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Abstract: We investigated the impact of surface treatments on Si-based electrolyte-gated transistors
(EGTs) for detecting urea. Three types of EGTs were fabricated with distinct gate electrodes (Ag,
Au, Pt) using a top-down method. These EGTs exhibited exceptional intrinsic electrical properties,
including a low subthreshold swing of 80 mV/dec, a high on/off current ratio of 106, and negli-
gible hysteresis. Three surface treatment methods ((3-amino-propyl) triethoxysilane (APTES) and
glutaraldehyde (GA), 11-mercaptoundecanoic acid (11-MUA), 3-mercaptopropionic acid (3-MPA))
were individually applied to the EGTs with different gate electrodes (Ag, Au, Pt). Gold nanoparticle
binding tests were performed to validate the surface functionalization. We compared their detection
performance of urea and found that APTES and GA exhibited the most superior detection charac-
teristics, followed by 11-MUA and 3-MPA, regardless of the gate metal. APTES and GA, with the
highest pKa among the three surface treatment methods, did not compromise the activity of urease,
making it the most suitable surface treatment method for urea sensing.

Keywords: biologically active field-effect transistor; electrolyte-gated transistor; enzyme sensor; pKa;
urea detection

1. Introduction

Field-effect transistor (FET) biosensors have emerged as one of the most popular
electric biosensors, renowned for their exceptional sensitivity, rapid response times, capacity
for miniaturization, and cost efficiency [1,2]. These benefits stem from their operational
principle, which relies on the gating effect of biochemical recognition on the sensing surface.
Among FET sensors, electrolyte-gated transistors (EGTs) hold a leading position due to
their high sensitivity [3–7]. EGTs utilize the gate electrode as the sensing surface, offering a
broad sensing area and a high density of receptors, thereby achieving enhanced sensitivity.

EGTs have the potential to detect a wide range of analytes, depending on the receptors
immobilized on the gate electrode. These analytes include pH, which is crucial in biomed-
ical and environmental monitoring due to its impact on cellular function and ecological
health [8]. Antigens are another key target, particularly in immunodiagnostic applications
for detecting diseases such as COVID-19 [9]. DNA detection is essential in genetic anal-
ysis and diagnostics, aiding in disease identification and personalized medicine [10–12].
Enzyme sensors, in particular, have garnered significant attention for their various implica-
tions, such as medical diagnostics, food safety, and environmental monitoring [13–15].

In the field of enzyme sensors, enzymes serve as the bio-recognition elements, enabling
the selective detection of target analytes. The immobilization of enzymes onto the sensing
surface is a crucial step, as the immobilization process influences critical aspects such as the
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accommodation of bio-recognition elements, preservation of their activity, and resistance
against nonspecific interactions [16,17]. Therefore, in EGTs where the gate electrode is used
as the sensing surface, the selection of suitable surface treatments and gate electrodes plays
a pivotal role. Surprisingly, there have been few studies on the optimal combinations of
surface treatments and gate electrodes, leaving an ideal material or immobilization method
for biological sensing largely undefined.

To address this gap, we conducted a comparative study on surface treatment methods
and gate electrodes for detecting urea. Urea is a key indicator of renal function in medical
diagnostics, with abnormal levels indicating potential health issues [18]. We applied three
surface treatment methods ((3-amino-propyl) triethoxysilane (APTES) and glutaraldehyde
(GA), 11-mercaptoundecanoic acid (11-MUA), 3-mercaptopropionic acid (3-MPA)) to EGTs
with gate electrodes made of three different types of metals (Ag, Au, Pt), and validated
the surface functionalization using gold nanoparticles (AuNPs). Subsequently, we com-
pared the detection performance to identify the most effective immobilization method and
gate electrode.

2. Materials and Methods
2.1. Material Preparation

Urease from Jack Beans (Type III, powder, 20,000 units/g), urea (molecular biology
grade, powder), phosphate-buffered saline (PBS, pH 7.4), (3-amino-propyl) triethoxysi-
lane (APTES, 99%), anhydrous ethanol (200 proof, 99.5%), glutaraldehyde (GA, 50%),
11-mercaptoundecanoic acid (11-MUA, 98%), 3-mercaptopropionic acid (3-MPA, 99%),
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC, 98%), N-hydroxysuccinimide
(NHS, 98%), IgG from mouse serum (95%), anti-mouse IgG conjugated with AuNP, glucose,
ascorbic acid (AA), and KCl were purchased from Sigma-Aldrich (Burlington, VT, USA).
Urea and other biomolecules, such as glucose, AA, and KCl, were dissolved in the 1 × PBS
solution. We denoted the concentration of urea with pUrea (pUrea = −log10[Urea]).

2.2. Fabrication of EGTs

Using a top-down approach, the EGTs were fabricated on a silicon-on-insulator wafer
(p-type, 10 Ω·cm (100)) (Figure 1). Initially, a 140 nm-thick top silicon layer was thinned to
100 nm through thermal oxidation. The active regions (source, drain, channel) were defined
using a KrF scanner and an inductively coupled plasma reactive-ion etching (ICP-RIE)
process. To minimize etching-induced damage and serve as a blocking layer for the ion
implantation process, a 20 nm sacrificial oxide was grown using a thermal furnace. Arsenic
ions at a dose of 5 × 1015/cm2 and an energy of 60 keV were implanted into the source and
drain regions, followed by rapid thermal annealing (RTA) at 1000 ◦C for 20 s. Subsequently,
a 5 nm gate oxide layer was grown using thermal oxidation. The gate electrode and
source/drain transmission lines were formed using a lift-off process with 500 nm of Ag,
Au, or Pt. Finally, a 2 µm-thick SU-8 passivation layer was applied for electrical isolation,
except for the gate sensing area, channel, and contact pads. The passivation layer prevents
the current flow from the source and drain regions to the aqueous solution and gate region
during measurement.

2.3. Electrical Characterization

Utilizing a semiconductor parameter analyzer (Keithley 4200, Keithley, Solon, OH,
USA), the electrical characteristics were measured. The gate voltage (VG) was applied
through a buffer solution, and the drain current (ID) was measured at a constant drain
voltage (VD) of 0.1 V, with source and body voltages (VS and VB) set to 0 V. The ID–VG
characterizations were conducted after a 10 min exposure of the 20 µL target solution. ID
was restricted to 10−7 A to prevent device degradation during the characterization.
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Figure 1. Fabrication and characterization steps of the Si-based electrolyte-gated transistor (EGT).

2.4. Functionalization of EGTs

Three distinct materials were employed for the immobilization of urease on EGTs, as
listed in Table 1. For the surface treatment using APTES and GA, a UV/ozone treatment
with an intensity of 200 µW/cm2 for 90 s was initially conducted on the device. After
exposure to APTES at 55 ◦C for 1 min, the device was rinsed with anhydrous ethanol and
immersed in a 2.5% GA solution (1 × PBS, pH 7.4) for 90 min. Then, it was washed with
1 × PBS and DI water (DIW) and dried using N2 blowing. The ethoxy group (OCH2CH3–)
of APTES bound onto the gate electrode, and the remaining amine group (NH2–) coupled
with the aldehyde group (CHO–) of GA, which can bind to urease. Conjugate length of
APTES and GA was 1.5 nm [19,20]. The pKa values of APTES and GA are both 10 [21,22],
which indicates minimal impact on the pH of the buffer.

Table 1. Materials employed for urease immobilization and their characteristics.

Functional Group
Material Binding with Gate Binding with Receptor

Length pKa

APTES and GA [19–22] Ethoxy group
(OCH2CH3–)

Amine group
(NH2–) 1.5 nm 10

11-MUA [23–27] Thiol group
(SH–)

Carboxyl group
(COOH–) 1.6 nm 6.5

3-MPA [28,29] Thiol group
(SH–)

Carboxyl group
(COOH–) 0.6 nm 5.2

11-MUA is a widely-used substance for metal binding [23–25]. The thiol group (SH–)
of 11-MUA binds to the gate metal, and the remaining carboxyl group (COOH–) attaches
to urease. The length of 11-MUA is 1.6 nm [26], and its pKa is 6.5 [27], which is lower
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than that of APTES and GA. This lower pKa is attributed to the low affinity of COOH– for
hydrogen ions (H+), facilitating easy dissociation.

The final material employed was 3-MPA, which binds to metals through the thiol
group (SH–) and attaches to urease via the carboxyl group (COOH–) in the same manner
as 11-MUA. The length of 3-MPA is 0.6 nm [28], the shortest among the three surface
modifications, and its pKa of 5.2 [29] is even lower than that of 11-MUA.

The surface treatments for 11-MUA and 3-MPA were similar, as follows. Initially, the
devices were immersed in a 20 mM solution of 11-MUA or 3-MPA in an ethanol base for
18 h. Then, the devices were rinsed with ethanol and DIW and dried with N2 blowing.
Subsequently, the devices were incubated in a solution containing 20 mM EDAC or 20 mM
NHS in a 1 × PBS base for 1 h to activate 11-MUA or 3-MPA, respectively. Finally, the
devices were rinsed with 1 × PBS and DIW and dried with N2 blowing. After the surface
treatments described above, a urease solution (10 mg/mL, 1 × PBS, pH 7.4) was applied to
those devices for 18 h at 4 ◦C in a humid environment, followed by rinsing with 1 × PBS
and DIW and drying with N2 blowing.

AuNP binding tests were performed to evaluate the surface functionalization for
different gate materials. A solution of mouse IgG (1 mg/mL, 1 × PBS) was applied to the
devices in a humid environment at 4 ◦C for 18 h, rinsed with 1 × PBS and DIW, and dried
with N2 blowing. Then, a solution of anti-mouse IgG conjugated with AuNP of 10 nm
diameter was applied to the metal for 30 min, rinsed, and dried. The binding of AuNPs was
examined using scanning electron microscopy (SEM). As shown in Figure 2, the average
densities of AuNPs were in the ranges of 450~550 µm2 for different surface treatments
and gate metals. Each data point corresponds to the average measurement obtained from
five samples.
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Figure 2. (a) Scanning electron microscopy (SEM) images and (b) the density of AuNPs immobilized
on Ag, Au, and Pt metals for different surface treatments.

3. Results and Discussion
3.1. Intrinsic Electrical Characteristics

Figure 3 shows the intrinsic transfer curve (ID vs. VG) for EGTs with different gate
metals. Regardless of the gate metal, these devices exhibit outstanding characteristics,
including a low subthreshold swing (SS) of 80 mV/dec, high on/off current ratio of 106,
and negligible hysteresis of less than 10 mV. The threshold voltage (VTH) is characterized as
low as 0.55 V for Ag, 0.65 V for Au, and 0.7 V for Pt, respectively, which is mainly attributed
to the metal work–function difference [30].
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3.2. Urea Sensing Characteristics

Figure 4 shows the real-time responses for urea with urease-functionalized EGTs for
600 s. Compared with the negative samples (1 × PBS without urea, half-empty symbols),
those exposed to a urea solution (pUrea 0.5, filled symbols) decrease monotonously and
then saturate.
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Figure 4. Real-time responses for detecting urea (pUrea 0.5) in urease-functionalized electrolyte-gated
transistors (EGTs) using 3-amino-propyl) triethoxysilane (APTES) and glutaraldehyde (GA). The
normalized drain current (ID, norm) was characterized at a fixed VG of 0.3 V and VD of 0.1 V. ID, norm

represents the ratio of ID to ID0, where ID0 denotes the initial ID measured at t = 0 s.
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The voltage-related response (RV) and the current-related response (RI) are defined as
follows [15,31,32]:

RV = VG1 − VG0, (1)

RI =
ID0 − ID1

ID1
, (2)

where VG0 and VG1 represent gate voltages at a fixed ID0 of 3 nA before and after the
reaction, respectively. ID0 and ID1 represent drain currents at a fixed VG0 of 0.3 V before
and after the reaction, respectively.

Figure 5 illustrates the correlation between RV and pUrea based on three surface
treatment methods (APTES and GA, 11-MUA, 3-MPA) for EGTs with three gate metals
((a) Ag, (b) Au, (c) Pt). Each point represents the average of five different devices. In all
conditions, it can be observed that as the urea concentration increases, the signal amplifies
until reaching saturation. Regardless of the gate metal, a similar trend of higher RV values
in the order of APTES and GA, 11-MUA, and 3-MPA was observed.

Figure 6 presents the extracted metrics from the RV vs. pUrea results of Figure 5.
Figure 6a represents the RV,max, which is defined as the maximum value from the fitted
curve. Figure 6b shows the urea sensitivity related to RV (SV), determined by the slope
of the logistic-fitted line of RV [15]. Figure 6c depicts the limit of detection (LOD) of RV,
defined using the 3σ method from the logistic trend line [33]. It can be observed across all
metrics (RV,max, SV, LOD) that APTES and GA exhibits the most superior characteristics,
followed by 11-MUA and 3-MPA, regardless of the metal type.
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Figure 5. RV vs. pUrea based on three surface treatment methods (APTES & GA, 11-MUA, 3-MPA)
with EGTs featuring (a) Ag, (b) Au, and (c) Pt gate metals. The solid curves represent logistic fitted
lines.

Figure 7 illustrates the correlation between RI and pUrea based on three surface
treatment methods (APTES and GA, 11-MUA, 3-MPA) for EGTs with three gate metals ((a)
Ag, (b) Au, (c) Pt). Each point represents the average of five different devices. Regardless of
the gate metal, a similar trend of higher RI values in the order of APTES and GA, 11-MUA,
and 3-MPA was observed.

Figure 8 presents the extracted metrics from the RI vs. pUrea results of Figure 7.
Figure 8a, Figure 8b, and Figure 8c depict RI,max, urea sensitivity related to RI (SI) and LOD,
respectively, based on the gate metal and surface treatment method. Consistent with the
extraction based on RV, it can be observed across all metrics (RI,max, SI, LOD) that regardless
of the metal type, APTES and GA exhibits the most superior characteristics, followed by
11-MUA and 3-MPA.
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Figure 6. (a) RV,max, (b) SV, and (c) limit of detection (LOD) based on three surface treatment methods
(APTES and GA, 11-MUA, 3-MPA) and three gate metals (Ag, Au, Pt) extracted from RV vs. pUrea
relationship in Figure 5.
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Figure 7. RI vs. pUrea based on three surface treatment methods (APTES and GA, 11-MUA, 3-MPA)
with electrolyte-gated transistors (EGTs) featuring (a) Ag, (b) Au, and (c) Pt gate metals. The solid
curves represent logistic-fitted lines.
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Figure 8. (a) RI,max, (b) SI, and (c) limit of detection (LOD) based on three surface treatment methods
(APTES and GA, 11-MUA, 3-MPA) and three gate metals (Ag, Au, Pt) extracted from RI vs. pUrea
relationship in Figure 7.
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Tendency observed among surface treatment materials stems from the relationship
between their respective pKa values and urease activity. The activity of all enzymes,
including urease, varies with pH. The jack bean urease used in this study exhibits maximum
activity at pH 7.5, decreasing as the pH decreases [34]. Both 11-MUA (pKa 6.5) and
3-MPA (pKa 5.2) possess carboxy terminals (COOH–), making them prone to the easy
decomposition of H+ ions, thus acidifying the surrounding solution (Figure 9). This acidity
diminishes the activity of urease, consequently reducing the signal magnitude [35]. In
contrast, APTES and GA (pKa 10) feature amine terminals (NH2) that resist the release of
H+ ions, thus having minimal influence on the solution’s pH. Consequently, using APTES
and GA does not compromise urease activity, making it the most suitable surface treatment
method for urea sensing.
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Figure 9. Schematic image of urease immobilized on the gate electrode using 11-MUA or 3-MPA. The
carboxyl terminals decompose H+ ions, thereby lowering the pH of the surrounding electrolyte.

3.3. Selectivity Test

To demonstrate the specific detection of urea, a selectivity test was conducted
(Figure 10). Each data point corresponds to the average measurement obtained from
five devices. The immobilization of urease was carried out using APTES and GA, which
was identified as the most effective surface treatment method. For reacting substances
commonly found in blood vessels, such as glucose, ascorbic acid, and KCl, only RV values
smaller than 10 mV were observed regardless of gate metals (Ag, Au, Pt). Additionally,
when a high concentration (316 mM) of urea was reacted with the EGTs without urease
immobilization, the resulting RV was less than one-third of the value observed when re-
acting with a 100 times lower concentration (3.16 mM) of urea on the EGTs with urease
immobilization. This confirmed the successful immobilization of urease on the EGTs and
reiterated the specific detection of urea through the reaction between urease and urea using
all gate metals (Ag, Au, Pt).
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and KCl (10 mM) with urease functionalized electrolyte-gated transistors (EGTs), and RV for urea
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4. Conclusions

We conducted a study on the impact of surface treatment for detecting urea on EGTs
with different gate electrodes. Using AuNPs, we confirmed the effective immobilization
of urease on Ag, Au, and Pt gate metals using APTES and GA, 11-MUA, and 3-MPA.
Upon testing the signal responses for urea on the three metals with the three surface
treatment methods, we found that APTES and GA consistently exhibited superior detection
performance, irrespective of the metal used. This was attributed to the acidic nature of
11-MUA and 3-MPA, which reduced urease activity. Furthermore, it is known that not only
urease but all enzymes have their optimal pH range; we anticipate that the same principles
can be applied to other enzyme-based sensors.
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