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Simple Summary: The 2021 WHO classification of central nervous system (CNS) tumors is challeng-
ing for neuroradiologists due to the central role of the molecular profile of tumors. We performed a
scoping review of recent literature to assess the existing data on the power of novel data analysis
tools to predict new tumor classes by imaging. We found room for performance improvement for
subgroups with lower incidence (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas) and patients
with rare diagnoses (e.g., pediatric gliomas, midline gliomas). More data regarding functional MRI
techniques need to be collected. Studies explicitly designed to assess the generalizability of Al-aided
tools for predicting molecular tumor subgroups are lacking.

Abstract: The 2021 WHO classification of CNS tumors is a challenge for neuroradiologists due to
the central role of the molecular profile of tumors. The potential of novel data analysis tools in
neuroimaging must be harnessed to maintain its role in predicting tumor subgroups. We performed a
scoping review to determine current evidence and research gaps. A comprehensive literature search
was conducted regarding glioma subgroups according to the 2021 WHO classification and the use of
MR, radiomics, machine learning, and deep learning algorithms. Sixty-two original articles were
included and analyzed by extracting data on the study design and results. Only 8% of the studies
included pediatric patients. Low-grade gliomas and diffuse midline gliomas were represented in
one-third of the research papers. Public datasets were utilized in 22% of the studies. Conventional
imaging sequences prevailed; data on functional MRI (DWI, PWI, CEST, etc.) are underrepresented.
Multiparametric MRI yielded the best prediction results. IDH mutation and 1p/19q codeletion status
prediction remain in focus with limited data on other molecular subgroups. Reported AUC values
range from 0.6 to 0.98. Studies designed to assess generalizability are scarce. Performance is worse
for smaller subgroups (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas). More high-quality study
designs with diversity in the analyzed population and techniques are needed.

Keywords: glioma; machine learning; deep learning; MRI

1. Introduction

Because the genetic profiling of brain tumors plays an increasingly prominent diag-
nostic role, neuroradiologists face challenges regarding the 2021 WHO categorization of
central nervous system tumors [1]. Passing the previously morphological classification of
brain tumors conceptually based on the presumed cell of origin (astrocytoma, oligoden-
droglioma, etc.), recent advances in molecular neuropathology have allowed the definition
of new tumor subgroups better corresponding to brain tumor pathological etiology, more
uniform disease entities and better prediction of clinical behavior and prognostics. This
shift began in the 2010s with a codification in the 5th edition of the WHO classification of
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central nervous system tumors in 2021 (WHO 2021). With simplified terminology, molec-
ular features now dictate classification, and joint histopathologic and molecular analysis
determine tumor grade. Diffuse gliomas are primarily classified along their isocitrate
dehydrogenase (IDH1/2) mutation and 1p/19q codeletion status. The definition of the
O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status is still
required for prognostication. These requirements of the previous WHO 2016 classification
are now adjoined in WHO 2021 by requirements to determine the presence of CDKN2A /B
homozygous deletion, EGFR amplification, and the gain or loss of chromosome 7/10 and
recommendations for determining P53, TERT promoter mutation, ATRX, and DNA methy-
lation profiles. In cases of pediatric brain tumors, the additional diagnosis of H3.K27 and
MYBL1/MLBL1-alteration, H3F3A mutation, MAPK-pathway alterations, CD34 expres-
sion, or BRAF pV600E mutation are now required. While such information is essential for
entity and prognostic stratification, current advances in therapeutic approaches also predict
that molecular classification will allow for targeted therapeutic approaches, hopefully
leading to improved clinical outcomes, as has been the case for other CNS tumors and
malignancies outside of the CNS.

The role of neuroimaging in this era of molecular diagnostics is being redefined. MRI
is still the workhorse for tumor detection and spatial planning of surgery and radiotherapy.
However, with the prospects of more targeted therapies, non-invasive prediction of the
molecular characteristics of tumors and tumor subregions is becoming more critical. There-
fore, neuroradiologists must understand how novel data analytics supported by artificial
intelligence, such as machine learning-based radiomics data analysis or deep learning
techniques, as well as the use of novel MRI techniques such as CEST imaging or synthetic
MRI, may yield new perspectives for the correlation of imaging with the molecular charac-
teristics of brain tumors. This scoping review aims to summarize the most recent data on
the utility of these approaches for classifying glioma subtypes according to the 2021 WHO
CNS tumor classification system.

2. Materials and Methods

A scoping review was conducted to systematically map the research conducted in
this area, summarize the evidence, and identify gaps in knowledge. Adult and pediatric
populations were included. The research question was to determine the available data
regarding the utility of novel neuroimaging techniques and data analysis approaches for
the preoperative classification of glioma subtypes according to the 2021 WHO CNS tumor
classification system.

2.1. Search Strategy

This scoping review was conducted according to the Joanna Briggs Institute method-
ology for scoping reviews and the reporting guidelines of Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-5cR).
Quantitative, qualitative, and mixed peer-reviewed studies were included, while system-
atic reviews, guidelines, book sections, and editorials were excluded from the search task.
The final search strategy was defined in consensus (Table 1). It included both published
and unpublished primary studies in five bibliographic databases: Ovid Embase, Ovid
MEDLINE, Cochrane Central Register of Controlled Trials, Web of Science, and Google
Scholar, which was conducted in April 2024 with a combination of keywords and Medical
Subject Heading (MeSH) terms related to the research area. Only studies in English or
German were included (Table S1).

Table 1. Search terms applied in the literature search for this scoping review.

Topic Search Term Syntax

Glioma OR brain tumor OR brain neoplasms OR

tumor of the brain OR brain cancer AND

Glioma
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Table 1. Cont.

Topic Search Term Syntax

radiomic* OR imaging genomic* OR radiogenomic*

Algorithm OR machine learning OR deep learning OR support AND
vector machine OR artificial intelligence
Magnetic Resonance Imaging OR magnetic

Imaging technique resonance tomograph OR MRI OR MR imaging OR AND
magnetic resonance brain imaging

Subjects Animals NOT

Date 2022/01/01:3000/12/31 AND

2.2. Study Selection and Eligibility Criteria

All identified studies were uploaded to EndNote 20; duplicates were eliminated first
by the software and then manually. Subsequently, titles and abstracts were screened by two
independent reviewers to assess their eligibility. Full-text articles were retrieved, if possible,
and reviewed by the same two reviewers. Reasons for exclusion related to study design and
quality were charted in seven categories, as presented in Figure 1. A data-charting form was
developed where data regarding bibliographic details, study design, and study results were
collected. These data items were the following: the impact factor of the journal the study
was published in; the source of neuroimaging data (local or public database); the number
of included patients; the patient population (adult or pediatric); the analyzed tumor types;
the utilized imaging sequences and the imaging sequence yielding best results; the utilized
data analysis algorithm; the classification criteria (molecular subclasses); and the best AUC
values. Data charting results were discussed and updated continuously in an iterative
process. Any disagreements between the reviewers were resolved through discussion and
consensus finding. We grouped the studies by the population, the tumor type, and the
molecular subtypes and analyzed and summarized broad findings. Statistical analysis was
performed in JMP®, Version 16.2.0, SAS Institute Inc., Cary, NC, USA, 1989-2023.

=
S .
= . I Records removed before screening:
§ ﬁe:g;:lessldentlﬁed. —_— Duplicate records removed
= N =1421
o}
3
— Records screened Records excluded (not original articles, not in English
N = 1547 ’ or German):
N =629
Reports sought for retrieval > Reports not retrieved:
o N=918 N=10
£
]
5 }
Reports d for eligibili —_
Ne=p;08 assessed for eligibiity ReasonsAf_or exclusion:
not classification N =256 (28%)
not glioma N =213 (23%)
not WHO 2021 N =101 (16%)
insufficient data quality N =145 (11%)
not MRI N =62 (7%)
not pretherapeutic N = 54 (6%)
non-human N =15 (2%)
o Studies included in review
3 N =62
©
]

Figure 1. Flow diagram of study selection according to PRISMA-Scoping reviews guideline with
details on exclusion criteria and the number of included and excluded studies.
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3. Results
3.1. Bibliographic Results and Eligibility Criteria

Overall, 2968 search results were reviewed, and 908 reports were retrieved in full-text
version. Causes for exclusion and their proportion are shown in Figure 1. After excluding
non-human studies reporting findings from animal models or cell lines (N = 15, 2%) and
studies reporting CT or PET data (N = 62, 7%), 831 studies remained. Of these studies,
213 (26%) focused on non-gliomas, mainly brain metastases, meningiomas, or posterior
fossa tumors, and 256 (31%) analyzed algorithms for tumor detection or segmentation
and were consecutively excluded from this review. Of the remaining 362 studies, 54 (15%)
focused on correlates of post-therapeutic glioma progression and pseudoprogression. Af-
terwards, 308 papers remained, out of which 101 (33%) were excluded due to no reference
or allusion to the 2021 WHO classification despite being published in 2022 or later. Of the
remaining 207 studies, 145 (75%) were excluded due to concerns related to data quality or
presentation (lack of information on patient cohort, grading criteria, imaging sequences,
hold-out testing cohort, or AUC results). The remaining sixty-two original high-quality
articles analyzing the utility of novel MRI techniques and data analysis algorithms for the
classification of neuroimaging data, according to WHO 2021, were thus included in this
scoping review. The 2-year impact factor of the publishing journals ranged from 1.8 to
15.9 [2] with a mean IF of 4.5 & 2.6 and only 17 out 62 (27%) manuscripts published in a
journal with an IF above 5.

3.2. Patient Population

Most studies analyzed adult populations and high-grade gliomas, with only five
studies (8%) analyzing pediatric populations [3-7], ten studies (16%) analyzing low-grade
glioma [3,5,6,8-14] and only four studies (6%) focusing on diffuse midline glioma [15-18].
Data on the analyzed patient population are shown in Table 2. The pediatric studies
included fewer patients, although the difference was not statistically significant due to the
low number of pediatric studies and the large standard deviation in the adult population.

Table 2. Distribution of the analyzed patient populations in the studies included in this review. (LGG:
low-grade glioma. DMG: diffuse midline glioma).

Number of Patients per Study

Population N (Studies) % (All Studies) Mean Stdev
Gliomas (all subtypes) 48 77% 337 445
LGG 10 16% 223 146
DMG 4 6% 141 66
adult 57 92% 317 414
pediatric 5 8% 185 118

3.3. Data Sources

The analyzed images were mainly institution-based (imaged locally or in a multicentric
setting), with only ten studies using a public cohort for external validation [7,11,19-26] and
four studies using public datasets (such as the BraTs 2021 [27-30]) without including local
data. The studies utilizing public datasets could include significantly more patients than
those with local imaging data. These results are shown in Table 3.

Table 3. Source of imaging data per study design group and patient numbers (minimum, maximum,
mean, and standard deviation) in each group. * The mean patient number was significantly higher in
the studies that utilized publicly available datasets than in those using institutional data only.

Number of Patients per Study

i % (All i
Data Source N (Studies) %o ( Studies) Mean Stdev p*
local 48 77% 207 152
ublic 4 6% 812 1225 0.001

ocal and public 10 16% 581 461 0.003
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3.4. Imaging Sequences

Most studies used conventional imaging sequences (T2, T1 with contrast agent), some
with added information on visual scoring [31,32]. Only 17 studies explored parameters
from diffusion-weighted imaging with one paper exploring multi-shell diffusion [33], and
very few papers discussed perfusion-weighted imaging [34-37], CEST [14-38], or synthetic
MRI [39]. The majority (73%) of studies report that combining multiple sequences is
preferable. These results are shown in Table 4.

Table 4. Distribution of analyzed MRI sequences and results on the best sequences for optimal
prediction results as reported by the studies included in this review (T1CE: contrast-enhanced T1w
imaging. DWI: diffusion-weighted imaging. ADC: apparent diffusions coefficient. DTI: diffusion
tractographic imaging. DKI: diffusion kurtosis imaging. PWI: perfusion-weighted imaging. DCE:
dynamic contrast-enhanced imaging. DSC: dynamic susceptibility-weighted imaging. CEST: chemical
exchange saturation. SyMRI: synthetic MRI).

%

Sequences N (Studies) (Al Studies) Best Sequence N %
T2 52 84% combination 45 73%
T1CE 48 77% not applicable 11 17%
T2-FLAIR 36 58% ADC 2 3%
T1 35 56% T1CE 1 2%
DWI (ADC, DTI, DKI) 17 27% T1CE, ADC 1 2%
PWI (DCE/DSC) 4 6% T2 2 3%
T2*/SWI 1 2%

CEST 2 3%

SyMRI 1 2%

3.5. Molecular Subgroups

Overall, 41/62 of the reviewed studies (66%) focused on predicting IDH mutation
and 1p/19q codeletion status only, while 33 studies (53%) analyzed other molecular sub-
groups. These were TERT [9,37,40-46], ATRX [8,47-51], H3K27 [4,15-18], MGMT [50,52—
55], P53 [8,16,51,53], CDKN2A /B [12,30,35,56], EGFR [36], chr7/10 [57] and BRAF alter-
ations [3,5-7]. The reported AUC values range from 0.6 to 0.98 for these predictions with
an average of 0.82 to 0.9. These results are shown in Table 5.

Table 5. Studies with prediction efforts for different molecular subgroups relevant to the 2021 WHO
classification system and their respective AUC results.

Molecular . % AUC
Subgroup N of Studies (A1l Studies) Min Max Mean Stdev
AUC
IDH1/2 28 45% 0.7 0.98 0.87 0.07
1p/19q codel 13 21% 0.6 0.98 0.84 0.11
TERT 9 15% 0.7 0.95 0.86 0.08
ATRX 6 10% 0.67 0.95 0.83 0.11
H3K27 5 8% 0.89 0.92 0.9 0.01
MGMT 5 8% 0.57 0.98 0.85 0.16
P53 4 7% 0.77 0.97 0.85 0.09
CDKN2A/B 4 7% 0.82 0.95 0.88 0.07
BRAF 4 7% 0.73 0.87 0.79 0.07
EGFR 1 2% 0.8
chr7/10 1 2% 0.85

3.6. Algorithms

Overall, 35 (56%) studies applied classical machine learning algorithms only (SVM,
LASSO, random forest, etc.) after retrieving best-performing radiomic features from differ-
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ent regions of interest. In addition, 23 (37%) studies utilized deep learning methods, mainly
convolutional neural networks, for radiomics-based tumor subgroup discrimination. Four
studies compared multiple machine learning and deep learning algorithms. Generally, deep
learning methods yielded higher AUC results for molecular classification than machine
learning algorithms. The molecular subgroups where this difference was significant are
listed in Table 6.

Table 6. Molecular subgroups where a significant difference in AUC results was found between deep
learning and machine learning methods.

Mean AUC p (DL > ML) p (DL < ML)
IDH 0.009

TERT 0.01

ATRX 0.01

MGMT 0.01

CDKN2A/B 0.04

4. Discussion

Glioma remains one of the most challenging types of brain tumors to manage due
to its heterogeneity, infiltrative nature, and variable response to treatment. With the
advent of advanced molecular diagnostics in neuropathology, the visual interpretation
of neuroimaging is becoming increasingly insufficient for tumor-type classification. The
emergence of novel data analysis techniques presents an opportunity to redefine the
role of the neuroradiologist in neurooncology. Deep learning-based methods can aid in
the extraction of radiomic features and the classification of tumor subtypes. Techniques
integrating multimodal data, including imaging, genomic, and clinical information, can
identify complex patterns and correlations within large datasets.

Our scoping review analyzed the literature for evidence from the last two years
since codifying the requirement for the molecular subtyping of brain tumors in the 2021
WHO CNS classification system. While there is a large body of written evidence on brain
tumor imaging and novel MRI and data analysis techniques, thorough review and quality
control dissipates a large proportion of the published studies. We found that a distinct
proportion of the research body focuses on tumor detection and segmentation, which is
a vital processing step preceding reporting and large-scale data analysis. However, most
studies concerning tumor classification were still based on manual segmentation, which is
time consuming and has lower reproducibility. We also retrieved numerous studies dealing
with heterogeneous tumor entities, e.g., brain metastases or meningiomas. However, the
incidence and the prognostic and therapeutic landscape of primary brain tumors warrant
the focus of research in this area. In further analysis, a significant proportion of the literature
published since 2022 did not allude to the 2021 WHO classification. Most of the remaining
research papers showed inadequacies regarding study design, methodological reporting,
and communication of results. Ultimately, only 7% of the initially retrieved manuscripts
were included in this scoping review.

We found a disproportionate lack of studies about pediatric brain tumors, diffuse
midline glioma, and low-grade glioma, which is explained by the lower incidence of these
tumor types; however, the representation of these tumor types should be an essential
element of further research.

More high-quality data on the utility of functional imaging and novel MRI techniques
(e.g., CEST or MR fingerprinting) are needed. Most studies report that a combination of
conventional MRI sequences yields appropriate results.

The majority of the relevant literature focuses on predicting IDH mutation and 1p/19q
codeletion status, which has been required since the 2016 WHO classification. Imaging
correlations for other molecular subgroups required for WHO classification since 2021 are
underrepresented.
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The high AUC values reported at 0.8-0.9 are mostly based on including all tumor
grades and types. However, as glioblastomas are the most common adult primary ma-
lignant brain tumor, they typically make up a large portion of the dataset, and smaller
subgroups usually had a worse diagnostic performance (e.g., only 38.5% of oligoden-
droglioma and 62.9% of IDH-mutated astrocytoma were correctly identified compared to
90.6% of IDH-wild-type glioblastoma in [19]). There is only a small number of studies with
the explicit reporting of AUC of tumor subgroups or focusing on low-grade tumors.

Radiomics studies with classic machine learning algorithms prevail, but there is an
increasing trend toward deep learning applications for feature extraction and subtype
classification. Generally, deep learning methods yielded higher AUC results for molec-
ular classification than machine learning algorithms. Even in the era of large public
datasets, only one-fifth of the included studies utilized this data, thus limiting evidence
about generalizability.

While the papers included in this scoping review were selected due to their clear
methodology regarding their algorithms, there are several limitations inherent to the use of
machine learning and deep learning-based medical applications. The multitude of method-
ologies implies limited comparability. The relatively low patient numbers and limited use
of public datasets limit the diversity of the included patient populations. The study designs
with relatively large training and small testing datasets and inherently imbalanced tumor
subgroup populations present an inherent methodological bias, and validation in non-
preselected native populations is missing. Integration into existing healthcare infrastructure
and discussions on data security and ethical considerations surrounding Al-driven decision
making are needed. Future research directions should focus on developing reproducible,
interpretable Al models, enhancing data interoperability and standardization, leveraging
multimodal data integration, and conducting prospective clinical trials to evaluate the
clinical utility of Al-based tools.

A limitation of this scoping review is that the included manuscripts reflect the subjec-
tive evaluation criteria of the reviewers, resulting in an inherent bias in the selection process.
The overall level of evidence of the reviewed manuscripts was Level 3 (case-control studies
and retrospective comparative studies of nonconsecutive patients without consistently
applying the reference “gold” standard).

Some high-quality papers with topics related to but not quite fitting could not be
included in this review. Several research groups are studying imaging correlates of cellular
and genetic heterogeneity in gliomas either in different regions of interest or in imaging-
based tumor habitats [58-63]. A technical consideration has been raised in [64] regarding
the effect of motion on classification results, suggesting a further need for research in
such technical aspects. Another interesting aspect is the impact of preprocessing on the
generalizability of data [25,65].

We extended the knowledge base provided by previous reviews by focusing on recent
literature utilizing the 2021 WHO classification, including pediatric tumors, low-grade
gliomas, and deep-learning applications. We found that radiomics data from multipara-
metric conventional MRI combined with deep learning applications yield high accuracy
in predicting molecular markers, which is followed by classical machine learning algo-
rithms. Despite a plentitude of tools for automated tumor detection and segmentation,
these were underutilized in studies focused on tumor classification. We identified research
gaps concerning pediatric tumors and lower-grade glioma subgroups as well as technical
considerations regarding the quality of input data and the interpretability and general-
izability of algorithms. Relevant future applications may be anticipating changes in the
molecular composition of gliomas and providing information about the cellular and genetic
heterogeneity of glioma subregions.

5. Conclusions

Research on MR-based Al-aided detection of molecular features in gliomas for neu-
roradiological prediction of tumor subtypes according to the 2021 WHO classification
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system is trending, but high-quality study designs are scarce, and generalizability is not yet
achieved. Despite the excellent overall diagnostic performance of algorithmic approaches,
it appears that balancing methods are underutilized, resulting in worse performance for
smaller tumor subgroups (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas). There is
a lack of studies involving patients with rare diagnoses (e.g., pediatric gliomas, midline
gliomas) and utilizing novel MRI techniques (e.g., CEST or synthetic MRI). In summary, by
focusing research efforts on studies that enable generalizability, neuroradiology has the
chance to retain its central diagnostic role in the era of molecular tumor classification.

Supplementary Materials: The following supporting information can be downloaded at https:
/ /www.mdpi.com/article/10.3390/cancers16101792/s1, Table S1: Comprehensive list and data
analysis of included manuscripts.
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