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Abstract: Micro-scale positioning techniques have become essential in numerous engineering systems.
In the field of fluid mechanics, particle tracking velocimetry (PTV) stands out as a key method for
tracking individual particles and reconstructing flow fields. Here, we present an overview of the
micro-scale particle tracking methodologies that are predominantly employed for particle detection
and flow field reconstruction. It covers various methods, including conventional and data-driven
techniques. The advanced techniques, which combine developments in microscopy, photography,
image processing, computer vision, and artificial intelligence, are making significant strides and will
greatly benefit a wide range of scientific and engineering fields.

Keywords: micro-scale positioning; particle tracking velocimetry; fluid mechanics; data-driven
method; deep learning; neural networks.

1. Introduction

In the rapidly evolving landscape of technology, the demand for precise and efficient
positioning techniques has become increasingly paramount, especially in the realm of
micro-scale applications. Micro-scale positioning involves the precise identification and
tracking of particles, objects, or devices at a small scale, often ranging from one hundred
nanometers to a few millimeters. This specialized field is integral to numerous cutting-edge
technologies, including micro-electromechanical systems (MEMS), biomedical devices, and
miniature sensors. The development and refinement of micro-scale positioning techniques
have far-reaching implications, offering solutions to challenges in fields such as healthcare,
robotics, and telecommunications.

At the center of positioning techniques are the locating tasks, which are aimed to obtain
the accurate location information of the interest targets, such as cells, tracers, droplets, and
particles. Characterizing the single and collective motion of tracer particles is essential
for reconstructing flow fields and their properties. Particle tracking velocimetry (PTV), a
powerful non-intrusive technique that uses a Lagrangian approach by tracking individual
particles in consecutive images with sufficiently short time separation, is introduced to
tackle this task. This article does not cover other image-based techniques like particle image
velocimetry (PIV), which use the Eulerian approach. In PTV, accuracy is typically defined
as how closely the reconstructed particle locations, trajectories, or flow properties match
the ground truth. This is measured using quantitative metrics such as root-mean-square
(RMS) error, mean squared error (MSE), and signal-to-noise ratio (SNR), which evaluate
deviations in pixel values, particle displacements, and flow statistics.

Over the last few decades, the development of particle tracking velocimetry (PTV)
has evolved into multiple types, including scanning PTV [1,2], defocusing PTV [3], to-
mographic PTV [4–8], and various other variants [9–13]. Distinct developments include
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single-view [14] and multi-view strategies, such as stereo-PTV [15–18]. In addition to
advancements in measurement, particle linking has been explored to reduce computa-
tional time and increase particle density. Inspired by the tomographic method [4] and
iterative particle reconstruction [19], ‘Shake-The-Box (STB)’ [20,21] has been successful in
detecting and monitoring individual particles under high particle image densities, with
particle counts ranging from tens to hundreds of thousands per time interval. Noteworthy
progress in micro-scale PTV (µPTV) includes confocal microscopy [22–25], defocusing-
based approaches [26–28], stereomicroscopy [29,30], and synthetic aperture refocusing
methods [31,32]. In addition, significant advancements have been made using single
cameras with the plenoptic method (also called light field) [33–35].

Traditional PTV methods have laid a solid foundation for Lagrangian description
by tracking individual particles through a flow field. Building on this foundation, recent
advances have integrated cutting-edge artificial intelligence technologies, significantly
expanding the capabilities and applications of PTV. The advent of data-driven PTV har-
nesses the power of machine learning to enhance analysis and interpretation. Examples
of such advancements include PTV using shallow neural networks [36], DeepPTV [37],
PINN-augmented PTV [38], LSTM-enhanced PTV [39], and stochastic particle advection
velocimetry (SPAV) [40], among others. Each of these approaches offers unique advantages
in terms of accuracy, processing speed, and the ability to handle complex flow scenarios.
Hybrid methodologies that combine conventional tracking with AI techniques represent
a significant leap forward, opening new avenues for research and application in particle
dynamics. A generic illustration of both conventional and data-driven methods of PTV is
shown in Figure 1.

Figure 1. (a) General schematics of conventional macro-scale and micro-scale PTV (not showing
reconstruction process). (b) A typical pipeline of data-driven PTV methods.

This article aims to provide an overview of various particle tracking techniques
complemented with flow reconstruction methods, both conventional and data-driven,
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particularly applicable at the micro-scale. The general features of PTV across a variety of
scales are discussed, given their applicability at the micro-scale.

2. Conventional Micro-Scale Particle Tracking
2.1. Basics for Micro-Scale Particle Tracking Velocimetry (µPTV)

The typical 3D particle tracking process, as outlined in Schröder and Schanz [41],
involves capturing images simultaneously from single or multiple camera (or view) per-
spectives. The identification of pixels that display peak intensity values occurs within each
image on every camera. The extension of lines-of-sight (LOS) for these peak pixels into the
targeted volume is accomplished through the application of 3D camera calibration. The
accurate determination of a particle’s 3D position relies on the intersection of LOS from
identified particle image peaks across different cameras, maintaining an acceptable triangu-
lation error threshold of approximately 1 pixel. The 3D positions of particles are stored in a
list, instead of being represented in voxel intensity distributions. Subsequent stages include
the reconstruction of sets of 3D particle positions for each time step by incorporating all
detected peaks across cameras. A tracking algorithm is then deployed to ensure consistent
identification of the same imaged particle throughout the corresponding timeline of 3D
particle reconstructions. This tracking process serves to systematically construct extended
and detailed 3D particle trajectories. More detailed information on µPTV principles can be
found in, e.g., Ponchaut et al. [42] and Dabiri and Pecora [43].

2.2. 3D Particle Identification and Reconstruction: Hardware and Algorithms

Conventional PTV technology has seen significant development in hardware and
software. We briefly highlight several milestone breakthroughs on 3D particle tracking
applicable to micro-scale measurements.

2.2.1. Holographic Particle Tracking

A single camera holography is based on the interference between light scattered from
objects and reference light to encode depth information into holograms. Progress in high-
power laser technology and distinct off-axis reference wave accelerated this development.
Standard practices involve the use of photo-refractive and other nonlinear optics materials
to record holograms.

The use of advanced image processing and decoding methods, such as encryption,
pattern recognition, associative memory, and neural networks [44], facilitates the feasibility
of real-time holographic recording and reconstruction [45,46]. Through the fusion of
diffractive holography and digital encoding/decoding methods, a digital holographic
microscope (DHM) has been developed. It is also employed for measuring 3D velocity
fields and 3D particle tracking. In DHM, the holographic images of tracer particles in a flow
are captured directly using a digital image recording device. Furthermore, to overcome the
comparatively low spatial resolution induced by pixel size limitations, in-line DHM was
developed by using in-line digital holography [47]. As a result, the DHM-PTV technique is
a robust method to measure 3C-3D velocity field information of a microscale flow with a
reasonable spatial resolution [48].

2.2.2. Confocal Microscopy

Confocal microscopy (Figure 2) employs selective exclusion of light outside the micro-
scope’s focal plane to produce sharp images of a specimen, reducing haze and improving
contrast compared to conventional microscopy. This technique captures multiple cross
sections of investigation volume, allowing for better observation of fine details. Finally, by
assembling a series of thin slices along the vertical axis, confocal microscopy enables the
construction of three-dimensional reconstructions of the target [49,50].
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Figure 2. Schematics of the generic working principle of a confocal microscope. Adapted from
Semwogerere and Weeks [50].

Confocal microscopy has also been applied to particle tracking [51–53]. One repre-
sentative example is the confocal laser scanning microscopy (CLSM) [54,55]. The basic
principle of CLSM involves the point-scanning of the laser excitation and the spatially
filtered fluorescence signal emitted from the focal point onto the confocal point. Compared
to conventional microscopy, CLSM offers the advantage of providing clear images for
identifying particle positions within each slice or focal plane. This is due to the ability of
the confocal microscope to exclude out-of-focus light, resulting in improved image clarity
and enhanced visualization of specimen details. However, image degradation near the
edges of microtubes is a potential issue due to increased lens effects and internal reflections,
particularly in regions with significant velocity changes.

The effectiveness of optical slicing in CLSM may diminish with lower magnification
and numerical aperture objectives. Challenges may also arise in compensating for refractive
index mismatches and correcting curved image planes, especially in cases with thicker and
more curved microtube walls. The velocity of tracer particles in CLSM is constrained by the
scanning speed, given its reliance on the scanning frequency. The scanning speed of CLSM
is also limited by the galvanometric steering no more than 1 fps, requiring innovative
designs to enhance scanning rates for future microfluidic applications with higher velocity
ranges. Furthermore, the relatively low exposure time for each slice requires very high-
power illumination, which may not be suitable for live microorganism tracer tracking, as it
could potentially harm the organisms under observation.

2.2.3. Structured Illumination Microscopy

When conducting micro-scale particle tracking through microscopy, the spatial resolu-
tion of particle reconstruction may be influenced by signals from tracer particles outside
the focal plane, particularly in the case of relatively thick microchannels. The presence
of a strong background signal is a significant bottleneck for 3D micro-particle tracking
methods based on volumetric illumination. Structured illumination microscopy particle
tracking velocimetry (SIM-PTV) has the capability to eliminate a substantial portion of the
background signal by employing non-zero spatial frequency illumination. This approach
prioritizes the illumination of in-focus particles by combining two such images captured by
a double-exposure SIM. The standard deviations in the SIM-PTV are roughly 55%, which
is lower compared to the volumetric illumination PTV. The velocity error in SIM-PTV is
about 5%, contrasting with roughly 20% in volumetric illumination PTV [56,57].

2.2.4. Tomographic PTV

Elsinga et al. [4] presented a tomographic technique (see Figure 3), which is designed
to provide instantaneous 3D velocity field measurements, making it suitable for analyzing
flows in various regimes and irrespective of flow speed. The tomographic approach
operates on several core principles, revolving around the illumination, recording, and
reconstruction of tracer particles within a three-dimensional measurement volume. This
technique relies on optical tomography and simultaneous views of illuminated particles
and their subsequent 3D reconstruction to form a light intensity distribution in a multi-
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camera system. The original reconstruction process results in a discretized 3D array of
light intensity across voxels by employing the multiplicative algebraic reconstruction
technique (MART) algorithm [58], which is an iterative approach used in medical imaging
to reconstruct high-quality images from projection data by iteratively updating an initial
image estimate using a multiplicative correction factor. Tomographic PIV uses direct cross-
correlation to calculate the velocity vector field; however, in tomographic PTV, 3D particle
locations need to be captured and utilized through the identification and pairing process [6].
The identified 3D positions of particles are sequentially connected frame by frame to deliver
instantaneous 3D velocity field measurements and particle trajectories. The tomographic
system is versatile, capable of analyzing flows across various regimes and regardless of
flow speeds.

Figure 3. Typical procedure of tomographic PTV. Adapted from Elsinga et al. [4].

Despite its capabilities, tomographic measurement does have limitations, particularly
with regard to the complexity of the reconstruction process and the sensitivity to the setting
parameters [4]. One key challenge arises from the fact that a single set of projections
can correspond to multiple potential 3D objects, making it difficult to ascertain the most
probable 3D particle distribution from the reconstructions. In addition, the accuracy of the
reconstruction is influenced by various factors, such as the number of viewing directions,
particle seeding density, the precision of the calibration (preferably within approximately
0.4 pixels), and the presence of image artifacts [4]. These factors collectively affect the
reliability and precision of the reconstructed data, highlighting important considerations
for the implementation and interpretation of tomographic PTV measurements.

2.2.5. Iterative Particle Reconstruction (IPR)

Wieneke [19] proposed ’iterative particle reconstruction’ (IPR), which aims to track the
motion of illuminated particles in space and time by comparing images with projections cal-
culated from the particle distribution in the volume. Unlike voxel representation techniques
like MART, IPR updates both particle position and particle intensity. The algorithm itera-
tively updates and corrects the particle distribution in the volume, offering advantages over
single-pass techniques (MLOS [59] and 3D PTV). IPR has shown better performance for
seeding densities up to 0.05 ppp, with lower particle position error compared to the MART
technique. Also, IPR shows potential for dealing with non-uniform imaging conditions, in-
corporating locally varying optical transfer functions (OTFs, a variant of Fourier transform
used in imaging systems to analyze spatial frequencies) to improve results. The algorithm
shows promise for advanced time-series analysis with Lagrangian particle tracking, offering
potential for improved particle reconstruction using time-coherence constraints.

However, IPR faces various challenges, being the most critical its tendency to deviate
strongly from the true particle distribution at sufficiently high seeding densities [19]. It may
also result in the selection of fewer particles and higher particle intensity, consequently
increasing the occurrence of ghost particles. The convergence of IPR is challenged above
0.05 ppp when multiple 3D distributions of particles are consistent with the recorded
images. This limitation affects the reliability of the method for higher seeding densities.
Furthermore, the method’s performance may be affected by non-uniform imaging condi-
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tions, such as astigmatism or defocusing effects, which can compromise the sharpness of
particle images in certain regions of the domain.

2.2.6. A 4D PTV Approach: ‘Shake-The-Box’ (STB)

The classical tomographic PIV/PTV has limitations such as the measurement error of
velocity vectors introduced by ghost particles, the particle location error brought by the
discretized voxel space, and the demanding requirement on computational and memory
resources [21]. The 3D PTV with IPR [19] improves the working threshold of particle image
density to 0.05 ppp by ‘shaking’ the particle to reach a local minimum residual. However,
both methods still cannot eliminate the influence caused by ghost particles, (spurious
particles or image artifacts that can corrupt the velocity measurements) because of their
overlooking on the prior knowledge of previously analyzed image data.

Schanz et al. [21] introduced the so-called ‘Shake-The-Box’ (STB) that uses the inter-
correlation of temporal and spatial information and leverages extrapolation of known
particle trajectories to better estimate the particle distribution. The typical tracking-
reconstruction process is reversed into a prediction-identification sequence. The anticipated
particle distribution serves as an initial input for the IPR process. This process initially
rectifies prediction errors and subsequently identifies new particles not currently tracked.
The outcome is an efficient method for swiftly handling 3D data with elevated particle
concentrations. This method effectively captures the actual particles and minimizes the
generation of ghost counterparts [21].

There have been many advancements based on the STB concept. Recently, Tan et al. [60]
shared an open-source OpenLPT package, which successfully reduced the ghost particles by
roughly 80% at 0.125 ppp. Jahn et al. [61] revised the IPR by increasing the particle image
density threshold by 3 times particle image densities, and improved speed, accuracy, and
robustness against image noise while maintaining low computational costs. A new Two-Pulse
Shake-The-Box (TP-STB) scheme was introduced by Novara et al. [62]. An application of this
approach in a micro flow through porous media was described in Bagheri and Mirbod [63].

2.2.7. Particle Tracking with Plenoptic Imaging

The plenoptic (light field) camera is built upon the concept of plenoptic functions,
which parameterize the light field into a 5D function that encodes the position and direction
of each light ray. Therefore, a single camera can capture the 3D information of objects with
a plenoptic encoding format [64]. In general, plenoptic imaging requires a microlens array
(MLA) mounted closely to the camera sensor (with a distance of the MLA focal length).
The MLA is typically a square glass substrate covered by N × N (N is usually hundreds)
small polymer lenses of 100 to 1000 µm in radius.

Lynch et al. [33] first applied a single light field camera for 3D-3C particle image
velocimetry (LF-PIV). Fahringer et al. [34] upgraded the previous work by adopting the
multiplicative algebraic reconstruction technique (MART) [58]. However, these methods
rely on iterative calculations to optimize, which consume a significant amount of compu-
tational time (typically on the order of 1/2 h) and resources [34], which is not efficient
considering the typical amount of images produced in an experiment.

Hong and Chamorro [35] developed a GPU-accelerated non-iterative algorithm for
LF-µPIV/PTV integrating ray-tracing, kd-tree search, cloud point classification, and density-
based spatial clustering of applications with noise (DBSCAN) and reducing the processing
time under 100 ms. The non-iterative method recovers 3D rays based on pixel coordinates
on the sensor plane and corresponding lenslet center position on the MLA plane, as shown
in the schematics of Figure 4. Then, by reconstructing the light rays with the intersection
information and elongating these rays into the measurement volume, the intersection
points (voxels) where the real particles are most likely to be are determined. However, the
3D reconstruction on particles located near the focal plane and high velocity flow field near
the center of the camera view slightly depart from the ground truth. The reconstruction
accuracy may also be affected if the MLA plane is too close to the camera sensor, leading
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to the suggestion of using MLA with shorter focal length at the cost of depth of view.
Later, Gu et al. [65] considered the diffraction issue neglected by geometrical optics in
microscopes and improved the reconstruction efficiency with a low-rank decomposition-
based deconvolution (LRDD) method. They also proposed a cross-validation matching
(CVM) algorithm [66] to improve the performance of LF-µPIV/PTV under high particle
image density conditions.

Figure 4. Illustration of the experimental setup of LF-µPIV/PTV. Adapted from Hong and
Chamorro [35].

2.3. Key Takeaways from Conventional Methods

Conventional techniques for particle tracking and flow reconstruction have proven
highly applicable across various scenarios. Depending on specific working conditions,
different techniques are favored; see Table 1. Tomographic-based approaches and its
variants remain prevalent for large-scale tracking tasks. Under high seeding densities, STB
is commonly employed. At micro-scale with single-camera setups, due to space constraints,
LF-µPIV/PTV is preferred. Confocal microscopy and structured illumination techniques
are adopted when spatial resolution and denoising are critical. In some cases, further
denoising and distortion/aberration correction procedures [67–76] are adopted to augment
the data and obtain more reliable results.

Table 1. A summary of four noteworthy 3D PTV methods.

Approach Features Advantages Disadvantages Literature

(Digital) Holographic
Records the interference
pattern of light scattered

by objects (hologram)

Single camera; suitable for
limited space experiments

Slower processing speed compared to
tomographic methods; low particle

density; additional light source required
[45–48]

Confocal

Confocal microscopy
performs fast scanning

across various
depth planes

Single camera; high
resolution; high
particle density

Slow capture speed limits ability to track
slow-moving particles; specialized

microscopy equipment required
[22–25]

Tomographic
Multiple cameras capture
images of tracer particles

from different angles

High resolution; high
particle density;

time-resolved tracking

Complex calibration and limited flexibility
in micro-scale settings due to space

constraints; high equipment cost (multiple
cameras and synchronizers)

[4–8]

Light Field (Plenoptic)
Allows post-capture

synthetic refocusing; uses
micro-lens arrays (MLAs)

Single camera;
pre-calibrated; high

processing speed

Low particle density; intense illumination
needed; varying micro-lens arrays (MLAs)
required for different particle sizes; high
computational cost for 3D reconstruction

[33–35,64–66]

Standard methods for particle tracking have demonstrated versatility and adaptability
to diverse experimental setups. There are various avenues for improvements. For example,
advancements in illumination instrument and imaging technology could enhance spa-
tial resolution and reduce noise, enabling more accurate and detailed particle tracking in
challenging environments. Improvements in computational algorithms and processing
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techniques could optimize particle identification, tracking, and 3D reconstruction, par-
ticularly in scenarios with high particle densities, limited viewing spaces, or complex
flow patterns. Among these, the integration of machine learning and artificial intelligence
approaches (i.e., data-driven methods) could further enhance the overall efficiency and
accuracy of particle tracking algorithms by automating manual processes and enabling
real-time tracking in dynamic environments. This is discussed next.

3. Artificial Intelligence Augmented Particle Tracking
3.1. Data-Driven Particle Tracking and Associated Flow Reconstruction

The amount of image data produced by PTV makes it highly suitable to adopt data-
driven approaches to upgrade or replace conventional particle tracking and flow reconstruc-
tion algorithms. Base work [77–79] leveraged multilayer shallow neural networks (SNNs)
to fix particle matching issues. Recent efforts also involve SNNs to improve the overall
quality of flow reconstruction [36,38]. Recent breakthroughs in deep learning and convolu-
tional neural networks (CNNs) has showed their transferability from traditional computer
vision tasks to PIV/PTV applications. This synergy between data-driven approaches and
PTV presents a significant advantage, particularly in micro-scale particle tracking.

Newby et al. [80] proposed a three-layer CNN to automatically locate submicro-scale parti-
cles from 2D/3D videos. Liang et al. [81] proposed a novel graph neural network model called
GotFlow3D to estimate fluid motion from consecutive particle images. Dreisbach et al. [82] im-
proved the successful rate of particle detection in defocusing PTV, even for overlapped parti-
cles and under aberration and uneven illumination conditions. Sax et al. [83] investigated a
new hybrid method to improve existing defocusing PTV techniques, which combines Faster
R-CNN [84] with a simple maximum intensity detection algorithm, outperforming both
neural networks and traditional detection algorithms. Franchini and Krevor [85] improved
3D particle localization in astigmatic optical systems using an LSTM-CNN model, achieving
high accuracy and robustness, especially for overlapped and low-intensity particles, at an
overall accuracy above 90%. Liang et al. [86] proposed a two-stage double-CNN-involved
pipeline to segment and identify particles on the sub-pixel level. For flow visualization
and velocity field reconstruction, there are some emerging methods: reconstructing 2D
time-varying flow fields with particle tracing and Lagrangian representations [87,88], using
deep learning to reconstruct vector fields from streamlines [89,90], and with no parti-
cles involved but purely applying a hybrid neural network (HyFluid) to process sparse
multi-view videos and infer fluid density and velocity fields [91–93]. Other than neural
network models, transformer models [94,95] are also becoming widely used in the domain
of complex flow prediction. Another novel method called Kernelized Lagrangian particle
tracking (KLPT) [96] integrates the kernel trick with data assimilation to obtain the optimal
mapping function.

The integration of data-driven methods and particle tracking with flow reconstruction
aims to address the inherent challenges faced by conventional techniques, offering promis-
ing solutions in fluid dynamics research. Here, we illustrate various representative learning
regimes and examples on how data-driven methodologies have augmented the micro-scale
particle tracking and flow reconstruction, extending them into a broader application regime.

3.2. Shallow Neural Networks-Assisted Particle Tracking

A shallow neural network (SNN) is characterized by its relatively small number of
layers, making its structure simpler and more concise compared to deep neural networks
(DNNs). Despite its simple architecture, SNNs have proven to be remarkably effective in
certain tasks, as demonstrated in, e.g., Gim et al. [36] and Wang et al. [38], who successfully
reconstructed three-dimensional particle positions with high accuracy. This efficiency stems
from the reduced computational complexity of SNNs, allowing for faster processing times
without sacrificing performance. By leveraging fewer weights and layers, SNNs offer a
streamlined approach to neural network modeling, particularly advantageous in scenarios
where computational resources are limited or where rapid inference is likely crucial.
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3.2.1. Real-Time 3D Particle Tracking with a Two-Layer Neural Network

Gim et al. [36] demonstrated that using a two-layer shallow neural network (see schemat-
ics of Figure 5) can significantly drop the computational load in obtaining the mapping func-
tions but still reach high accuracy for stereoscopic 3D particle tracking. They used simulated
particles, positioned randomly or flowing, to record their 3D locations as the ground truth
data for training. The numerical evaluation on the reconstruction algorithm across different
mesh resolutions showed that the errors were reasonable. Also, they validated the SNN
algorithm by measuring the Marangoni mixing and bursting flow of a mixture droplet (water
and 50 wt% ethanol) during evaporation. A stereo-camera system was built to record the
ground truth images. The reconstruction on 1000 particles took around 0.5 s, with 99.9% of
particles successfully matched in their positions; the reconstruction time on the velocity field
was approximately a few seconds with negligible error, which makes real-time accurate flow
reconstruction possible. They obtained flow velocities of much higher magnitudes compared
to the results reported in the previous literature, which revealed that the previous results
were underestimated. This method shows the potential of deploying neural network models
to achieve real-time flow field reconstruction and measurement.

Figure 5. The structure of the suggested two-layer shallow neural network. The first layer uses sigmoid
as the activation function; the second layer only has linear mapping. Adapted from Gim et al. [36].

3.2.2. Flow Velocity Reconstruction by Physics-Informed Neural Networks

A physics-informed neural network (PINN) is a variant of neural networks that em-
beds prior knowledge of physical laws and equations governing certain physical processes
into model training. Therefore, even with a low amount of training data, an optimized
solution aligning the underlying physical mechanism can be found.

Recently, Wang et al. [38] leveraged PINNs to approximate velocity and pressure fields
in high resolution. The prior knowledge on the Reynolds number and the Navier–Stokes
equations serves as the regularization term in the loss function. The dataset included
velocity and pressure data from experimental measurement and analytical solutions, DNS
data, and particle images obtained by a time-resolved tomographic PIV/PTV. A simulation
on 2D Taylor’s decaying vortices is used to test layer sizes, activation functions, and
optimizers. A numerical wall-bounded turbulent flow at Reτ = 550 was applied to evaluate
the overall performance of the proposed PINN. Velocity reconstructions by the PINN on
sparse experimental data outperform those by the tomographic PIV/PTV in a 3D wake flow
of a hemisphere but miss the small-scale vortical structures in the DNS data. Pressure fields
can be reconstructed with larger error (about one order bigger of magnitude) compared to
the error in velocity fields.

However, reconstructing inhomogeneous and anisotropic fields is still challenging for
the PINN at the current stage. The relatively low converging speed is another important
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issue. Due to the noise brought by spatial cross-correlation in the PIV algorithm, the
authors conclude that PINNs can achieve better performance with data of high quality and
resolution obtained from PTV instead of PIV.

3.3. Deep Neural Networks-Assisted Particle Tracking

Deep neural networks (DNNs), particularly the convolutional neural networks (CNNs),
have become the popular mainstream techniques when it comes to image processing and
computer vision in deep learning.

Models built upon DNNs or CNNs typically consist of dozens to hundreds of hidden
layers to perform highly complicated linear and nonlinear transformations. Although
they need significantly larger memory storage and exhibit substantially more complex
structures compared to SNNs, they also offer unparalleled performance in tasks such as
image classification, object detection, and segmentation. One of the key reasons behind their
success is their ability to automatically learn hierarchical representations of data, starting
from low-level features like edges and textures and gradually progressing to more abstract
and high-level concepts. This hierarchical feature learning enables CNNs to effectively
capture intricate patterns and variations within images, making them robust to changes in
lighting, viewpoint, and occlusion.

3.3.1. Long Short-Term Memory-Based Recurrent Prediction on Particle Locations

Mallery et al. [39] introduced a data-driven method for dense particle tracking using a
learning predictive model, aiming to address the limitation of particle velocity resolution
encountered by traditional methods. They proposed a model (Figure 6) based on a Long
Short-Term Memory (LSTM) recurrent neural network [97], which can accurately predict
the future velocity of particles based on their past positions. Ground truth data for model
training were obtained either through manual operation with a conventional tracking tool
to record meaningful trajectories or by running a supplemental easy-tracking experiment.
Experimental validation shows that this method has superior performance, by increasing
the total number of links by approximately 30% compared to prior multi-pass (iterative)
tracking approaches, with a manual assessment revealing only 1% of these links to be
incorrect. The proposed LSTM method improves the quality and accuracy in tracking
particles, especially under high particle concentration or complex flow conditions. The
method also demonstrates potential value for non-fluid measurement applications, such as
studying the swimming behavior of micro-algae in biological research.

Figure 6. The procedure for the proposed LSTM recurrent predictor to predict the velocity components
of a single particle based on a temporal sequence of previous location data (input), adapted from
Mallery et al. [39].
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3.3.2. DeepPTV: A Deep Neural Network-Based Framework

Liang et al. [37] proposed a novel architecture called DeepPTV, which uses deep neural
networks to learn complex fluid motion across different scales (Figure 7). The DeepPTV
architecture features an enhanced multi-scale feature learner and a convection architecture.
The enhanced multi-scale feature learning layer integrates local spatial geometry infor-
mation with more robust features to reinforce the generalizability for complex nonrigid
flow motion. This layer combines features from local spatial structures of multiple scales,
addressing challenges posed by various particle densities and flow motion magnitudes
across different local regions. It aims to strike a balance between accuracy and robustness
in motion estimation by extracting multi-scale extended features from several local circular
regions with different radii. The convection architecture approximates complex nonrigid
flows using a hierarchical approach from large scale to small scale, enhancing the extraction
of large-scale motion fields and the refinement of small-scale structures. It involves stacking
multiple networks to form a “convection” for flow refinement, which is the first application
of the stacking scheme to flow estimation on point clouds. Synthetic and public datasets on
particle locations and flow fields were obtained for model training. The results shows that
DeepPTV can achieve high accuracy and robustness on synthetic datasets. In evaluations
under different parameter conditions, DeepPTV also demonstrated superior performance,
particularly in handling small-scale flow structures.

Figure 7. Structure of the proposed enhanced multiscale feature learner using multiple ResBlocks to
extract features from different local spatial scales in DeepPTV. The internal structure of each ResBlock
is shown in the small dashed box. The output enhanced feature information could be the integration
of particle’s size, location, and the relative distances between it and its neighboring particles, etc.
Adapted from Liang et al. [37].



Micromachines 2024, 15, 629 12 of 17

Compared to some other data-driven tracking methods, e.g., FlowNet3D [98], DeepPTV
exhibits better robustness in dealing with off-plane motion and particle position noise,
with higher computational efficiency. However, only two subnetworks are placed by the
authors in the presented framework. The accuracy can be further improved with more
subnetworks added to enhance the generalizabilty of the model; but the refinement also
incurs additional computational time and resource utilization.

3.3.3. A Hybrid Convolutional Deep Neural Network Architecture to Estimate 3D Position
and Size of Particles

Recently, Ratz et al. [99] used a hybrid convolutional deep neural network framework
with ResNet18 [100] and Faster R-CNN [84] to reliably determine the 3D position and size
of particles from a single camera view (Figure 8). Synthetic and experimental datasets were
used to train and evaluate the model. They showed that the performance of this method on
real images is similar to that on synthetic images, showing similar trends. In real images,
the uncertainty of the plane in all cases is less than 0.5 pixels, and the uncertainty of the
depth position is about 1 micron, even in the presence of multiple distributions of particles
of different sizes. In addition, the method exhibits excellent classification performance
with a minimum accuracy above 96%. This study demonstrates that these CNN models
primarily targeted on image classification tasks have great potential in the locating of
particles in 3D volume and can be applied in the practical field of microfluidics, providing
higher accuracy and reliability for micro-scale volumetric measurements.

Figure 8. Basic pipeline of the proposed deep hybrid dual neural networks framework using ResNet18
(for depth regression) and Faster R-CNN (for in-plane position and particle size prediction). The
image preprocessing includes filtering and labeling. Adapted from Ratz et al. [99].

3.4. Transformer and Attention Mechanism-Assisted Particle Tracking

Transformers represent a paradigm shift in the field of deep learning, particularly
in natural language processing (NLP) and sequence modeling tasks. Unlike traditional
DNNs and CNNs, which rely on sequential processing and hierarchical feature extraction,
transformers employ a self-attention mechanism [101] to capture long-range dependencies
within sequences more efficiently.

The attention mechanism allows transformers to consider all input tokens simultane-
ously, enabling parallelization and reducing the computational complexity of modeling
sequential data. As a result, transformers have demonstrated remarkable success in var-
ious NLP tasks, including machine translation, text generation, and sentiment analysis,
often outperforming previous approaches based on recurrent neural networks (RNNs) and
CNNs. Furthermore, transformers have shown versatility beyond NLP, being applied to
image processing, time-series forecasting, and other domains, showcasing their potential to
reshape the landscape of deep learning architectures and techniques. There are compara-
tively few studies on the application of transformer models on particle tracking and flow
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reconstruction [94,95,102–104]. Most of them focus heavily on flow estimation rather than
individual particle detection and tracing, which is out of the scope of this article.

3.5. Key Takeaways from Data-Driven Methods

Although data-driven methods are just introduced to this domain and still evolving,
they have demonstrated substantial potential in particle tracking and flow field reconstruc-
tion (see Table 2). These data-driven algorithms can directly learn the complex relationships
between input data and particle trajectories or velocity fields, with enhanced accuracy and
resolution. By training on large datasets of experimental or synthetic flow data, data-driven
models can capture intricate flow dynamics and variability across multiple scales that may
be challenging to represent using classical analytical or numerical approaches.

Table 2. A summary of representative data-driven methods.

Approach Features Advantages Disadvantages Literature

Two-layer SNN
Obtains the mapping

function for 3D
stereoscopic PTV

Simple model structure; low
computational load for learning

mapping functions; high accuracy
in reconstructing
particle positions

Limited versatility due to shallow
structure; low seeding density of particles

(0.004 ppp)
[36]

PINN
Incorporates the governing

physics as a
regularization technique

Suitable for low data volumes;
can simultaneously reconstruct
other properties (e.g., pressure

fields) with velocity fields

Limited versatility in inhomogeneous and
anisotropic fields; slow convergence rate;

long training period; limited accuracy
[38]

SPAV

Uses a statistical loss that
considers arbitrary

localization and tracking
uncertainties; implemented

with a PINN

High versatility; suitable for all
forms of PTV; increased accuracy

and robustness compared to
conventional PINNs

Loss components need refining to
consider isotropic errors; inconsistency in

non-Gaussian advected particle
probability density functions under strong
velocity gradients; limited computational
efficiency and domain size in PINN SPAV
(resolving finer scales of intense turbulent

flows is limited)

[40]

LSTM

Incorporates past particle
locations to refine

predictions of future
particle velocities

Strong robustness under high
seeding densities and complex

flow conditions

Requires additional input information to
improve performance; increased

input dimensionality
[39]

DeepPTV

Deploys an enhanced
multi-scale feature

learner and a
convection architecture

Applicable for tracking
simultaneous multi-scale

flow motions

Limited to two subnetworks; accuracy
could improve with more subnetworks

but would require more
computational resources

[37]

Hybrid DNN

Combines convolutional
deep neural networks

(ResNet18 + Faster R-CNN)
for depth regression and

particle classification

Single camera view; high
versatility for particles of different
sizes; high classification accuracy

Decreased performance (recall) under
extremely high seeding densities; higher

uncertainty in regression and classification
of similar particles at close proximity

[99]

Future improvements may focus on expanding working scales, improving converging
rates, inventing end-to-end frameworks, and also advancing current experimental setups.
Architectures should be optimized for real-time processing, robustness to noise and occlu-
sions, and adaptability to diverse experimental conditions. Efforts are needed to integrate
physics-based regularization and domain knowledge into data-driven models, such as
incorporating fluid dynamics principles into neural network training, which could lead to
more interpretable and physically meaningful results.

The development of hybrid approaches that combine the strengths of data-driven
techniques with traditional numerical simulations or analytical methods could offer com-
plementary insights and validation mechanisms, enhancing the overall reliability and
confidence in particle tracking.
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4. Conclusions

This article presents a summary of advanced micro-scale particle tracking techniques,
including conventional methodologies and emerging data-driven approaches. The conven-
tional methods discussed, such as tomographic PTV, ’Shake-The-Box’, confocal microscopy,
and plenoptic imaging, have long served as reliable tools for capturing particle motion at
the micro-scale level.

Limitations of traditional techniques, including limited versatility and adaptabil-
ity across flow scenarios, restricted spatial and temporal resolutions (especially under
high seeding densities), demanding computational load, distracting image artifacts, and
background noises, point to the need for continual advancements. The integration of data-
driven methods, such as deep learning algorithms and state-of-the-art computer vision
techniques, presents a paradigm shift in micro-scale particle tracking. These innovative
approaches offer the potential to overcome inherent challenges by enhancing accuracy,
efficiency, robustness, and generalizability. The synergy of traditional and data-driven
methods, as highlighted in this review, promises for a more holistic and robust understand-
ing of micro-scale particle dynamics, opening avenues for breakthroughs in fields ranging
from fluid mechanics to biophysics. These advanced methodologies are critically needed to
track particles in challenging environments and complex geometries. Synergistic methods
combining tracking with computational fluid dynamics can validate and refine numerical
models, improving the accuracy of predictions for engineering design and optimization
tasks in aerospace, automotive, and energy sectors. In medical diagnostics, high-precision
particle tracking can enhance the detection and monitoring of diseases by tracking the
motion of biomarkers, pathogens, and therapeutic agents in biological fluids such as blood
circulation or tissue microenvironments. Synergistic methods combining tracking with
imaging modalities like fluorescence microscopy or magnetic resonance imaging (MRI)
can provide spatial and temporal information aiding in the development of personalized
diagnostics and targeted therapies. As research in these interdisciplinary fields advances,
the combination of traditional and data-driven methods is prepared to push micro-scale
particle tracking into new areas. This will deepen our understanding of fluid systems and
enable transformative applications across various scientific and technological fields.
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