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Simple Summary: Cell invasion is an intrinsic cellular behavior wherein cells respond to various
signals and bring about the degradation of the extracellular matrix (ECM) to facilitate their movement
through surrounding tissues. In cancer, this ‘invasive’ behavior is aberrantly increased when cells
from the primary tumor invade local tissues and blood vessels leading to metastasis. The past
couple of decades have witnessed much progress in the understanding of the molecular and cellular
mechanisms that underlie invasion of the ECM by tumor cells. A growing body of evidence implicates
extracellular vesicles (EVs)—small membrane-enclosed sacs shed by tumor cells—as modulators
of tumor cell invasion. These sacs carry important molecules that affect ECM degradation and
composition. In this article, we review the various ways by which EVs can modify the ECM to bring
about cell invasion and metastases.

Abstract: Tumor progression, from early-stage invasion to the formation of distal metastases, relies
on the capacity of tumor cells to modify the extracellular matrix (ECM) and communicate with the
surrounding stroma. Extracellular vesicles (EVs) provide an important means to regulate cell invasion
due to the selective inclusion of cargoes such as proteases and matrix proteins into EVs that can
degrade or modify the ECM. EVs have also been shown to facilitate intercellular communication
in the tumor microenvironment through paracrine signaling, which can impact ECM invasion by
cancer cells. Here, we describe the current knowledge of EVs as facilitators of tumor invasion
by virtue of their effects on proteolytic degradation and modification of the ECM, their ability to
educate the stromal cells in the tumor microenvironment, and their role as mediators of long-range
communication aiding in cell invasion and matrix remodeling at secondary sites.

Keywords: cancer; extracellular vesicles; extracellular matrix; exosomes; microvesicles; tumor cell
invasion; metastasis

1. Introduction

Cell invasion, which is the movement of cells through the surrounding extracellular
matrix (ECM), is an intricately regulated process that is critical to many normal physio-
logical processes including during embryonic development, wound repair, and immune
surveillance [1]. The acquisition of invasive potential is also a necessary step during cancer
initiation and metastasis [2]. Metastasis is a complex process that includes invasion of
primary tumor cells through the ECM and stroma, intravasation into the bloodstream,
extravasation, and distant growth of tumor cells in various organs other than the primary
site [3]. There is now compelling evidence that the organization and composition of the
three-dimensional stromal ECM markedly influences tumor cell invasion and involves both
cell autonomous and non-cell autonomous regulation [4].

Tumor cells adopt several modes of invasion in response to cues from the extracel-
lular environment including the ECM. Single-cell invasion has been observed in tumor
cells adopting amoeboid or mesenchymal-like morphologies [5]. Tumor cells can toggle
between these morphological phenotypes in response to the stiffness and complexity of the
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ECM [6–8]. Amoeboid cells assume a rounded shape and exhibit high membrane blebbing.
Cells with a mesenchymal phenotype are spindle-shaped or flat and fibroblast-like and
develop invadopodia (proteolytic actin protrusions formed at the ventral surface of the
cell) and other cell protrusions [6,9]. Tumor cells with both phenotypes, amoeboid and
mesenchymal, are capable of matrix metalloproteinase (MMP)-mediated extracellular ma-
trix degradation and invasion [10]. Confinement by the extracellular matrix and matrix
compliance appears to determine invasion capacity. In this regard, protease-mediated
invasion increases when the pore size of the ECM decreases below the limit of deformation
for the cell nucleus that is sufficient for invasion through ECM by mechanical force [11,12].
In addition to single-cell movement, tumor cells also use multicellular streaming and
collective cell invasion, which is reminiscent of cell migration during organ morphogene-
sis. Collective cell movement is distinct from single-cell motility, wherein the movement
pattern of multiple cells retain cell–cell connections and migrate coordinately [13]. During
collective cell invasion, cells can adopt leader and follower cell signatures unique to their
roles to effectively facilitate this mode of invasion [9,14]. Leader cells respond to cues from
the ECM, soluble factors, and chemoattractants generating navigable tracks for follower
cells through intracellular communication and the release of proteases such as cathepsin
B [14].

Extracellular vesicles (EVs) broadly encompass a heterogenous population of mem-
brane-enclosed sacs released from nearly all cell types. Once regarded as cell debris, we
know now that EVs are shed by cells from all organisms via multiple mechanisms of
biogenesis that appear to be evolutionarily conserved. Depending on the cell of origin,
EVs may contain numerous cellular cargoes including various RNA species, DNA, lipids,
metabolites, signaling molecules, and cell-surface receptors [15–18]. EVs may be classified
as either small EVs or large EVs on the basis of size [19]. Small EVs include exosomes,
<80 nm vesicles that are formed as intraluminal vesicles in multivesicular bodies (MVBs)
and released into the extracellular space upon fusion of the limiting membrane of the
MVB with the plasma membrane (PM), and arrestin domain-containing protein 1-mediated
microvesicles that pinch from the cell surface. The small EVs are less than 200 nm in
diameter. Microvesicles, large oncosomes, migrasomes, and apoptotic bodies, all of which
bud from the plasma membrane and are greater than 200 nm in size, are categorized as
large EVs or ectosomes. Tumor-derived EVs have been hypothesized to promote cell-
to-cell communication due to their ability to “educate” other cells locally or in distant
tissues/organs. Cargoes packaged in EVs secreted by a ‘donor’ cell may be released into
the extracellular space or transferred to another cell leading to phenotypic changes in the
‘recipient’ cell [15–18]. In the case of the latter, EVs bind to surface molecules on recipient
cells and trigger changes at the cell surface of the recipient or upon internalization. EVs may
serve to facilitate cargo exchange, deposit paracrine information, present decoys, or rid the
cell of unwanted material. These collective roles of EVs have been shown to have marked
effects on epithelial/endothelial barrier function, fibroblast reprogramming, and immune
cell activation during tumor progression [20–22]. This review centers on EVs as important
modulators of extracellular matrix invasion by tumor cells. As we describe below, EVs
facilitate direct alteration of the ECM through proteolytic degradation, deposition of ECM
components, or by educating stromal cells to modify the ECM (Figure 1), all of which
facilitate tumor cell invasion.
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Figure 1. Extracellular vesicles (EVs) shed from cells facilitate invasion of the extracellular matrix 
(ECM) in many ways. Tumor cells may toggle between amoeboid and mesenchymal phenotypes 
and shed EVs that contain proteases such as MMPs and heparinase, as well as ECM components 
like fibronectin, allowing for matrix remodeling and cell invasion. Highly aggressive tumor cell lines 
adopt amoeboid morphologies and release larger-sized ectosomes to facilitate degradation. Exo-
somes are secreted at invadopodia on the adherent surface of tumor cells to aid in proteolytic deg-
radation of the ECM. EVs can deposit ECM components that affect matrix composition and stiffen-
ing. Shed EVs may also activate stromal cells such as fibroblasts and inform behaviors that advance 
tumorigenesis. In response to EV uptake, fibroblasts increase collagen compaction and provide 
tracks for leader–follower pathfinding behaviors during matrix invasion. EV uptake also results in 
an increase in fibronectin production by fibroblasts. Created with BioRender.com. 
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Extracellular vesicles are known to contain proteases that are involved in proteolytic 
degradation of the extracellular matrix. Membrane type 1-matrix metalloproteinase (MT1-
MMP) has been found as bioactive cargo in several classes of EVs [23,24]. Substrate targets 
of MT1-MMP include aggrecan, collagen types I, II, and III, fibronectin, gelatin, laminin-1 
and -5, and vitronectin [24,25]. In addition to ECM substrates, MT1-MMP also cleaves pro-
MMP2 and pro-MMP13 to remove the pro-peptide, resulting in activation of these en-
zymes [24,26].  

MT1-MMP is released into the extracellular space by shed EVs in both ameboid and 
mesenchymal modes of cell invasion. During ameboid cell invasion, MT1-MMP is deliv-
ered to nascent microvesicles forming at the cell surface, a process regulated by vesicle-
associated membrane protein 3 (VAMP3) association with the tetraspanin, CD9 [10]. In 
contrast, vesicle-associated membrane protein 7 (VAMP7), which is required for the de-
livery of MT1-MMP to invadopodia and functional degradation of the matrix [27], is not 
present on microvesicles [27]. Knockdown of VAMP3, but not VAMP7, affected the deliv-
ery of MT1-MMP to microvesicles. In contrast, cellular depletion of VAMP7 but not VAMP 
3 affected protease delivery to invadopodia. Proteases in shed microvesicles allow for cell 
invasion through compliant matrices and cross-linked collagen matrices [6,10]. Functional 
MT1-MMP has also been found in exosomes. Isolated exosomes contain both the pro form 
and active MT1-MMP, and these exosomes were able to activate MMP-2 and degrade col-
lagen I and gelatin [28]. Interestingly, exosome secretion has been linked to invadopodia 
biogenesis in a synergistic relationship where exosome cargoes aid in invadopodia for-
mation, stabilization, and proteolytic activity [29]. 

Figure 1. Extracellular vesicles (EVs) shed from cells facilitate invasion of the extracellular matrix
(ECM) in many ways. Tumor cells may toggle between amoeboid and mesenchymal phenotypes
and shed EVs that contain proteases such as MMPs and heparinase, as well as ECM components
like fibronectin, allowing for matrix remodeling and cell invasion. Highly aggressive tumor cell
lines adopt amoeboid morphologies and release larger-sized ectosomes to facilitate degradation.
Exosomes are secreted at invadopodia on the adherent surface of tumor cells to aid in proteolytic
degradation of the ECM. EVs can deposit ECM components that affect matrix composition and
stiffening. Shed EVs may also activate stromal cells such as fibroblasts and inform behaviors that
advance tumorigenesis. In response to EV uptake, fibroblasts increase collagen compaction and
provide tracks for leader–follower pathfinding behaviors during matrix invasion. EV uptake also
results in an increase in fibronectin production by fibroblasts. Created with BioRender.com.

2. Extracellular Vesicles Contribute to Extracellular Matrix Alterations Impacting
Tumor Cell Invasion
2.1. EV Cargo Results in Proteolytic Degradation of the ECM

Extracellular vesicles are known to contain proteases that are involved in proteolytic
degradation of the extracellular matrix. Membrane type 1-matrix metalloproteinase (MT1-
MMP) has been found as bioactive cargo in several classes of EVs [23,24]. Substrate targets
of MT1-MMP include aggrecan, collagen types I, II, and III, fibronectin, gelatin, laminin-1
and -5, and vitronectin [24,25]. In addition to ECM substrates, MT1-MMP also cleaves
pro-MMP2 and pro-MMP13 to remove the pro-peptide, resulting in activation of these
enzymes [24,26].

MT1-MMP is released into the extracellular space by shed EVs in both ameboid
and mesenchymal modes of cell invasion. During ameboid cell invasion, MT1-MMP
is delivered to nascent microvesicles forming at the cell surface, a process regulated by
vesicle-associated membrane protein 3 (VAMP3) association with the tetraspanin, CD9 [10].
In contrast, vesicle-associated membrane protein 7 (VAMP7), which is required for the
delivery of MT1-MMP to invadopodia and functional degradation of the matrix [27], is
not present on microvesicles [27]. Knockdown of VAMP3, but not VAMP7, affected the
delivery of MT1-MMP to microvesicles. In contrast, cellular depletion of VAMP7 but not
VAMP 3 affected protease delivery to invadopodia. Proteases in shed microvesicles allow
for cell invasion through compliant matrices and cross-linked collagen matrices [6,10].
Functional MT1-MMP has also been found in exosomes. Isolated exosomes contain both
the pro form and active MT1-MMP, and these exosomes were able to activate MMP-2
and degrade collagen I and gelatin [28]. Interestingly, exosome secretion has been linked
to invadopodia biogenesis in a synergistic relationship where exosome cargoes aid in
invadopodia formation, stabilization, and proteolytic activity [29].
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The formation of microvesicles as well as exosomes has been linked to signaling
downstream of ADP ribosylation factor 6 (ARF6) [30,31], and thus common regulators may
be involved in the formation of various EV subtypes. ARF6 is the small GTP-binding protein
that has been shown to regulate endosomal trafficking and actin cytoskeletal remodeling,
and as such its GTP/GDP cycle regulates cellular processes as varied as epithelial cell
adhesion [32], invadopodia formation [33,34] and cytokinesis [35,36], all of which are
accompanied by changes in cell shape and morphology. Interestingly in this regard, EVs
have been implicated in all these processes [29,37–39]. This supports the contention that
EV biogenesis pathways may be triggered by and depend on cellular context.

In addition to exosomes and microvesicles, large oncosomes (approximately 1–10 µm)
have also been shown to contain proteolytically active matrix metalloproteases [40–42].
Finally, migrasomes are larger-sized EVs formed at the tips or intersections of retraction
fibers at the back of migrating cells [43,44]. While a role for migrasomes in proteolytic
degradation is not described, migrasome release is reported to be highly correlated with
the migration of cells.

In addition to facilitating local invasion, tumor-derived EVs also facilitate ECM re-
modeling to facilitate movement toward and colonization at distant sites (Figure 2). EVs
are found in the blood stream and lymphatic system, allowing for long-range communi-
cation [45–47]. This builds upon Stephen Paget’s proposed “seed and soil” theory, where
cancer cells metastasize to specific organs and condition metastatic sites before colonization
to form a pre-metastatic niche (PMN). In preparation for successful metastasis, the PMN
acquires several key features including the activation of resident stromal cells, affecting the
immune landscape, and remodeling of the ECM [46]. A study by Deep et al. found that
intraperitoneal treatment of hypoxia-derived EVs promotes the formation of a PMN. Here,
there was increased matrix metalloproteinase activity at metastatic sites allowing for ECM
remodeling, along with levels of fibronectin and collagen in a prostate cancer model [48].
Thus, EVs have a proteolytic role in local invasion as well as invasion of tumor cells at
distal sites.
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Figure 2. EVs influence tumor invasion at various stages of cancer progression. Tumor-derived
EVs at the primary tumor site facilitate early tumor invasion. EVs carry cargoes to direct organ-
specific metastasis and can also impact recipient cell behavior and ECM remodeling at secondary
sites enabling colonization and metastasis. Created with BioRender.com.



Cancers 2023, 15, 5617 5 of 11

2.2. EVs Contribute to ECM Composition to Promote Invasion

The ECM plays a dynamic role in the creation of the tumor microenvironment (TME),
and its dysregulated remodeling can promote tumorigenesis. Tumor-promoting alterations
to the ECM such as a deposition of fibrillar collagen or increased deposition of fibronectin
are associated with worse patient prognosis [42,49,50]. While tumor cells and tumor-
associated stromal cells affect ECM composition through matrix deposition, tumor-derived
EVs also contain ECM components that can be deposited in the tumor microenvironment.
For example, fibronectin is present in exosomes secreted by breast, glioma, and fibrosar-
coma tumor cells [51–53]. Fibronectin-positive exosomes were shown to be required for
directional and persistent movement of fibrosarcoma cells, wherein exosome secretion
promoted fibronectin-dependent adhesion [52]. Fibronectin is present on the outside of the
exosomes, providing the correct topology to promote adhesion and invasion. In another
study, fibronectin and laminin found in microvesicles during trophoblast migration are
important for implantation efficiency [54]. Here, laminin and fibronectin interact with
integrins to activate c-Jun N-terminal Kinase (JNK) and focal adhesion kinase (FAK), stim-
ulating trophoblast migration and increasing implantation efficiency [54]. These studies
highlight the importance of EVs for ECM alteration in normal, healthy processes, and
suggest cancer cells hijack basic EV processes during disease progression.

The ECM and stroma surrounding solid tumors are often stiff as a result of higher
amounts of ECM proteins, increased remodeling, and cross-linked ECM proteins [55,56].
Changes to the tumor microenvironment through modification of the ECM can drastically
affect the progression of disease and propensity for invasive cell behaviors. Tumor-derived
EVs can alter tissue microstructure resulting in stiffening and changes in genes associated
with ECM and fibronectin protein expression [53]. During breast tumorigenesis, collagen
crosslinking results in stiffened ECM that induces invasion [57]. Furthermore, breast tumor
cells secrete an increased number of exosomes in response to ECM stiffness [58]. These
exosomes, dubbed stiffness-tuned exosomes, are released in response to stiffened ECM
and are required for cell contractility necessary for cell spreading and motility in stiff
matrices. Additionally, stiffness-tuned exosomes increased cell attachment and contain
thrombospondin-1, which not only plays a role in cell–cell adhesion but also in cell-ECM
adhesion [57]. Together these studies point to an important role for EVs in promoting and
responding to tumor stiffness that advances tumorigenesis.

In addition to structural proteins, the extracellular matrix contains heparan sulfate
proteoglycans embedded within the matrix. Heparan sulfate is a side chain found on
proteoglycans and is degraded by heparinase [59,60]. Exosomes secreted in response to
chemotherapy treatment contain a high level of heparanase on the surface of the exosome.
Exosomal heparanase is transferred to other cells, increasing their expression of active
heparanase and stimulating ERK signaling [61]. Notably, increased abundance of hep-
aranase is associated with chemoresistance, and targeting heparanase improves patient
outcomes [62].

3. Tumor-Derived Extracellular Vesicles Educate Stromal Cells to Form
Pro-Invasive Microenvironments

As previously discussed, tumor EVs contain ECM components that affect the com-
position of the matrix. EVs produced by tumor cells are also able to affect the ECM by
delivering cargoes to other cell types. The tumor microenvironment is host to resident and
infiltrating cells. Cells such as macrophages, fibroblasts, and vascular endothelial cells play
significant roles in remodeling the extracellular matrix and TME to promote tumor cell
invasion, advancing tumorigenesis [63]. Due to the variety of cargo found in EVs, tumor
cells are able to strategically alter recipient cells to promote tumorigenesis—effects range
from metabolic shifts to altered immune response and evasion [16,64,65]. The section below
focuses largely on the tumor cell–fibroblast interactions shown to promote cell invasion
and ECM remodeling.
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Fibroblasts are particularly susceptible to behavioral alterations as a result of EV
uptake. Fibroblasts are somewhat ambiguously defined as interstitial cells of mesenchy-
mal lineage and are not of epithelial, endothelial, or immune cell origin [66]. Cancer-
associated fibroblasts (CAFs) are fibroblasts located adjacent to or within a tumor and
populations are predominately composed of local resident fibroblasts rather than non-local
precursors [66,67]. Normal fibroblasts participate in wound healing, response to tissue
damage, and alter the ECM deposition and structure [66,68]. CAFs coopted for ECM
alterations contribute to collagen and fibronectin deposition, and restructure the ECM to
allow tumor cell invasion.

Extracellular vesicle cargo can change ECM composition and stiffness through stromal
recipient cell behavior to favor invasive phenotypes. For instance, as a result of microvesi-
cles shed from tumor cells, recipient fibroblasts are transformed to alter the ECM. Exosomes
containing mutant p53 have been reported to influence ECM architecture and tumor cell
invasion by promoting integrin recycling in fibroblasts that result in a less adhesive, more
branched ECM network [69].

EVs have also been shown to carry the protein crosslinking enzyme tissue transglu-
taminase and the ECM component fibronectin [51]. These components are transferred to
fibroblasts, resulting in activation of the fibroblasts to promote a pro-tumorigenic microen-
vironment. Alternatively, fibroblasts found at the periphery of tumors, where the matrix
is most stiff, are activated in response to EVs shed by aggressive breast cancer cells. This
causes fibroblasts to increase cell spreading, traction forces, and collagen compaction [70].
Further, while highly migratory breast cells are capable of single-cell migration, it has
been shown that weakly migratory cells require microvesicle-mediated communication
with fibroblasts for invasion. Weakly migratory cells release microvesicles that activate
murine fibroblasts and promote cancer cell movement in a tumor spheroid model [71]. In
a colorectal cancer model, fibroblasts activated by tumor EVs invade the ECM, creating a
track for the tumor cells to follow. In this case, the fibroblasts act as leader cells in response
to the secreted vesicles by the colorectal tumor cells and allow the cells to invade the local
tissue without undergoing epithelial-to-mesenchymal transition (EMT) [72]. The enrich-
ment of EVs in adhesion molecules serves to bind surrounding ECM [23], whereas soluble
chemoattractants in EVs [73] may serve as guidance cues facilitating leader–follower move-
ment. These are all examples of how tumor EVs educate stromal cells such as fibroblasts
to alter the ECM facilitating pro-invasive phenotypes and worsening disease outcomes.
Furthermore, as stated above, other cell types found in the tumor microenvironment, such
as macrophages, also take up EVs with influence on the TME [74].

4. Conditioning of the Pre-Metastatic Niche ECM by Extracellular Vesicles

The formation of the pre-metastatic niche (PMN) is a result of conditioning organ
tissue environments to support metastatic growth. The ECM within the PMN is altered
in response to several factors including soluble proteins secreted by the primary tumor,
coopted stromal cells, and cells recruited to the niche such as macrophages and fibrob-
lasts [75,76]. Extracellular vesicles play an important role in facilitating these processes due
to their ability to intravasate and extravasate the vascular and lymphatic systems allowing
for long-range communication, potentially providing a means of metastatic organotropism
(Figure 2). For instance, exosomes derived from breast cancer cell sub-lines containing
integrins α6β5 and α6β1 were associated with lung metastasis, while exosomes displaying
αvβ5 were associated with liver metastasis. Interestingly, the EV integrin profiles did not
necessarily match the tumor cell integrin profiles [77]. Another study found that breast and
lung tumor-derived exosomes contain cell migration-inducing and hyaluronan-binding
protein (CEMIP) and that CEMIP+ exosomes promote brain organotropism by affecting
angiogenesis and encouraging an inflammatory microenvironment [78]. This helps to
explain why specific cancers typically metastasize to certain organs and potentially pro-
vides a means to identify the risk of metastasis through EV biopsy. Additionally, EVs
may modulate the PMN by influencing resident cells. One study found that exosomes are
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preferentially taken up by resident cells of metastatic destinations in vitro and in vivo and
that these EVs colocalize with specific cell types in different ECM environments [79]. The
study also found that circulating exosomes display integrin expression profiles that could
be used to predict metastasis sites.

Extracellular vesicles can also impact the ECM composition of the pre-metastatic
niche by modulating recipient cell behavior. Stromal cells in the TME can accomplish
this through the deposition of matrix components [49]. The uptake of PDAC-derived
exosomes by Kupffer cells results in transforming growth factor β (TGF-β) secretion and
an increase in fibronectin production by hepatic stellate cells. The PDAC-derived exosomes
contained macrophage migration inhibitory factor, and this correlated with patients who
later developed liver metastasis [79]. In the case of metastatic melanoma, tail vein injection
of EVs secreted by the SW1 melanoma cell line resulted in the deposition of fibronectin
within the lungs accompanied by an increase in CD45+ cells [80]. Ghoshal et al. found that
this was a result of insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and
this is likely due to the IGF2BP1 effect on cargo transport by these EVs [80].

Additional ECM components, such as tenascin-C, influence the formation of the pre-
metastatic niche. Tenascin-C is a large ECM glycoprotein, typically downregulated in
healthy adult tissues [81]. However, overexpression is frequently observed in cancer at the
invasive tumor front, implicating tenascin-C in tumor progression and metastasis [81–83].
In a bladder cancer model, tumor-derived EVs induced tenascin-C expression by fibroblasts,
and this is associated with a worse prognosis. The induction of tenascin-C expression at
the pre-metastatic niche is potentially a result of EV-contained cytokines [84]. Furthermore,
tumor-derived EVs are able to pass through the blood–brain barrier via transcytosis, and
these EVs interact with astrocytes to condition the PMN by downregulating expression
of the tissue inhibitors of MMPs-2 (TIMP2) [85,86]. This decrease in TIMP expression
corresponded with increased ECM modulation and astrocyte migration [85]. Altogether,
these studies point toward the need to further understand EV influence on stromal cells to
better understand the metastatic process.

5. Concluding Remarks

Tumor-derived EVs are recognized largely as mediators of cell-to-cell communica-
tion through the horizontal transfer of bioactive cargoes—protein, nucleic acids, and
lipids—between cells. Significantly, cargoes in EVs can also influence the extracellular ma-
trix with an impact on disease progression. As described above, EVs can facilitate amoeboid
or mesenchymal modes of invasion, extracellular matrix (ECM) remodeling, directional
movement, and the education of stromal cells to impact tumor invasion at various points
during disease progression. In addition to local invasion at the primary tumor, EVs affect
the pre-metastatic niche to promote a pro-metastatic microenvironment and provide a
long-range means for primary tumor cells to advance disease through invasion and metas-
tasis. An important future direction will be to identify EV cargoes and cellular regulators
involved in EV-mediated ECM alteration and communication within the pre-metastatic
niche. A better understanding of the role of both, the cellular context and extracellular cues,
in generating various EV types during matrix invasion is also needed. In addition, how
the functional roles of EVs in tumor invasion may impact disease progression is not well
understood and remains an important but understudied area of cancer biology. Further
studies along these lines represent promising avenues for a more complete understanding
of the mechanisms involved in tumor invasion, the conditioning of the pre-metastatic niche
during metastasis, and for designing new strategies for therapeutic intervention.
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