) [20]. Because the converted voltage range for an
input current signal of 1 µA to 1 mA is 0.1–1.0 V, the noise contribution of the input resistor
can be ignored. In the 16-channel design, the offset between channels must be considered.
The large mismatch contribution in the amplifier is the threshold voltage (denoted VTH)
difference between the input pair M2 and M3. To ensure that the offset tolerance between
each channel is acceptable, 1σ < 0.5 mVrms, the width and length of the input pair must
be sufficiently large, as expressed in Equation (2) [20]. Figure 13 depicts the results of an
Hspice Monte Carlo simulation of the amplifier with 1000 samples. The input-referred
offset voltage is 0.265 mVrms, and the input signal has a voltage of 20 mV.√

v2 =
√

4kTR∆ f =
√

1.66 × 10−20 × 1 × 103 · 10 × 106 ≈ 13µVrms (1)

∆VTH =
AATH√

WL
(2)
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3.2. Integrator

The integrator (illustrated in Figure 14) comprises the input resistors R3 and R4, which
are switched by M6 and M7, respectively; a fully differential amplifier M8–M12; the common
feedback resistors R5 and R6; the reset switches M13 and M14; and multiple slopes integrated
by capacitors C1–C6 and switches M15–M20. The integrator integrates when M6 and M7
turn on and M13 and M14 turn off, whereas it stops integrating when M6, M7, M13, and
M14 turn off. Integration is reset when M6 and M7 turn off and M13 and M14 turn on. The
output voltage of the integrator is integrated by input signal VIN, switched capacitors
Cint, and input resistors R4 and R6, as shown in Equation (3). Cint comprises C1–C6. The
multiple integrated slopes switch to different integrated slopes when M15–M20 work in a
different mode. When M15 and M18 always turn on and M16, M17, M19, and M20 turn off,
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the integrated slope is the largest of the multiple integrated slopes. Under this condition,
Cint is C1. For the design, each switched capacitor in the integrator has the same turn-on
resistance. In the device, the design size ratio of M17:M16:M15 is 2:1:1. The second integrated
slope occurs when M16 and M19 turn on and M17 and M20 turn off. Cint is then C1 + C2.
The third occurs when M16 and M19 turn off and M17 and M20 turn on, in which case Cint
is C1 + C3. The last occurs when M16–M17 and M19–M20 turn on, resulting in Cint being
C1 + C2 + C3. Because the capacitance ratio of C1 to (C1 + C2) to (C1 + C3) to (C1 + C2 + C3)
is 1:2:3:4, the ratio between integrated slopes is 12:6:4:3.

VOUT= VOUTP − VOUTN = − 1
R4Cint

∫
VINNdt +

1
R6Cint

∫
VINPdt =

1
R4Cint

∫
VINdt (3)
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3.3. Trigger Generator

The trigger generator comprises a differential difference amplifier M21–M28, R7 [21],
R8, and a comparator M29–M41, as illustrated in Figure 15. The positive output terminal of
the differential difference amplifier is the gate of M30, and the negative output terminal is
the gate of M31. The voltage of the positive output terminal is expressed in Equation (4),
the voltage of the negative output terminal is expressed in Equation (5), and the differ-
ential voltage of the output terminal is expressed in Equation (6). Using the result of the
differential difference amplifier, the comparator generates a trigger signal.
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vop = −
(

vINN × gmp + vre f 1 × gmp

)
× ron (4)

von = −
(

vINP × gmp + vre f 2 × gmp

)
× ron (5)

vop − von =
[
(vINP − vINN)−

(
vre f 1 − vre f 2

)]
× gmp × ron (6)
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The comparator comprises differential inputs (M30 and M31), a cross-coupled latch
(M36 and M37), a diode-connected load (M33 and M34), a current summary (M34, M35, M38,
and M39), and an inverter-based output buffer (M40 and M41). When the gate voltage of
M30 is higher than that of M31, the drain current of M30 is lower than that of M31; the
cross-coupled latch then reduces the drain voltage of M30 and increases the drain voltage
of M31. The current summary part summarizes the drain currents of the diode-connected
loads M32 and M33, and the inverter-based output buffer increases the level of the output
voltage to the supply voltage level. If the gate voltage of M30 is lower than that of M31, the
level of the output voltage of the comparator decreases to the ground voltage level.

3.4. Bias Circuit

The bias circuit, depicted in Figure 16 [20], has a bias part and a start-up part. Because
the bias part comprises P-type and N-type current mirror structures of Mb1–Mb6 and Rb,
the circuit operates in two static states. One static state involves current, whereas the
other does not. The circuit requires a start-up circuit to push the bias part into the correct
operation mode. When the supply voltage turns on and the bias part is in the incorrect
operation mode, the voltages VB2 and VB3 are low. When VB3 is low, Ms5 turns off, the
diode-connected Ms1 turns on Ms2, and Ms2 and the diode-connected Ms3 turn on Ms4
to increase VB2 and VB3 to the correct operation voltage. Because VB3 is in the correct
operation mode, Ms5 turns on and Ms2 turns off, and Ms4 turns off. The start-up part
turns off, and the bias part is then operating in the correct mode. The bias circuit biases
the amplifier depicted in Figure 12, the integrator displayed in Figure 14, and the trigger
generator illustrated in Figure 15. To ensure favorable matching of the bias device Mb2,
the amplifier’s M1, the integrator’s M8, and the trigger generator’s M21, M26, and M29
must have the same width, length, symmetry, and device layout direction, but the device
multiple can be different. Without using resistor Rb, the current mirror loop involving
Mb1–Mb6 gives positive feedback. Adding the resistor Rb and the multiple Mb6 results in
the loop giving negative feedback. The bias current Ib2 is determined by the resistance
Rb and the size of Mb5–Mb6, as expressed in Equation (7) [20]. The bias current Ib2 has
extremely low sensitivity to supply voltage variation and noise.
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Ib2 =
2

µnCox(W/L)b5
· 1

Rb

1 − 1√
(W/L)b6/(W/L)b5

 (7)
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3.5. Reset Circuit

The integrator illustrated in Figure 14 starts to integrate when it receives the trigger
signal and retains the result until the SAR ADC has completed its conversion. The reset
circuit displayed in Figure 17 combines the trigger signal from the trigger circuit with the
reset signal from the SAR ADC and then generates the reset signals int and intb, which
reset the integrator. The reset circuit operates in four states: reset, hold after reset, trigger,
and hold after trigger. In the reset state, a reset signal pulse enters node rst. And the node
trig is 0. M43, M44, M46, and M49 turn on, and the others turn off. The node int changes to 0,
and the node intb changes to 1. In the hold after reset state, the nodes rst and trig are 0, and
M46–M47 turn off. M42–M45 and M48–M49 comprise a latch circuit and keep the int and intb
voltage levels at 0 and 1, respectively. In the trigger state, a trigger signal pulse is sent to
the node trig. In the meantime, the node rst is 0. M42, M45, M47, and M48 turn on, and the
others turn off. The node int changes to 1, and the node intb changes to 0. In the hold after
trigger state, the latch circuit keeps the int and intb voltage levels at 1 and 0, respectively.
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3.6. Nonbinary SAR ADC

The block diagram of the SAR ADC is presented in Figure 18. The SAR ADC comprises
a comparator, a clock generator, a capacitor array DAC (CDAC), and a nonbinary-to-binary
converter (NBC). The clock generator is initiated when the falling edge of the trigger
signal is reached and generates the timing clock that controls the CDAC, comparator, and
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NBC. The comparator detects the difference in voltage between the positive terminal and
negative terminal of the CDAC. The CDAC follows the signal from the clock generator
and comparator to switch the capacitors; the weight size of the capacitors is depicted in
Figure 11. The data output from the ADC to the PSSR input are 10b binary code, which is
depicted in Equation (8).

ADCOUT = 512 · d9 + 256 · d8 + 128 · d7 + 64 · d6 + 32 · d5
+16 · d4 + 8 · d3 + 4 · d2 + 2 · d1 + 1 · d0

(8)
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3.7. NBC

The NBC, illustrated in Figure 19, comprises many counters that convert the nonbinary
comparator results into binary digital code. The input of the NBC is depicted in Equation (9).
Each piece of nonbinary code can be split into binary parts; for example, 404 × b11, 248 × b10,
152 × b9, 88 × b8, 52 × b7, 20 × b5, and 12 × b4 can be split into (256 + 128 + 16 + 4) × b11,
(128 + 64 + 32 + 16 + 8) × b10, (128 + 16 + 8) × b9, (64 + 16 + 8) × b8, (32 + 16 + 4) × b7,
(16 + 4) × b5, and (8 + 4) × b4, respectively. The nonbinary code is split into binary parts.
Counters are then employed to summarize the same-order binary parts. The results of the
counter are a binary result and carry-out data. The carry-out data must be summarized
with the next-order binary code. Because the comparator results for b0 and b1 are binary,
they do not need to be converted. In the last stage, an OR gate is used to obtain a summary
of the carry-out data (denoted c72) and the carry-out data of the full adder [17].

NBCIN = 404 · b11 + 248 · b10 + 152 · b9 + 88 · b8 + 52 · b7 + 32 · b6
+20 · b5 + 12 · b4 + 8 · b3 + 4 · b2 + 2 · b1 + 1 · b0

(9)
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3.8. PSSR

Because the application has 16 channels, the area cost of the parallel-out data solution
is enormous, and the data transmission line is overly large. This study employs serial-out
data to prevent those problems. The PSSR illustrated in Figure 20 is used to convert the
data from the parallel-in to the serial-out form. An off-chip clock is required to control the



Micromachines 2024, 15, 143 14 of 21

PSSR. An AND gate and the D-flip-flops (DFFs) DF20–DF23 divide the input clock by 12,
and DF24 generates the sampling clock for loading parallel data. The NOR gate generates
the serial-out clock for off-chip digital I/O reception of serial-out data. The PSSR stores data
in parallel by using DFFs DF0–DF9 and transfers the serial-out data by using multiplexes
and DFFs DF10–DF19.
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4. Measurement Results

The designed chip is implemented with CMOS 0.18 µm 1P6M technology. A photo-
graph of the die is presented in Figure 21. The chip is 1.444 mm × 10.568 mm and contains
a 16-channel front-end readout circuit for a radiation detector. Regarding the chip’s static-
state performance, the minimum differential nonlinearity (DNL) and integral nonlinearity
(INL) of the nonbinary SAR ADC are −0.32 and −0.43 LSB, whereas the maxima of these
indicators are 0.33 and 0.37 LSB, respectively, as revealed in Figure 22. Regarding the chip’s
dynamic performance, the spurious-free dynamic range, signal-to-noise ratio, signal-to-
noise-and-distortion ratio, and effective number of bits (ENOB) of the nonbinary SAR ADC
when a 500-KHz sine signal with a 1 MS/s sampling rate is input are 68.8 dB, 57.41 dB,
57.41 dB, and 9.24 b, respectively, as detailed in Figure 23. The power consumption of the
SAR ADC is 23.5 µW. The figure of merit (FoM) is calculated using Equation (10) from [22].
The FoM of the SRA ADC is 38.9 fJ/conversion step.

FoMW =
Power

2ENOB × fSampling
J/conv. − step (10)
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The environment used for measurement in this study is depicted in Figure 24. The
input signal of the chip on board device under test is provided by a function generator. The
output signal is input to an oscilloscope. Analog power and digital power are supplied by
respective power supplies.
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Figure 24. Measurement environment.

The entire chip test is depicted in Figure 25. When the input signal rises and falls,
the trigger signal turns on and off, respectively. The serial-out data transfer the detection
result with the sampling clock and the serial-out clock. Conversion curves with different
integrated slopes are displayed in Figure 26. The maximum cover range of the peak-to-
peak current pulse is 750 µA. The resolution of the conversion curve and the minimum
coverage of testing, described in Figure 27, are 208.3 nA and 20 µA, respectively. When the
shaping time is 200 ns, the input dynamic is 2–75 pC. The nonlinearity of the conversion
curve versus the peak current in the digital output is depicted in Figure 28; the maximum
nonlinearity is 1.8%. The conversion curves of 16 channels from the input peak current to
the digital output are depicted in Figure 29. Because of the process variation of resistors
and capacitors in the integrator, the slope for each channel is different. The nonlinearity of
the aforementioned conversion curves is depicted in Figure 30. The maximum nonlinearity
is found to be 1.8%.
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The power consumption is 19 mW/channel for a 3-V supply voltage. The power
consumption of the amplifier, integrator, trigger, ADC, and PSSR is 3.14, 4.98, 8.20, 0.03,
and 0.1 mW, respectively. The proportion of power consumed by each block is depicted in
Figure 31.



Micromachines 2024, 15, 143 18 of 21

Micromachines 2024, 15, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 28. Nonlinearity of conversion curve from input peak current to digital output. 

 
Figure 29. Conversion curves of 16 channels from input peak current to digital output. 

Figure 28. Nonlinearity of conversion curve from input peak current to digital output.

Micromachines 2024, 15, x FOR PEER REVIEW 19 of 23 
 

 

 
Figure 28. Nonlinearity of conversion curve from input peak current to digital output. 

 
Figure 29. Conversion curves of 16 channels from input peak current to digital output. Figure 29. Conversion curves of 16 channels from input peak current to digital output.

The performance of the proposed design and that of other designs [11–13,23,24] are
summarized in Table 2. The number of channels in the proposed design is 16, which is
higher than the number in the previously reported designs [11,13,23,24]. The input charge
range, 2/75 pC, is larger than that in three other designs [13,23,24]. The nonlinearity of
the conversion curve, 1.8%, is smaller than that in two other designs [11,23] and close
to that in another [13]. The sampling rate per channel, 1 MS/s, is better than that in
two other designs [12,23] and the same as that in another [13]. The DNL and INL in the
present study—in the ranges −0.32 to 0.33 and −0.43 to 0.37, respectively—are better than
those in two other designs [11–13]. The resolution of the ADC, 10 b, is better than that in
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two other designs [12,13]. The ENOB, 9.24 b, is better than that in one other design [12]. The
ADC power consumption per channel, 23.5 µW, is better than that in one other design [12]
and close to that in another [13]. The FoM of the proposed ADC, 0.0389 pJ/conversion step,
is better than that in another design [12].
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Table 2. Summary of performance of proposed and other designs.

This Work [11] [12] [13] [23] [24]

Technology 0.18 µM 0.35 µM 0.18 µM 0.18 µM - 0.35 µM
Supply voltage (V) 3/1 V 3.3 3.3 1.8 ±15/3 V 5/1 V

Power per channel (mW) 19 15 15 0.02 - 30
Number of channels (unit) 16 10 64 1 1 8

Shaping time (ns) 200 280 300 100 10,000 5/10
Input charge range (pC) 2/75 2.4/104 0.48/520 0.25/17 0.01/33 0/3

Nonlinearity of converting curve (%) 1.8 <3 1.7 5 -
ADC type SAR - Pipeline Integrated SAR TDC

Sampling rate per channel (MS/s) 1 - 0.39 1 20 k
DNL of ADC (LSB) −0.32/0.33 - −0.62/0.67 −0.36/0.12 -
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Table 2. Cont.

This Work [11] [12] [13] [23] [24]

INL of ADC (LSB) −0.43/0.37 - −0.39/0.72 −0.38/0.5 -
Resolution of ADC (b) 10 - 8 8 12 40 psec

ENOB of ADC (b) 9.24 - 6.03 - -
ADC power per channel (µW) 23.5 - 390.63 20 - -

FoM of ADC (pJ/conversion step) 0.0389 - 15.303 - - -

5. Conclusions

To scale down a radiation detector such that it can be incorporated into a wearable
device, in this study, integrated circuit technology was employed to fabricate a 16-channel
front-end readout chip for such a detector, and chip performance tests were conducted. The
DNL, INL, ENOB, and power consumption of the proposed ADC are −0.32 to 0.33, −0.43
to 0.37, 9.24 b, and 23.5 µW, respectively. The resolution is 208.3 nA, and the cover range of
the input current pulse from peak to peak is 20–750 µA with multiple integrated slopes. The
equal input dynamic range is 2–75 pC, and the maximum nonlinearity is 1.8%. This chip is
suitable for use in radiation detection, the IoT, and wearable biomedical applications.
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