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Simple Summary: Incidence rates of cutaneous squamous cell carcinoma (cSCC) are projected
to increase due to rising exposures to risk factors. While surgical removal continues to be the
mainstay of treatment for low-risk cSCC, management of high-risk cases remains complex and lacks
uniformity. This article serves as an up-to-date review of cSCC, especially highlighting high-risk
patients. Topics reviewed include pathogenesis, molecular markers, and histologic subtypes, with a
particular emphasis on diagnosis and management.

Abstract: Representing the second most common skin cancer, the incidence and disease burden of
cutaneous squamous cell carcinoma (cSCC) continues to increase. Surgical excision of the primary
site effectively cures the majority of cSCC cases. However, an aggressive subset of cSCC persists with
clinicopathological features that are indicative of higher recurrence, metastasis, and mortality risks.
Acceleration of these features is driven by a combination of genetic and environmental factors. The
past several years have seen remarkable progress in shaping the treatment landscape for advanced
cSCC. Risk stratification and clinical management is a top priority. This review provides an overview
of the current perspectives on cSCC with a focus on staging, treatment, and maintenance strategies,
along with future research directions.

Keywords: cutaneous squamous cell carcinoma; American Joint Commission on Cancer; Brigham
and Women’s Hospital staging system; immunotherapy; radiation therapy; chemoprophylaxis

1. Introduction
1.1. Epidemiology

The estimated annual incidence of cutaneous squamous cell carcinoma surpasses one
million in the United States [1]. A notable 1:1 ratio between cSCC and basal cell carcinoma
(BCC) has been observed, underscoring this problem [2]. The increase has been attributed to
known risk factors such as cumulative ultraviolet radiation (UV) exposure, an increasingly
older population, higher rates of systemic immunosuppression, along with expanding skin
cancer screenings.

However, the lack of a standardized reporting system poses a problem. Incidence
and mortality rates on cSCC are not captured by U.S. national cancer registries, posing a
challenge in determining the precise epidemiology in our country. For this reason, a large
proportion of the literature related to this topic originates from Europe. A recent study
in Germany retrieved incidence data from cancer registries of three European countries
with the aim to predict trends up to 2044. From 2023 to 2024, model prediction revealed an
annual percent increase ranging from 2.4% to 5.7% [3].

Aggressive cSCC is associated with a notably high risk of mortality. Mortality rates for
cSCC have reached as high as that of melanoma in the southern and central regions of the
United States [1]. Estimates for the United States were proposed based on available data in
2012. Among the estimated 186,157 to 419,543 white individuals who received a diagnosis
of cSCC, approximately 3% of individuals with cSCC developed nodal metastases [1]. Also,
an estimated 2.1% of additional cSCCs would arise from those same individuals within the
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same year [1]. As the population ages and exogenous immunosuppression increases, the
incidence of cSCC rises. While dermoscopy enhances early detection of cSCC compared
to the naked eye, its utility remains non-predictive. A comprehensive understanding is
necessary to guide proper work-up and management of cSCC.

1.2. Pathogenesis

A majority of cSCCs originate from precursor lesions such as actinic keratoses and
squamous cell carcinoma in situ (SCCIS). Supported by the concept of field cancerization,
the pathogenesis of cSCCs takes a distinct course as mutations accumulate over time under
the stress of an array of environmental and genetic factors, such as UV radiation [4].

At a molecular level, strong evidence regarding the tumor microenvironment (TME)
of advanced cSCC has been shown to have increased levels of TGF-β, IL-10 and regula-
tory T cells (Treg). The infiltration of Treg into the TME attenuates anti-tumor immune
responses [5]. Downregulation of plasmacytoid dendritic cells (pDCs) in advanced cSCC
was also reported in comparison to well-differentiated cSCC [6]. Through tumor-associated
antigen presentation, pDCs have the potential to induce anti-tumor immunity [7,8]. To-
gether, these results provide an absence of an inflammatory microenvironment to fight
advanced cSCC lesions. These add important insights into immunoregulatory mechanisms
in cSCC.

Sequencing of cSCCs has noted persistent clonal expansion in NOTCH1/2, CDKN2A,
HRAS, TP53, and TGF-β-R1 mutations, further emphasizing their role as drivers of tu-
morigenesis at initial stages [9]. Additionally, mutations in the COL11A1 gene facilitate
collagen protein production with a dominant-negative effect, ultimately interrupting the
architecture of the extracellular matrix [10]. This further accelerates malignant invasion via
the epidermal basement membrane [10]. The mutational burden of cSCC surpasses that in
lung cancer and melanoma [11,12]. Prior research has identified TP53 as the most altered
tumor suppressor gene in individuals with cSCC [13]. Mutations in TP53 are involved
in many human malignancies, primarily through resistance to apoptosis. Other known
frequently mutated genes in cSCC are CDKN2A, Ras, and NOTCH homolog 1 [14,15].
TP53 and Ras mutations have been observed in actinic keratosis, lesions that result from
cumulative sun exposure with the potential of cSCC progression [16–19].

Furthermore, tumor cell plasticity drives the shift from epithelial to mesenchymal
states which significantly contributes to multidrug resistance and metastatic potential.
Deletion of cadherin-related FAT1 protein in both murine and human skin cancer models
have shown to promote an epithelial–mesenchymal transition (EMT) phenotype [20]. De-
velopment of such phenotype enriches tumor stemness features to enhance tumor survival.

The multifaceted pathogenesis of cSCC presents as a prominent barrier in treatment
development as singular drug targets fail to cover the extensive mutational landscape.

1.3. Major Risk Factors
1.3.1. Heritable Conditions

Several genetic factors have been linked to cSCC progression. Aside from a family
history of skin cancer and blue-eyed phenotype, inherited disorders have also exhibited a
heightened risk of developing cSCC due to its clear association with photosensitivity. These
single-gene Mendelian disorders include xeroderma pigmentosum (XP), oculocutaneous
albinism, and Kindler syndrome [21,22].

1.3.2. Immune Status

Acquired immunosuppression, often a result of hematologic malignancies and pro-
longed immunosuppressive regimens, predisposes to cSCC. For instance, human immun-
odeficiency virus (HIV) infection has a 2.6-fold increase of cSCC compared to HIV-negative
individuals [23]. Additionally, chronic lymphocytic leukemia (CLL) is one of the most
common hematologic malignancies associated with cSCC. A 2021 systematic review demon-
strated an 11.5% cSCC-associated mortality rate in CLL patients [24].



Cancers 2024, 16, 1800 3 of 17

The most common skin cancer in solid organ transplant recipients (SOTR) is cSCC,
with a documented 65 to 100-fold increase in incidence in comparison to the general
population [25]. A 2021 systematic review found that Latin American solid organ transplant
recipients have a higher prevalence of cSCC [26]. Importantly, immunosuppressed patients
with metastatic cSCC have 5-year survival rates of 50–83% [27]. Profiling of cSCC tumors in
immunosuppressed patients demonstrated an absence of B cells in the peritumoral stroma,
a distinct feature observed in immunocompetent individuals [28].

1.3.3. UV Exposure

Cumulative exposure from sunlight and tanning beds is a major factor for cSCC
development, predominately in Caucasians, men, and the elderly [29]. A 2020 study found
men were more likely to have cSCC on the head and neck, while women were more likely
to have them on the lower limbs [30]. Despite being less common in black patients, cSCC
has higher mortality in this population, at a rate of 18.4% [31]. This is much higher than the
general population (4%) [32]. Delayed diagnosis of cSCC within black patients is a major
contributor.

1.3.4. Chemical Pollutants

Environmental exposures, such as arsenic, radon, and polycyclic aromatic hydro-
carbons, were all associated with an elevated risk of cSCC development. Arsenic has
traditionally been incorporated into pesticides and is occasionally found in well water.
A 2010 study observed an increased level of arsenic in Asian herbal preparations [33].
Additionally, a prospective cohort study concluded that certain occupations, such as mili-
tary personnel, postal workers, and public safety workers, exhibited an increased risk of
developing cSCC [34].

1.3.5. HPV

There is a clear association between cSCC and human papillomavirus (HPV). Onco-
genes such as E6 and E7 are featured in HPV types 16 and 18, respectively, where constitu-
tive activation drives tumorigenesis [35]. HPV 16 stands as the predominant viral subtype
in ungual cSCC, highlighted by its detection in 74% of cases [36]. A 2016 meta-analysis
identified additional HPV subtypes 5, 8, 17, 20, and 38 were associated with an increased
risk of developing cSCC in immunocompetent individuals [37]. SOTRs often carry HPV
types 8, 9, and 15 [38]. Of note, HPV is not actively transcribed in cSCC but serves as a
catalyst in the initial stages of tumorigenesis.

1.3.6. Drugs

Medications that can increase the risk of cSCC range from immunosuppressive agents
and antimetabolites (mycophenolate mofetil, azathioprine, cyclosporine A, cyclophos-
phamide) to diuretics (hydrochlorothiazide) [39]. A 2018 meta-analysis revealed a dose-
response risk of cSCC associated with the use of voriconazole among lung or hematopoietic
transplant patients [40]. A 2022 review showed patients with myelofibrosis or polycythemia
taking ruxolitinib, a Janus-Kinase (JAK) inhibitor, had an increased risk of cSCC, with the
earliest case being 11 months after therapy initiation [41].

Vismodegib, a hedgehog pathway inhibitor indicated for advanced or metastatic
basal cell carcinoma (BCC), was previously shown to have an 8-fold increase of cSCC, but
this conclusion has not been reproducible in recent studies [42,43]. Thus, more research
is warranted. The use of a v-Raf murine sarcoma viral oncogene homolog β1 (BRAF)
inhibitor has revolutionized the treatment paradigm for metastatic melanoma. However,
the development of cSCC in 19–26% of patients has been reported [44]. Latest research
advancements have explored the utilization of MAPK (mitogen-activated protein kinase)
kinase inhibitor (MEKi) with BRAF to minimize this risk factor as inhibition of upstream
activators that phosphorylate ERK-1/ERK-2 in the MAPK pathway have been shown to
hinder the promotion of human cSCC cell lines [45].



Cancers 2024, 16, 1800 4 of 17

2. Recurrence and Metastatic Risk

Staging serves to risk stratify by identifying high-risk cases that may benefit from
adjuvant therapy or closer monitoring. The American Joint Committee on Cancer Staging
Manual (AJCC-8) and Brigham and Women’s Hospital (BWH) are the most used staging
systems for cSCC (Table 1).

Table 1. American Joint Committee on Cancer (AJCC) cutaneous SCC staging system for tumors of
the head and neck skin 8th edition ¥.

T Cate-
gory T Criteria N Cat-

egory N Criteria for Pathologic N M Cat-
egory M Criteria

TX Primary tumor cannot be identified NX Regional lymph nodes cannot be assessed M0
M1

No distant metastasis
Distant metastasis

Tis Carcinoma in situ N0 No regional lymph node metastasis

T1 Tumor < 2 cm in greatest dimension N1 Metastasis in a single ipsilateral lymph node,
≤3 cm in greatest dimension and ENE− *

T2 Tumor ≥ 2 cm but <4 cm in greatest
dimension N2

Metastasis in a single ipsilateral lymph node
≤3 cm in greatest dimension and ENE+; or >3 cm
but not >6 cm in greatest dimension and ENE−; or

metastases in multiple ipsilateral lymph nodes,
none >6 cm in greatest dimension and ENE−; or in
bilateral or contralateral lymph nodes, none > 6 cm

in greatest dimension and ENE−

T3

Tumor ≥ 4 cm in clinical diameter
OR minor bone erosion OR

perineural invasion OR deep
invasion †

N2a

Metastasis in single ipsilateral or contralateral
node ≤3 cm in greatest dimension and ENE+; or

in a single ipsilateral node > 3 cm but not > 6 cm in
greatest dimension and ENE−

T4
Tumor with gross cortical

bone/marrow, skull base invasion,
and/or skull base foramen invasion

N2b Metastasis in multiple ipsilateral nodes,
none > 6 cm in greatest dimension and ENE−

T4a Tumor with gross cortical
bone/marrow invasion N2c

Metastasis in bilateral or contralateral lymph
nodes, none > 6 cm in greatest dimension and

ENE−

T4b
Tumor with skull base invasion

and/or skull base foramen
involvement

N3

Metastasis in a lymph node > 6 cm in greatest
dimension and ENE−; or in a single ipsilateral

node >3 cm in greatest dimension and ENE+; or
multiple ipsilateral, contralateral, or bilateral

nodes, any with ENE+

N3a Metastasis in a lymph node >6 cm in greatest
dimension and ENE−

N3b

Metastasis in a single ipsilateral node >3 cm in
greatest dimension and ENE+; or multiple

ipsilateral, contralateral, or bilateral nodes, any
with ENE+

Brigham and Women’s Hospital Tumor Staging System £

Stage No. of High-Risk Factors ‡

T1 0

T2a 1

T2b 2–3

T3 ≥4

ENE, Extranodal Extension; * Extension through the lymph node capsule into surrounding connective tissue,
with or without stromal reaction. † Deep invasion is defined as invasion beyond subcutaneous fat or 6 mm (as
measured from granular layer of adjacent normal epidermis to the base of the tumor). Perineural invasion is
defined as tumor cells within the nerve sheath of a nerve deeper than the dermis or measuring ≥0.1 mm or
presenting with clinical or radiographic involvement of named nerves without skull base invasion. ‡ Brigham and
Women’s Hospital high-risk factors include tumor diameter ≥2 cm, poorly differentiated histology, perineural
invasion ≥0.1 mm, or tumor invasion beyond the subcutaneous fat (excluding bone invasion which automatically
upgrades tumor to Brigham and Women’s Hospital stage T3). ¥ Obtained with permission from AJCC Cancer
Staging Manual, 8th edition, Springer International Publishing, New York, New York, © 2017 [46]. £ Obtained
with permission from Que et al., 2018 [47].
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Defining High Risk

Several characteristics have been connected to increased disease recurrence and poor
prognosis. A 2023 meta-analysis highlighted that the highest risk for local recurrence
and disease-specific death in cSCC was tumor invasion beyond the subcutaneous fat.
Tumor diameter greater than or equal to 2.0 cm increases the risk of local recurrence,
metastasis, and disease-specific mortality [48–50]. The greatest risk for distant metastases
was perineural invasion [51]. A 2017 systematic review revealed that patients with clinical
or radiologic evidence of perineural invasion experienced worse 5-year recurrence-free
survival or disease-specific survival compared to those where perineural invasion was
incidentally discovered on biopsy [52]. This suggests that when the disease manifests
symptoms or appears on imaging, it may act more aggressively than if neural involvement
were identified solely microscopically.

Tumor-associated factors help stratify risk and prognosis, but the definition of a high-
risk cSCC lacks universal consensus. Both staging systems classify T1 as low risk. BWH
T2a also appears to be low risk. BWH classifications of T2b and T3 offer a risk of nodal
metastases that surpasses 20%, but metastatic risk evaluation in the AJCC-8 system remains
limited [53].

Patient comorbidities, immune status, and past surgical history must be accounted
for when defining high risk. A 2023 systematic review and meta-analysis of cSCC patients
demonstrated immunosuppression increased the risk of local recurrence, nodal metastasis,
locoregional recurrence, and all-cause mortality [51]. Another 2019 systematic review
confirmed increased metastatic risk in immunosuppressed populations [54]. However, it
seems the type of immunosuppression matters. HIV-positive individuals have an increased
risk for locoregional recurrence, while SOTRs face a higher risk of locoregional recurrence
and nodal metastases [51]. Other factors that predispose to a poor prognosis include a
personal history of prior cSCC, recurrent cSCC, and cSCC arising from chronic ulcers or
scars at a prior surgical site [48,50].

The histologic subtypes of cSCC differ in metastatic potential. Keratoacanthoma and
verrucous carcinoma are well-differentiated subtypes of low metastatic potential. Con-
versely, poorly differentiated subtypes such as desmoplastic cSCC have a poor prognosis.
This is supported by its highly infiltrative nature, as it has been shown to metastasize
six times more often than other variants [55]. The adenosquamous variant has a more
aggressive profile with high rates of recurrence and metastasis [56].

At a molecular level, studies comparing higher-risk metastatic cSCC with lower-risk
cSCC or AK have found higher CpG methylation levels in metastatic cSCC compared to its
precursors. Thus, incorporating methylation status in cSCC workup may predict overall
survival [57]. However, these are non-standard methods. Additionally, a genetic expression
test evaluating 40 genes has been validated in stratifying the risk of cSCC metastasis. Class
1 has an 8.9% risk of metastasis, class 2a has a 20.4% risk, and class 2b has a 60% risk of
metastasis. However, this test was studied only in a retrospective fashion, and thus, further
prospective tests are needed [58].

3. Approaches to Treatment

Management of most SCCIS cases involves electrodesiccation and curettage (ED&C),
as supported by its high success rate, with up to a 97% cure rate depending on the body
region [59,60]. For invasive lesions, surgery, with either Mohs micrographic surgery (MMS)
or wide local excision (WLE), is the treatment of choice [61,62]. The risk of recurrence
and metastasis have seen a significant reduction with MMS, specifically three times lower
compared to standard excision [63]. For cases associated with high-risk features, MMS
represents the gold standard treatment [64]. However, not all tumors are easily resectable.
Important subsets ranging from large, bulky tumors to lesions that reside near critical
anatomical structures intensifies case complexity. Thus, multidisciplinary approaches such
as systemic therapy are vital to cSCC management.
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Although there is no universal consensus to support the use of adjuvant therapy, some
patients may receive adjuvant therapy in addition to surgery, particularly in high-risk cSCC.
This is defined as stage T2b/T3 in the BWH staging system or T3 in the AJCC-8 system.
Other considerations not in the staging systems that predispose to a higher risk include
immunosuppression, lymphovascular invasion, cSCC associated with a scar or chronic
inflammatory disease, or history of recurrence [65].

The benefits of adjuvant radiation or chemotherapy for cases of distinct surgical mar-
gins remain unestablished. A 2019 retrospective study of cSCC of the head and neck
revealed that adjuvant radiation therapy after surgical clearance with clear margins was
associated with improved overall survival (HR: 0.59; 95% CI, 0.38 to 0.90). It also reported
improved disease-free survival in tumors with peripheral nerve involvement (HR: 0.47,
95% CI, 0.23 to 0.93) [66]. A 2022 retrospective study of 508 patients evaluated high T-
stage cSCC treated with adjuvant radiation therapy after surgery with clear margins. The
results suggest a 5-year lower cumulative incidence of local recurrence and locoregional
recurrence (3.6%, 7.5%) compared to surgery with clear margins alone (8.7% and 15.3%,
respectively) [67]. Furthermore, adjuvant PD-1 therapy is currently investigated in phase
3 studies such as C-POST (NCT0396004) and KEYNOTE-630 (NCT03833167) [68]. How-
ever, there have been other studies that rival these observations, showing no benefit of
adjuvant radiation therapy over surgical therapy alone with clear margins [69]. Thus, the
integration of adjuvant therapies has not yet become standard but is an area of ongoing
research. Multidisciplinary approaches to complex cases remain crucial and should be
highly considered.

3.1. Immune Checkpoint (Anti-PD1) Inhibitors

Prior to the emergence of EGFR and PD-1 inhibitors, cytotoxic chemotherapeutic
agents such as doxorubicin, cisplatin, and paclitaxel have yielded high efficacy in treating
cSCC [70]. However, concerns surrounding temporary response rates due to acquired
resistance and treatment-related toxicities have raised concerns.

There are two FDA-approved PD-1 inhibitors utilized for the therapy of cSCC: cemi-
plimab and pembrolizumab [71,72]. Response to PD-1 inhibition ranges from 34 to 52%
for unresectable stage la disease and metastatic disease [73]. In the EMPOWER studies,
Cemiplimab yielded objective responses in 44% of the sample population [71,72]. In addi-
tion, the CARKSIN trial found that, for patients with PD-L1+ staining cSCC tumors, there
was an objective response rate (ORR) of 55% to pembrolizumab, while PD-L1- staining
tumors had an ORR of only 17% to pembrolizumab [74]. This further emphasizes the
notion of considering staining for PD-L1+ during tumor work-up [51]. Tumors with a high
mutational burden have shown to be more responsive to PD-1 inhibitors compared to those
that have a lower mutational burden. Currently, PD-1 inhibitor treatment guidelines for
patients with cSCC do not account for mutational burden [71,72,75–78].

A 2020 systematic review of 131 patients treated with PD-1 inhibitors for locally
advanced, regionally metastatic, and distant metastatic cSCC presented a complete response
in 10% of cases and a partial response in 50% of cases. Notably, 60% and 79% had radiation
and chemotherapy, respectively, prior to PD-1 inhibition [79]. Interestingly, a large study
of melanoma patients treated with PD-1 inhibitors showed that the risk of progression
decreased by 13% for each decade of age [80].

Limited data exists for PD-1 inhibitor use in transplant patients. A 2020 systematic
review evaluated 57 transplant patients on immune checkpoint inhibitors for advanced
malignancies; 37% experienced organ rejection, and 14% died from rejection [81]. Kidney
patients were most affected, followed by the liver then the heart. The overall response rate
for PD-1 inhibitors was 40% [81]. This study demonstrated the imbalance of risk versus
benefit when considering checkpoint inhibitors in transplant patients. HIV patients showed
a response to PD-1 therapy without unexpected adverse events. It had no effects on HIV
viremia or CD4+ count [80,82]. Stratifying patients based on immunosuppression type is
crucial when considering their risk and treatment options.
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Overall, the PD-1 inhibitors are well-tolerated, but grade 3 toxic effects have been
reported in 6% to 51% of patients [71,72,75–78]. Adverse events observed in any grade
include diarrhea (27%), fatigue (27%), nausea (17%), rash (15%), and constipation (15%),
with many side effects linked to autoimmune reactions [71].

3.2. EGFR Inhibitors

The high surface expression of epidermal growth factor receptors (EGFR) on cSCCs
prompted the development of targeted therapy against this Ras-Raf-mitogen-activated pro-
tein kinase pathway, with cetuximab being a therapeutic option for advanced cSCCs [83,84].

A 2023 systematic review of EGFR inhibitors in advanced cSCC revealed a modest
response rate of 28%, with a mean progression-free survival of 4.8 months and an overall
survival of 11.7 months [84,85]. This is notably inferior to Programmed cell death protein-1
(PD-1) inhibitor therapy. However, it may be useful in patients who are not candidates
for PD-1 inhibitors, including SOTRs or those with uncontrolled autoimmune disorders.
When combined with radiation or cisplatin therapy, cetuximab, an EGFR inhibitor, had
a 50–78% response rate. Unfortunately, the response was not sustained for more than
14.6 months [86–88]. The I-TACKLE trial studied EGFR inhibitors combined with PD-1
inhibitors: cetuximab plus pembrolizumab. This had an overall response rate of 38%, which
was superior to pembrolizumab alone (34%) in locally advanced/metastatic cSCC [89]. Of
note, combining EGFR and PD-1 inhibitors in other squamous cell cancers (i.e., non-small
cell lung cancer) has shown high-grade adverse effects such as hepatotoxicity [90,91].

3.3. Antiviral Therapies (HPV Vaccines)

While alpha-HPV is responsible for most cSCCs, recent evidence has shown beta-HPV
to contribute to cSCC tumorigenesis as well. Current investigations on beta-HPV vaccines
are underway to aid in targeted therapy of newly discovered strains [92].

3.4. Other Emerging Therapies

There are currently no drugs designed for the treatment of cSCC specifically. However,
histone deacetylase inhibitors (vorinostat, remetinostat, abexinostat) are currently being
investigated [93,94]. Acetylation of histones via histone deacetylase (HDAC) enzymes
plays a key role in cSCC-related gene regulation [93,94]. Dysregulation of HDACs drives
tumorigenesis [95]. Thus, inhibition of HDACs has been shown to induce apoptosis in
tumor cells through the accumulation of reactive oxygen species (ROS) [95].

Investigations regarding combination therapies are underway. This includes pairings
between EGFR inhibitors, Anti-PD1 inhibitors, HDAC inhibitors (abexinostat), and radi-
ation therapy (NCT03944941) (NCT03590054) (NCT03666325). Additional clinical trials
on immune checkpoint blockade are currently under investigation as well. Further trials
on immune checkpoint blockade include anti-CTLA4 inhibitors such as ipilimumab and
tremelimumab as neoadjuvants in treating cSCC. (NCT04620200) (NCT03450967) [96].

Talimogene laherparepvec (TVEC) is an oncolytic immunotherapy formulated through
genetic modification of herpes simplex virus type 1 (HSV-1) [97]. The mechanism of action
aims to selectively replicate the virus and propagate it in tumor cells to increase antigen
presentation on MHC-I cells, allowing for more tumor-antigen presentation by dendritic
cells [97]. TVEC was shown to temporize the advancement of a cSCC in a SOTR in one case
report, and ongoing investigations through Phase Ib/Phase II trials are currently underway
to further examine its utility [98–100]. Table 2 provides a comprehensive summary of the
more recent therapies for cSCC as discussed above.

PI3K/mTOR inhibitors have demonstrated safety in patients with squamous cell
carcinoma in situ (SCCIS), although efficacy endpoints were not met (NCT03333694).

Other non-medical or surgical approaches have demonstrated efficacy in treating mi-
croinvasive and invasive SCC, including ablative fractional lasers and plum blossom needle
treatments [101]. In a phase II study involving 25 patients, injection of the photosensitizer
temoporfin achieved a complete response in 96% of cases [102]. Future possibilities include
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the utilization of nanoparticles to facilitate deeper penetration of photosensitizers, targeting
tumors, and enhancing the overall efficacy of PDT [103].

Table 2. Newer and emerging therapies for cSCC.

Therapeutic
Agent Study Population Mechanism of Action Adverse Effects Clinical Trial

EGFR Inhibitor

Cetuximab
[84,104]

Locally advanced or
recurrent/metastatic

cSCC

Chimeric monoclonal antibody
against EGFR

Infusion related
reactions, acneiform

rash, pruritis, infection,
GI discomfort

NCT03325738

Panitumumab,
[105]

Locally advanced or
recurrent/metastatic

cSCC

Humanized monoclonal
antibody against EGFR Fatigue, acneiform rash

Lapatinib, [106]

Neoadjuvant therapy
for locally advanced or
recurrent/metastatic

cSCC

Small-molecule TKI Diarrhea, rash,
pancreatitis NCT0166431

Erlotinib, [107]

Nonresectable locally
advanced or

recurrent/metastatic
cSCC

Small-molecule TKI Acneiform rash,
diarrhea NCT01198028

Gefitinib, [108]
Locally advanced or
recurrent/metastatic

cSCC
Small-molecule TKI

Acneiform rash,
diarrhea, fatigue,

nausea

Immunotherapy

Cemiplimab, [75]

Locally advanced or
recurrent/metastatic
cSCC in unresectable

setting

Anti-PD1 Inhibitor: Engineered
humanized IgG4 monoclonal

antibody that binds to PD-1 and
blocks ligand interaction
between PD-L1 & PD-L2

Fatigue, pruritus,
diarrhea,

hypothyroidism,
arthralgia

EMPOWER-CSCC

Pembrolizumab,
[74,76]

Locally advanced or
recurrent/metastatic
cSCC in unresectable

setting

Anti-PD1 Inhibitor: Engineered
humanized IgG4 monoclonal

antibody that binds to PD-1 and
blocks ligand interaction
between PD-L1 & PD-L2

Fatigue, pruritus,
diarrhea, asthenia,
hypothyroidism,

pneumonitis

KEYNOTE-629
CARSKIN

Talimogene
laherparepvec
(TVEC) †, [97]

Recurrent cSCC
following SOTR (case

report), Low risk cSCC

Genetically modified herpes
simplex virus 1 that selectively

replicates in tumor cells to
promote tumor-antigen

presentation

Thrombocytopenia,
transient fatigue,

flu-like symptoms,
headache

NCT04349436

HDAC Inhibitors, [93–95]

Vorinostat †
Concurrent radiation

therapy in Stage III, IVa,
IVb HNSCC

Inhibits histone deacetylation to
repress gene transcription

Anemia, leukopenia,
weight loss, mucositis,

xerostomia, nausea,
hyponatremia,

dysphagia

NCT01064921

Remetinostat †

Abexinostat †,‡

Neoadjuvant for
non-invasive cSCC

Combined with
Pembrolizumab for

advanced solid tumor
malignancies

Inhibits histone deacetylation to
repress gene transcription

Inhibits histone deacetylation to
repress gene transcription

No reported systemic
adverse effects

N/A

NCT03875859
NCT03590054
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Table 2. Cont.

Therapeutic
Agent Study Population Mechanism of Action Adverse Effects Clinical Trial

Anti-CTLA4 Inhibitors

Ipilimumab †,
[109,110]

Neoadjuvant in
advanced cSCC prior to

surgery, allograft
patients

Antibody against CTLA-4 to
downregulate T-cell activation
and proinflammatory cytokine

release

Morbilliform rash,
pruritus

NCT04620200
NCT03816332

Tremelimumab †,
[96]

Neoadjuvant for
recurrent or metastatic

HNSCC

Antibody against CTLA-4 to
downregulate T-cell activation
and proinflammatory cytokine

release

Anemia, constipation,
pneumonia, electrolyte

imbalances,
hyperglycemia

NCT03450967

PI3K/mTOR Inhibitors

CLL442 *,† SCCis
Inhibits PI3K/mTOR pathway to
downregulate cell migration and

lymphocyte differentiation

No severe adverse
effects reported with
topical application

NCT03333694

Abbreviations: EGFR, epidermal growth factor receptor; TKI, tyrosine kinase inhibitor; PD1, programmed death-1;
PD-L1/2, programmed death ligand 1/2; cSCC, cutaneous squamous cell carcinoma; SOTR, solid organ transplant
recipient; HDAC, histone deacetylase; CTLA4, cytotoxic T-lymphocyte-associated antigen 4; HNSCC, head & neck
squamous cell carcinoma; PI3K/mTOR, phosphatidylinositol-3-kinase/mammalian target of rapamycin; SCCis,
squamous cell carcinoma in situ; * Primary outcome of lesion clearance not achieved; † Emerging therapeutic
strategies in early-stage clinical trials; ‡ Ongoing clinical trial with no reported data yet.

4. Preventative Measures and Chemoprophylaxis

For the general population, sun protection measures, including sunscreen, clothing
barriers, and sun avoidance at peak hours, are recommended for cSCC prevention, along
with follow-up dermatologic exams. High-risk populations consisting of SOTRs, individ-
uals with hematological malignancies, and other immunosuppressed populations may
require secondary chemoprevention measures. Specifically, chemoprophylaxis may be war-
ranted for patients who have had ≥ five non-SSCIS or one high-stage cSCC. Various agents,
such as 5-fluorouracil, resveratrol, vitamin D, and methotrexate, have shown improved
effectiveness against SCC cells in both in vitro and in vivo settings [111–114].

Two widely used chemoprophylaxis methods involve topical 5-fluorouracil (5-FU)
and photodynamic therapy (PDT), specifically for precancerous lesions such as AKs. A
2018 randomized trial involving 932 veterans indicated a 75% drastic risk reduction in
cSCC development for 1 year following the application of 5-FU topical cream twice daily
for 2–4 weeks on the face and ears [115].

PDT utilizes topical photosensitizers such as 5-aminolevulinic acid (5-ALA) combined
with phototherapy to produce ROS with the aim of eliminating the proliferating cells
driving AKs and SCCIS [116]. It is FDA-approved to treat AKs and other superficial
dermatologic neoplasms. Close monitoring is needed for this modality, as sun exposure can
exacerbate adverse effects of blistering, erythema, and pain [117–119]. When comparing
the effectiveness between topical 5-FU and PDT in patients with SCCIS, reported response
rates at the 12-month mark highlighted a higher value for PDT (82%) over topical 5-FU
(48%) [120].

Oral therapeutic options include retinoids, such as acitretin or isotretinoin. Retinoids
contribute greatly to cSCC chemoprophylaxis through multiple mechanisms pertaining to
immunomodulation and cell cycle control [103,121]. Although all mechanisms are not fully
understood, several studies have highlighted a reduction in cSCC development in particu-
lar immunosuppressed cohorts such as patients with XP and SOTRs [122–125]. Treatment
is initiated based on the following criteria: > five cSCCs within 2–3 years, development
of UV-related T2b/T3 cSCC, and cSCCs that are unresponsive to 5-FU or PDT [65]. Close
monitoring for adverse effects is crucial. This includes ordering a baseline complete blood
cell count, serum creatinine, lipid panel, and liver function tests (LFTs). Monthly dosage
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increases require lipid panels and LFTs. Once the patient is on a stable dose, lipids and
LFTs should be conducted every three months [65]. Patients with renal dysfunction or a
kidney transplant should have creatinine monitored [126]. Treatment adherence remains
imperative as the therapeutic effects of acitretin diminish rapidly following discontinua-
tion [127].

Nicotinamide, a form of vitamin B3, is another oral agent for chemoprevention of
cSCC. It is thought to repair UV-associated DNA damage through a series of redox re-
actions [128,129]. In one study in an immunocompetent population, it reduced cSCC
burden by 30% [130]. However, a study of SOTRs taking nicotinamide showed no statistical
difference in reducing cSCCs, but this study was notably limited by an underpowered
design [131]. Despite inconsistent results, its low cost and safety profile in comparison to
acitretin is appealing [132]. While the trials listed previously reported no adverse effects,
caution is advised as high doses (> 3 g/day) can result in reversible hepatotoxicity [133].
Given the premature conclusions drawn from limited studies, larger trials are needed to
evaluate the benefits of nicotinamide chemoprophylaxis in SOTRs.

Multi-disciplinary management is essential in chemopreventive measures for SOTRs
to mitigate risks. When there is a heightened concern for cSCC, a major consideration
is to replace immunosuppressants with sirolimus. Sirolimus is an inhibitor of the mam-
malian target of rapamycin (mTOR), a central component in stimulating mitogenic cell
division [134]. Studies have indicated a significantly lower susceptibility to cSCC among
SOTRs with sirolimus as a part of their regimen [135,136]. Sirolimus side effects most
frequently include hyperlipidemia and myelosuppression. Other side effects include pe-
ripheral edema, rash, and abdominal pain [137,138]. It should be noted that fewer events
have been reported when following gradual conversion protocols [137,138].

Capecitabine is another immunosuppressant option in patients with multiple cSCCs.
Capecitabine is a prodrug of 5-FU that inhibits thymidylate synthase, further disrupting
RNA and DNA biosynthesis [139]. As a prodrug, the safety profile varies slightly from that
of 5-FU, with more hand–foot syndrome than gastrointestinal discomfort [140]. The benefits
of capecitabine are clear, with utility in preventing AKs and SCCIS. It is imperative that
individuals are screened for dihydropyrimidine dehydrogenase deficiency, as the use of
capecitabine may lead to systemic toxicity and death [141]. Previous studies have indicated
potential in prevention efficacy with a 68% reduction of cSCC per month over one year in
SOTRs [142].

Lastly, SRC family kinase (SFK) inhibitors have shown promising results as a method
of primary prevention. A highly investigated oncogenic cascade, phosphatidylinositol
3-kinase (PI3K) is one of the downstream kinases of the EGFR pathway. Overactivation
of the PI3K signaling pathway has been observed in cSCC [143]. As a lipid kinase, its
involvement in the cell cycle and survival is based on its role in modulating downstream
signaling through the recruitment of cytoplasmic proteins to the membrane surface [144].
Early-phase clinical trials focused on targeting SRC family kinases have proven promising
in treating AKs, ultimately preventing the transition to cSCC. Tirbanibulin is approved for
the treatment of AKs. It inhibits SRC family kinases, with downstream activity against
the PI3K pathway. A 2023 study showed complete clearance of AKs in patients treated
with tirbanibulin was achieved in 47% of cases upon first follow-up and 57% during the
second visit [139]. Adverse effects predominantly involved local reactions, with erythema
(80%) and flaking/scaling (43%) that resolved spontaneously [145]. The favorable safety
profile of tirbanibulin highlights a novel application in minimizing the risk of malignant
transformation of AK lesions to cSCCs.

5. Conclusions

With an aging population and increasing exposures to risk factors, cSCC incidence
rates are predicted to rise globally. While surgical destruction stands as the first line of
treatment for low-risk cSCC, the management of high-risk cSCC remains complex and
non-uniform. The two most common staging criteria include the AJCC-8 and BWH systems.
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Driven by the enhanced understanding of molecular and genetic perspectives, the past
decade has witnessed several advances in the evolving management landscape of cSCC.
EGFR inhibitors and anti-PD1 inhibitors are two new options for unresectable cSCC, with
PD-1 inhibitors having far greater efficacy. Future avenues in this field include a widening
of vaccines against HPV subtypes and TVEC, along with targeting PI3K/mTOR pathways
for the treatment of SCCIS.
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