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Simple Summary: Neuroendocrine neoplasms are a heterogeneous group of malignant tumors that
originate from the diffuse endocrine system. They generally have a slow course and somatostatin
receptor-targeted based management is the first line of treatment. However, high-grade tumors and
neuroendocrine carcinomas have a poor prognosis and somatostatin receptor-targeted therapy is not
effective. The membrane receptor CXCR4 has been studied in several neoplasms and it is known
to be overexpressed in aggressive tumors and associated with a worse prognosis. However, there
is a lack of evidence of its use in neuroendocrine neoplasms. For that reason, this review describes
the significance of CXCR4 and its possible clinical applications in the diagnostic and therapeutic
management of neuroendocrine neoplasms.

Abstract: There are several well-described molecular mechanisms that influence cell growth and
are related to the development of cancer. Chemokines constitute a fundamental element that is
not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic dis-
ease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the
chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell
membranes of CXCR4 has been shown to be associated with the development of different kinds of
histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors,
or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads
to the interaction of G proteins and the activation of different intracellular signaling pathways in
both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity
for locoregional aggressiveness, the epithelial–mesenchymal transition (EMT), and the appearance of
metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor.
The aim of this review is to focus on current knowledge of the relationship between CXCR4 and
NENs, with a special emphasis on diagnostic and therapeutic molecular targets.
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1. Introduction
1.1. Role of CXCL12 and CXCR4

Chemokines are a group of small molecules (~8–10 k Da) that belong to the cytokine
family together with angiogenic factors, growth factors, or interferons and are secreted not
only by neoplastic cells but also by macrophages, lymphocytes, or dendritic cells. Their
main function is to stimulate chemotaxis of immune system cells as part of the inflammatory
response through the interaction with fibroblasts or endothelial cells, while in neoplastic
status they induce angiogenesis and sustain cell growth [1]. This action is exerted by
binding the N-terminal domain, which is rich in the amino acid cysteine, to its specific
receptor [2]. Depending on the distribution of this amino acid, four subtypes of cytokines
are identified: CXC, CX3C, CC, and C [3].

Among the 50 types of chemokines known today, the chemokine CXCL12, which
is also recognized as stromal cell-derived factor-1 (SDF-1) [4], has some characteristics
that make it different from the rest of its family. Firstly, it is the only cytokine whose
mRNA can be subjected to a process known as differential splicing, which is why up to
six variants of this molecule have been recognized in humans (α to ϕ) [5,6]. Secondly, it
is a chemokine with an almost exclusive affinity for a single receptor, with nothing to do
with the promiscuity of the rest of the cytokines [7]. Until a few years ago, CXCR4 was
recognized as the only natural receptor for CXCL12, although it has been discovered that it
can also mediate its action through interaction with the atypical chemokine receptor type 3
(ACKR3), previously known as chemokine C-X-C motif receptor 7 (CXCR7) [8,9].

CXCL12 is probably the most important cytokine that binds to CXCR4 but this receptor
does not only bind to this type of molecule. Different ligands for CXCR4 have been
recognized, most notably macrophage inhibitory factor (MIF) [10] and ubiquitin [11,12].

1.2. Structure and Signaling Pathway of the CXCL12-CXCR4-ACKR3 Axis

CXCR4 is a molecular structure that has also presented different names throughout
history. It was initially called leukocyte-derived seven-transmembrane receptor (LESTR)
when it was isolated from a human blood monocyte cDNA library [13]. It has also been
known as cluster of differentiation 184 (CD184) or fusin. The latter name refers to the
ability of the human immunodeficiency virus 1 (HIV-1) to infect human cells by the process
of fusion following the binding of its glycoprotein 120 (gp120) [14]. Although its natural
ligand is the chemokine CXCL12 (as mentioned before), there is greater evidence that it has
a wider spectrum of interactions with other molecules. In fact, it also recognizes ligands as
small proteins like ubiquitin or the macrophage migration inhibiting factor (MIF) [15,16].
This receptor belongs to the family of G protein-coupled receptors (GPCRs), which are
characterized by the presence of seven membrane-spanning α-helical segments separated
by alternating intracellular and extracellular loop regions [17]. The intracytoplasmic domain
of the receptor remains in contact with a heterotrimeric G protein that is composed of a
Gα, Gβ, and Gγ subunits and, when the interaction between CXCL12 and CXCR4 occurs,
the exchange of guanosine diphosphate (GDP) for triphosphate (GTP) leads to a complex
process in which a GTP-bound Gα monomer and a Gβγ dimer are released [18].

The Gα subunit produces an inhibition of the adenylate cyclase leading to an increase
in the intracellular calcium (Figure 1) mediated by the decrease in the concentration of
adenosine 3′,5′-cyclic monophosphate (cAMP). It also interacts directly with the Src family
of tyrosine kinases and then activates the signaling pathway of MEK1/2-Erk1/2 [19].
The Gβγ subunit activates phosphatidyl-inositol-3-OH kinase (PI3K) and consequently
generates an increase in phosphatidylinositol triphosphate (PIP3), while the interaction
with phospholipase C generates diacylglycerol (DAG) and inositol-(1,4,5)-triphosphate
(IP3). IP3 increases intracellular calcium deposition after outflow from the endoplasmic
reticulum (ER), while DAG interacts with protein kinase C and mitogen-activated protein
kinase (MAPK) [20].
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Figure 1. Representation of the signaling pathway in the activation of CXCR4 (left) and ACKR3 
(right). Blue arrows mean activation while red arrows represent metabolic pathway inhibition. Note 
that G proteins and calcium do not participate as second messengers after binding CXCL12 to 
ACKR3. Acronyms: C-X-C motif chemokine ligand 12 (CXCL12), chemokine C-X-C motif receptor 
4 (CXCR4), atypical cytokine receptor type 3 (ACKR3), protein kinase C (PKC), adenylate cyclase 
(AC), adenosine 3′,5′-cyclic monophosphate (cAMP), extracellular signal-regulated kinases (ERK), 
mitogen-activated protein kinase (MAPK), diacylglycerol (DAG), inositol-(1,4,5)-triphosphate (IP3), 
phosphatidylinositol triphosphate (PIP3), phospholipase C (PLC), mammalian target of rapamycin 
(mTOR), endoplasmic reticulum (ER). 

When CXCL12 binds ACKR3/CXCR7, a different signaling pathway is developed be-
cause of the biochemical difference between classical and atypical chemokine receptors, 
which basically boils down to the fact that atypical cytokine receptors (ACKRs) lack G 
proteins and its effects are calcium-independent [21]. The signal pathway through β-ar-
restin proteins becomes the main way the ACKR3 activation leads to its tumorigenic prop-
erties. β-arrestins increase the MEK/ERK axis and the protein kinase B (also known as Akt) 
activity [22]. The binding of CXCR4 to its agonist ligand results in phosphorylation and 
internalization of the receptor [23,24]. However, once inside the cell, it can be recycled and 
transported back to the plasma membrane or it can be degraded in the cell lysosomes [25]. 
The first scenario occurs in a PKC-mediated phenomenon [26], whereas the second case 
takes place after interaction with E3 ubiquitin ligase [27]. 

2. CXCR4 and Cancer 
Firstly, the involvement of CXCR4 as a co-receptor in HIV infection overshadowed 

its potential as a tumorigenesis-related agent and it was not until 1999 when Burger et al. 
noticed that this protein favored migration of B cells in chronic lymphocytic leukemia. 
Since then, the link between CXCR4 and tumoral disease has been reviewed and, for in-
stance, the implication of CXCR4 in more than 23 cancers is well known [28–30]. Consid-
ering that CXCR4 functions involve the promotion of cell growth, proinflammatory cell 
recruitment, angiogenesis, and cell migration, it is not surprising that the pathological ac-
tivation of this receptor favors the development of tumoral disease. To be more accurate, 
the hyperactivation of the CXCL12/CXCR4/AKR3 axis is associated with increased tumor 

Figure 1. Representation of the signaling pathway in the activation of CXCR4 (left) and ACKR3
(right). Blue arrows mean activation while red arrows represent metabolic pathway inhibition.
Note that G proteins and calcium do not participate as second messengers after binding CXCL12 to
ACKR3. Acronyms: C-X-C motif chemokine ligand 12 (CXCL12), chemokine C-X-C motif receptor
4 (CXCR4), atypical cytokine receptor type 3 (ACKR3), protein kinase C (PKC), adenylate cyclase
(AC), adenosine 3′,5′-cyclic monophosphate (cAMP), extracellular signal-regulated kinases (ERK),
mitogen-activated protein kinase (MAPK), diacylglycerol (DAG), inositol-(1,4,5)-triphosphate (IP3),
phosphatidylinositol triphosphate (PIP3), phospholipase C (PLC), mammalian target of rapamycin
(mTOR), endoplasmic reticulum (ER).

When CXCL12 binds ACKR3/CXCR7, a different signaling pathway is developed
because of the biochemical difference between classical and atypical chemokine receptors,
which basically boils down to the fact that atypical cytokine receptors (ACKRs) lack G
proteins and its effects are calcium-independent [21]. The signal pathway through β-
arrestin proteins becomes the main way the ACKR3 activation leads to its tumorigenic
properties. β-arrestins increase the MEK/ERK axis and the protein kinase B (also known as
Akt) activity [22]. The binding of CXCR4 to its agonist ligand results in phosphorylation and
internalization of the receptor [23,24]. However, once inside the cell, it can be recycled and
transported back to the plasma membrane or it can be degraded in the cell lysosomes [25].
The first scenario occurs in a PKC-mediated phenomenon [26], whereas the second case
takes place after interaction with E3 ubiquitin ligase [27].

2. CXCR4 and Cancer

Firstly, the involvement of CXCR4 as a co-receptor in HIV infection overshadowed
its potential as a tumorigenesis-related agent and it was not until 1999 when Burger et al.
noticed that this protein favored migration of B cells in chronic lymphocytic leukemia. Since
then, the link between CXCR4 and tumoral disease has been reviewed and, for instance,
the implication of CXCR4 in more than 23 cancers is well known [28–30]. Considering that
CXCR4 functions involve the promotion of cell growth, proinflammatory cell recruitment,
angiogenesis, and cell migration, it is not surprising that the pathological activation of this
receptor favors the development of tumoral disease. To be more accurate, the hyperactivation
of the CXCL12/CXCR4/AKR3 axis is associated with increased tumor size, lower degree of
cell differentiation, higher probability of recurrence, worse response to chemotherapy, and
decreased overall survival [31,32]. The role it plays in cell growth and its different effects on
stromal tissue have placed this receptor in the spotlight of the scientific community. CXCR4
has been studied in practically all the different types of cancer because its expression is
independently associated with decreased survival [33]. In fact, it is being investigated as to
whether it could be a pan-cancer marker of the microenvironment status [34].



Cancers 2024, 16, 1799 4 of 14

The presence of metastases drastically worsens cancer prognosis and CXCR4 is closely
related to this phenomenon in various solid tumors. It is hypothesized that the upward
adjustment of the CXCR4/CXCL12 axis occurs in organs on which metastases frequently
settle such as the liver, lung, brain, or bone [5,35,36] and this fact can be ratified if it is taken into
account that the blockade of this axis leads to metastatic dissemination in animal studies [37,38].
Regarding the possible underlying mechanisms, the influence on the epithelial–mesenchymal
transition (EMT) is postulated. This is a process characterized by the disarticulation of tight
junctions and loss of apicobasal polarity [39] that facilitates distant dissemination and invasion
of different organs by the acquisition of a mesenchymal phenotype. This process involves
interleukin 11 [40], the NF-kB receptor [41], and CXCR4 [42,43].

Lastly, CXCR4 is closely related not only to solid tumors but also to the hematopoietic
system [44]. Such is the case that the CXCR4/CXCL12-knockout mice exhibit specific
characteristics which consist of heart malformations, abnormal cerebellar development,
and absence of myelopoiesis and B lymphopoiesis [45–47]. This phenomenon can be
explained if we take into consideration that CXCL12 is one of the most relevant cytokines
involved in the chemotactic response of hematopoietic stem cells (HSCs) [48]. Having this
ligand-receptor axis intact results necessary not only for the homing of HSCs through the
bone marrow but also in retaining them in the hematopoietic microenvironment [49,50].
This knowledge has led to the development of strategies that target this level, such as the
CXCR4 antagonist plerixafor, which is used in bone marrow transplant in patients with
multiple myeloma or non-Hodgkin lymphoma due to its ability to mobilize HSCs from the
bone stroma to the peripheral blood [51].

3. CXCR4 and NENs
3.1. Introduction to Neuroendocrine Neoplasms

NENs are a heterogeneous group of malignant tumors whose origin relies in the
cells of the diffuse endocrine system, which are scattered throughout the human body,
although the most frequent locations are in the gastrointestinal (GI) tract or in the lung.
The incidence of NENs varies substantially according to the location of the primary tu-
mor, being approximately 3.56 new cases per 100,000 in gastroenteropancreatic NENs
(GEP-NENs), 1.49/100,000 in bronchopulmonary NENs (BP-NENs), and 0.84/100,000 in
unknown primary NENs [52]. It is important to highlight the association of NENs with
genetic syndromes such as multiple endocrine neoplasia syndrome type 1 [53]. NENs can
be classified depending on whether they produce biologically active substances or not.
Currently, it is considered that about 60% of NENs are non-functioning [54]. Carcinoid
syndrome is the most common of the many syndromes that can develop due to hormone
production [55] (such as insulinoma, glucagonoma, and gastrinoma).

The expression of somatostatin receptors (SSTR) on the cell membrane is a typical
feature of NENs and it has diagnostic as well as therapeutic approaches [56]. In fact,
the ability to diagnose NENs has improved substantially thanks to the incorporation of
gallium-68(68Ga)-labeled DOTA tracers, such as DOTA-TOC, DOTA-TATE, and DOTA-
NOC because of their sensitivity and specificity that reach 97% and 92%, respectively [57],
compared to Indium-111 scintigraphy (sensitivity 72% and specificity 92%).

Somatostatin analogs (SSA) constitute the first line treatment in NENs due to an anti-
secretory as well as an antiproliferative effect. In fact, administration of both octreotide [58]
or lanreotide [59] has demonstrated increases in progression-free survival (PFS) versus
placebo (14.3 vs. 6.0 months, HR 0.34, and >27 vs. 18 months, HR 0.47, respectively) in
GEP-NENs. Regarding BP-NENs, only lanreotide has shown benefits in PFS [60] (16.6
vs. 13.6 months, HR 0.90). There are five types of SSTRs, although the drugs currently
available focus on SSTR2A and SSTR5 agonism [61]. Lanreotide and octreotide mainly
stimulate SSTR2 while pasireotide exerts its action after binding to SSTR2 and SSTR5. In
general, NENs are indolent and slow-growing tumors. The main prognostic factor for
GEP-NENs is the tumor grade according to the latest WHO classification, which takes into
account cytologic features, the number of mitoses per field, and the Ki-67 proliferation
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index [62]. BP-NENs are governed by a similar classification but this does not take into
account the proliferation index but the presence of necrosis on histology [63]. Four variants
can be recognized: typical carcinoid (TC), atypical carcinoid (AC), large-cell neuroendocrine
carcinoma (LCNC), and small-cell neuroendocrine carcinoma (SCNC).

3.2. Implications of CXCR4 Expression in NENs

The molecular study of NENs involves the detection and evaluation of multiple
membrane targets, among which SSTRs are the most important. The more the SSTR is
expressed (especially SSTR2A), the lower the grade and therefore the better the prognosis of
NENs [64–69]. As with other types of neoplasms, the chemokine receptor CXCR4 is becom-
ing increasingly relevant to researchers in the field of NENs. Circelli et al. demonstrated
that the PI3K/Akt/mTOR pathway is enhanced both in GEP-NENs and in BP-NENs cell
lines throughout an upregulation of the CXCR4-CXCL12 axis [70]. Indeed, the hyperactiva-
tion of this intracellular pathway has led to the development of mTOR inhibitors for the
treatment of pancreatic NENs [71,72].

Among the multiple factors that determine the functioning of the CXCL12-CXCR4 axis, the
hypoxia phenomenon plays a fundamental role in carcinogenesis [73–75] and in the homeostasis
of these molecules [76,77]. The hypoxia-inducible factors 1α and 2α (HIF1α and HIF2α) increase
the expression of CXCR4, confer greater aggressiveness, and result in lower survival in patients
with ileal NENs [78,79]. Kaemmerer et al. demonstrated an inverse relationship between
CXCR4 expression and overall survival (OS) in GEP-NENs, since those patients with a marked
expression of this receptor had a lower, although not significant, OS compared to those with a
weak expression (34.0 vs. 50.0 months, p = 0.068). This expression was higher in high-grade
tumors (differentiating also between grades 3a and 3b) versus low-grade tumors. Furthermore,
a positive correlation was identified between CXCR4 and Ki-67 index (r 0.39; p < 0.001) and
with SSTR5 expression (r 0.27; p = 0.003), while SSTR2A expression showed a robust inverse
correlation (r −0.50; p < 0.001) [80].

No clear agreement exists about the relationship between CXCR4 expression and GEP-
NEN location. While Mai et al. showed higher expression in those whose primary tumor is
located in the appendix or colon (p = 0.024) [81], Popa et al. showed no statistical differences
among them, but greater expression in colonic primary tumors but less immunoreactive
intensity in appendix ones [82]. Interestingly, no statistical differences were found in both
studies between primary tumors and metastases in the intensity of expression. In relation
to hormone production, it appears that expression is higher in those non-functioning
neoplasms (p = 0.019) [81]. Regarding BP-NENs, an inverse correlation with OS has also
been shown. TC and AT tend to show lower expression of CXCR4 but are high and intense
in SCLC [83]. The role that CXCR4 plays in the EMT is crucial in the pathogenesis of
metastatic disease in both GEP and BP-NENs [84–87]. It seems that among multiple target
organs, bone involvement is intimately influenced by the overexpression of this receptor, in
both in vitro [88] and in vivo [89] studies.

3.3. CXCR4 as a Target for Imaging Diagnosis on NENs

The use of computed tomography (CT) and magnetic resonance imaging (MRI) scans
is essential in the diagnosis and staging of tumoral disease. However, the use of functional
imaging techniques through the administration of radiotracers has become a cornerstone in
the management of patients with NENs. The main molecular targets in the study of NENs
are somatostatin receptors, especially SSTR2 and SSTR5. The first imaging techniques
that emerged were 111In-DTPA-Pentetreotide (Octreoscan®) and 99mTC-EDDA-HYNIC-
Thr3-octreotide (Tektrotyd®) scintigraphy with improved spatial resolution using single
photon emission tomography (SPECT/CT). Diagnostic performance was subsequently
increased with the introduction of radiopharmaceuticals suitable for positron emission
tomography (PET/CT) such as 68Ga-labeled tracers. However, the expression of SSTRs
decreases with the increasing tumor grade, which influences the 68Ga-PET/CT sensitivity
(72.2% in G1 vs. 40.8% in G3 NENs) and maximum standardized uptake value (SUVmax)



Cancers 2024, 16, 1799 6 of 14

(29.2 in G1 vs. 12.8 in G3 NENs) [90], so SSTR targeting may be less useful in the diagnosis
and follow-up of dedifferentiated NENs. In this scenario, 18F-fluorodeoxyglucose (18F-
FDG) PET/CT provides additional information and insight into the metabolic state of the
neoplastic lesions [91,92]. However, this technique is not free of interferences that may
hinder its correct interpretation [93] and it is therefore necessary to investigate alternative
molecular targets for lesions with a lower degree of differentiation.

In 2008, Uy et al. developed the drug plerixafor (AMD3100), a CXCR4 antagonist that
prevents binding of its ligand CXCL12/SDF-1 and is used for stem cell mobilization from
bone marrow prior to hematopoietic progenitor transplantation [94]. In 2014, Aghanejad et al.
developed a 68Gallium-plerixafor radiotracer that demonstrated its potential utility in the
field of Oncology by detecting breast cancer cells in an in vivo mouse model [95]. However,
previously, Gourni et al. designed a molecule composed of a cyclic peptide CPCR4-2 labeled
with 68Ga (cyclo(D-Tyr1-[NMe]-D-Orn2-[4-(aminomethyl) benzoic acid,68Ga-DOTA]-Arg3-2-
Nal4-Gly5, also known as pentixafor), which has revealed higher specificity for CXR4 and
greater in vivo stability for the study of malignant neoplasms in humans [96–98]. 68Ga-
Pentixafor seems to be an interesting future tool and therefore studies are being carried out to
show the usefulness of this in various types of neoplasms [99].

Regarding NENs, Werner et al. were the first to noninvasively evaluate CXCR4 ex-
pression by 68Ga-Pentixafor PET/CT compared with 68Ga-DOTA-TOC and 18F-FDG
PET/CT in 12 patients with GEP-NENs. 68Ga-Pentixafor was negative in all G1-NENs
while 68Ga-DOTA-TOC and 18F-FDG PET/CT identified lesions in 12/12 and 11/12 pa-
tients, respectively. In G2-NENs, 68Ga-Pentixafor was positive in half of the cases (2/4)
whereas both 68Ga-DOTA-TOC and 18F-FDG were positive in all of them and in G3-NENs
both 68Ga-Pentixafor and 68Ga-DOTA-TOC confirmed positivity in four out of five patients
when 18F-FDG was positive in five out of five of the cases. These data agree with what
has been published to date on the lower expression of SSTR and the increase in CXCR4
at higher tumor grade. However, the results further support the use of 18F-FDG against
direct targeting of CXCR4 with pentixafor. In addition, the number of lesions identified
was markedly lower compared to the other radiotracers, both overall (69 lesions for 68Ga-
Pentixafor, 127 for 18F-FDG, and 245 for 68Ga-DOTA-TOC) and stratified by WHO tumor
grading [100]. Interestingly, not only are there differences in the ability to detect lesions
in different patients but intraindividual variability has also been shown in which some
G3-NENs lesions may be positive for 18F-FDG and negative for 68Ga-Pentixafor or vice
versa. That makes the management of patients with NENs more complex because of the
existence of multiple lesions with different molecular behaviors [101].

To evaluate the diagnostic potential of CXCR4 labeling in dedifferentiated tumors,
Weich et al. confronted 18F-FDG and 68Ga-Pentixafor PET/CT in 11 patients newly
diagnosed from GEP-NEC and studied IHC expression of CXCR4. In a per-patient analysis,
18F-FDG-avid lesions were detected in all patients while 68Ga-Pentixafor was positive in
10/11 patients. In a per lesion analysis, the ability of 18F-FDG to reveal more lesions in
comparison with 68Ga-Pentixafor was shown (102 vs. 42 lesions, p < 0.001). In relation
to radiotracer uptake intensity, 18F-FDG showed a higher SUVmax in contrast to 68Ga-
Pentixafor (12.8 ± 9.8 vs. 5.2 ± 3.7, p < 0.001) and greater tumor-to-background ratios (TBR)
(7.2 ± 7.9 vs. 3.4 ± 3.0, p < 0.001). With respect to IHC, the overall CXCR4 expression was
cataloged as low in 7/11 patients and there was no correlation between the intensity of
CXCR4 expression and the 68Ga-Pentixafor uptake in biopsies [102].

With regard to BP-NENs, the correlation between the 68Ga-Pentixafor uptake in
PET/CT images and the CXCR4 expression by mean fluorescence index and IHC was
studied. Although there was an increased uptake in all patients, no correlation was found
to both cytologic features [103]. However, a study comparing the usefulness of 68Ga-
Pentixafor versus other types of radiotracers in BP-NENs has not yet been developed. In
addition, 68Ga-Pentixafor has not shown an association with clinical parameters such as
OS or PFS both in GP-NENs and SCLC, although it does appear to be related to leukocyte
and platelet counts [104].
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Among the multiple interrelated processes in CXCR4 homeostasis, the Wnt/β-catenin
molecular pathway is fundamental in the correct functioning of the CXCL12-CXCR4
axis [105,106] and is also deregulated in about 25% of patients with GEP, lung, or thy-
mus NENs [107]. For this reason, the possibility of modulating the expression density
of CXCR4 and its 68Ga-Pentixafor binding capacity in NEN cell lines has been studied,
achieving promising results that open the door to future studies with Wnt inhibitors or
activators [108].

3.4. CXCR4 Targeting as Treatment of NENs

Precision medicine consists of individualizing treatment according to the specific
characteristics of each patient and neoplasm. In the case of NENs, a good example is
treatment with SSA, which performs its action specifically against neoplastic cells that
express SSTR in their plasma membrane. However, sometimes, this treatment is not
sufficient and it is necessary to identify new therapeutic targets. CXCR4 emerges as a
possible target and the selective approach against it can be carried out using different
therapeutic strategies [109] (Figure 2).
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3.4.1. Synthetic Peptides

Administration of TF14016, a direct CXCR4 inhibitor, has been shown in animal mod-
els to decrease the number and size of pulmonary metastases in SCLC. In addition, a
lower expression of vascular endothelial cell growth factor was recorded [110]. A cyclic
peptide antagonist called LY2510924 was studied in a phase II trial in patients with SCLC
added to carboplatin/etoposide but did not show efficacy (PFS 5.88 vs. 5.85, p = 0.9806)
although its toxicity profile was acceptable [111]. Although there is limited information
about the treatment of NENs with this type of molecules, there are peptides such as balix-
afortide, motixafortide, and mavorixafor that have been studied in the treatment of solid
neoplasms [112–114], HSC mobilization prior to bone marrow transplantation [115,116],
and even in rare warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis
(WHIM) syndrome [117] but not yet neither in GEP nor BP-NENs.

3.4.2. Monoclonal Antibodies

Several antibodies against CXCR4 have been studied, although most trials are in the
early stages and evidence in NENs is limited [118]. For the time being, no in vivo studies
have been developed and the information available comes from in vitro studies. The effect
of ulocuplumab (a monoclonal antibody that prevents CXCL12 binding) has been studied in
pancreatic NENs [119]. Although it has not been shown to exert a cytolytic effect on tumor
cells, a reduced migration toward the liver and bone by inhibiting EMT has been observed.
Intriguingly, Yingnan Si et al. developed dual SSTR2/CXCR4 targeted extracellular vesicles-
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delivered combined therapy through monoclonal antibodies against pancreatic, thyroid,
and lung NENs [120]. This experimental treatment showed an anticancer efficacy both
in vitro and in vivo models and no systemic toxicity was reported.

3.4.3. Peptide Receptor Radionuclide Therapy

Theragnosis is a medical approach combining diagnosis and therapy to tailor treatment
strategies for individual patients, primarily used in cancer care to identify specific receptors
and then target them with precise radiotracer.

As mentioned above, plerixafor is a CXCR4 antagonist mainly used in hematopoi-
etic stem cell transplants. However, it has also been studied for stem cell collection in
patients with a NEN massive bone marrow infiltration, prior to the administration of 177Lu-
DOTATATE, and initiated after the failure of a granulocyte-colony stimulating factor [121].
NENs are a type of tumor in which peptide receptor radionuclide therapy (PRRT) has been
implemented since the publication of the trial NETTER-1 in 2017 [122]. This trial showed
the superiority of 177Lu-DOTATATE versus SSA high-dose monotherapy in terms of PFS.
Although a non-significant improvement in OS was subsequently identified (36.3 months
vs. 40 months in the PRRT-Lu arm, p = 0.30), this effect was attributed to the high rate (36%)
of cross-over of patients in the control arm to PRRT after progression [123].

The role of 68Ga-Pentixafor in the diagnosis of high-grade NENs and dedifferentiated
NECs has been investigated. However, due to its altered affinity for CXCR4 when interact-
ing with metal-chelate conjugates and its relatively fast clearance [124], 68Ga-Pentixafor
does not appear to be a valid tool for the therapeutic management of malignancies. Thus,
Schottelius et al. designed a novel molecule with improved pharmacokinetics called pen-
tixather, which was labeled with 177Lu [125]. Most of the available evidence for this novel
radiopharmaceutical comes from its endoradiotherapeutic use in hematologic malignan-
cies. It has been shown to elicit high responses and decrease 18F-FDG uptake in multiple
myeloma lesions both bound to 177Lu and 90Y [126,127]. It has also demonstrated utility
in refractory acute leukemia and diffuse large-cell lymphoma [128,129] and may be useful
in glioblastoma cells [130]. The available evidence for pentixather in the treatment of NENs
comes only from BP-NENs in animal studies. On the one hand, 177Lu-Pentixather has been
shown to decrease tumor growth and increase OS in mice with SCLC [131]. On the other
hand, the administration of 212Pb-Pentixather associated with a thioredoxin reductase
inhibitor caused a delay in tumor growth in mice with SCLC xenograft [132].

4. Conclusions

CXCR4 and its ligand CXCL12 are essential in the tumorigenesis and development of
NENs. It appears that SSTRs and CXCR4 maintain an antagonistic relationship that favors
the latter in high-grade, dedifferentiated, and metastatic tumors. Consequently, current
research is focusing on selectively targeting this membrane receptor. At the moment, it
seems that targeted diagnosis using 68Ga-Pentixafor does not provide more information
than 18F-FDG although there are mechanisms that may influence its uptake and be relevant
in the future. The treatment of NENs with molecules specifically directed against CXCR4
is in the preclinical phase, although the data on radiopharmaceuticals such as 177Lu-
Pentixather or 212Pb-Pentixather in the theragnosis treatment of BP-NENs are encouraging.
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