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Simple Summary: As a tumor grows, DNA fragments from cancer cells shed into the bloodstream.
Known as circulating tumor DNA (ctDNA), these fragments can be used to inform on cancer diagnosis,
treatment, and prognosis. However, despite the potential for these uninavasive liquid biopsies to
revolutionize cancer monitoring and treatment, ctDNA can show poor genetic concordance between
blood and the main tumor tissue, hampering its general clinical utility. For liquid biopsy technologies
and ctDNA analyses to transform cancer care, from early screening and diagnosis through treatment
and long-term follow-up, we need to better understand how to interpret the genetic diversity
measured in the blood and how it can be used to describe the true composition of the tumor tissue.
In this work we study the evolutionary processes that can lead to genetic discordance between a
blood sample and the main tumor tissue and specifically, how tumor spatial heterogeneity shapes
these genetic differences. We find that spatial heterogeneity in apoptosis and cellular shedding
across different regions of a tumor can significantly bias the mutational composition of ctDNA and
emphasize important directions for further theoretical and clinical investigation into the effect of the
microenvironment on ctDNA origin and quantification.

Abstract: Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor
evolution in real time and inform cancer diagnosis, treatment, and prognosis, mainly relies on
DNA that originates from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and
immune infiltration can induce spatially variable rates of cell death, with the potential to bias and
distort the clonal composition of ctDNA. Using a stochastic evolutionary model of boundary-driven
growth, we study how elevated cell death on the edge of a tumor can simultaneously impact driver
mutation accumulation and the representation of tumor clones and mutation detectability in ctDNA.
We describe conditions in which invasive clones are over-represented in ctDNA, clonal diversity
can appear elevated in the blood, and spatial bias in shedding can inflate subclonal variant allele
frequencies (VAFs). Additionally, we find that tumors that are mostly quiescent can display similar
biases but are far less detectable, and the extent of perceptible spatial bias strongly depends on
sequence detection limits. Overall, we show that spatially structured shedding might cause liquid
biopsies to provide highly biased profiles of tumor state. While this may enable more sensitive
detection of expanding clones, it could also increase the risk of targeting a subclonal variant for
treatment. Our results indicate that the effects and clinical consequences of spatially variable cell
death on ctDNA composition present an important area for future work.

Keywords: tumor growth model; tumor evolution; spatial evolution; ctDNA; tumor DNA shedding

1. Introduction

Once far-fetched, the idea that a blood sample can precisely inform cancer diagnosis,
treatment, and prognosis is quickly becoming clinical reality [1]. This is largely due to ad-
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vances in the quantification of DNA fragments from cancer cells shed into the bloodstream,
known as circulating tumor DNA (ctDNA), which are primarily released from the tumor
via apoptosis, necrosis, and active secretion [2]. While tissue biopsies have been a critical
component in cancer care, providing a snapshot of the tumor–host microenvironment, they
are invasive, and repeated biopsies over time to monitor cancer progression and optimize
therapies are seldom feasible. Moreover, even when accessible, a single biopsy sample
may not represent an entire tumor, which usually displays significant spatial heterogeneity.
ctDNA-based “liquid biopsies”, on the other hand, do not have some of these drawbacks
and can act as a noninvasive cancer biomarker, allowing more frequent and comprehensive
analyses of the tumor’s genetic evolution [3–5]. Two major applications of ctDNA already
used in the clinic includd the monitoring of tumor burden before, during, and after treat-
ment and for the detection of post-treatment relapse [6,7]. Liquid biopsies have also shown
great promise in predicting relapse, progression-free survival, and overall survival across a
variety of tumor types and stages [3,8–10].

Despite its potential to revolutionize cancer monitoring and treatment, ctDNA can
also show poor concordance between blood and tissue, hampering its general clinical
utility [11,12]. The main causes for this include access to only minuscule concentrations of
ctDNA in a plasma sample, the limits of current sequencing technologies, the confounding
effects of noncancerous mutations, and intratumor heterogeneity [13]. While improvements
in assay sensitivity and specificity could help to better resolve the ground-truth composition
of the observed ctDNA in a blood sample, we need different methods to better understand
and correct possible inaccuracies arising from biased representations of the different tumor
clones in ctDNA fragments.

Changes to ctDNA yield and representation of different mutations have been ob-
served before and during chemotherapy, altering the detectability of resistance-causing
mutations [14–16]. The majority of cfDNA fragments are around 100–160 base pairs long,
which is consistent with the apoptosis-induced digestion of nuclear DNA into fragments
within the circumference of a nucleosome [17–19]. Elevated apoptosis can increase the
amount and clinical detectability of ctDNA in the bloodstream [20], and varying apoptosis
rates between clones can in theory lead them to become disproportionately represented in
the bloodstream [21]. In addition to the intrinsic differences in growth and death rates for
different clones, heterogeneity in the tumor microenvironment due to immune infiltration,
hypoxia, or treatment onset can also significantly impact rates of apoptosis [20,22–28].
These can in turn influence the evolutionary fate of a tumor by altering its local selective
pressures and genetic heterogeneity [29].

While there are many models for studying tumor growth and evolution, the degree
to which this underlying genetic distortion between blood and tumor tissue exists and
the evolutionary mechanisms that shape it are not directly considered either in models of
tumor evolution derived from ctDNA [30] or in clinical studies of ctDNA concordance [31].
Recent mathematical models have been used to study how varying the apoptosis rates of
tumor cells could influence the time to detection of early-stage tumors [32] or the effect of
differential shedding on the representation of different metastases in ctDNA [33] but ignore
the underlying evolutionary process or study neutral, nonspatial evolution. Separately, a
model by Fu et al. [34] showed how reduced chemotherapy exposure in a sanctuary site
can promote acquired resistance, but this work did not specifically model the effects on
ctDNA genetic distortions.

Here, we combined a stochastic model of boundary-driven tumor evolution [35–39]
with a model of differential apoptosis and cellular shedding and studied the effects of
spatially heterogeneous cellular apoptosis on ctDNA composition and its genetic distortion
relative to the tumor tissue. We spatially constrained tumor evolution by assuming that
differential drug penetration or immune system infiltration leads to increased cell death
and DNA fragment shedding on the edge of the growing tumor. We compared the results
across a variety of modeling choices, such as differences between quiescent or prolifera-
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tive tumors, and tracked the distortion of clones and subclonal mutations in the ctDNA
over time.

We found that as cancers grow and shed DNA into the bloodstream, the clones
responsible for expansion into the edge environment are consistently overrepresented in
the ctDNA, and, in some cases when progression results in highly heterogeneous tumors,
homogeneous regions trapped in the tumor core are under-represented in the blood. We
further found that over-representation of clones from high-shedding tumor regions can lead
to differences in the number of detectable subclonal driver mutations and that the chosen
sequencing detection limit can have a complex effect on the extent of the observed genetic
differences. We also discuss the potential clinical relevance of distortions in ctDNA genetic
variability during clinically significant events, such as the appearance of an expanding
subclone or cell-turnover-driven increases in clonal diversity.

For liquid biopsy technologies and ctDNA analyses to transform cancer care, from
early screening and diagnosis through treatment and long-term follow-up, we need to better
understand how to interpret the genetic diversity measured in the blood and how it can be
used to describe the true composition of the tumor tissue. Overall, our results showcase
how spatial heterogeneity in apoptosis and cellular shedding across different regions
of a tumor can significantly bias the mutational composition of ctDNA and emphasize
important directions for further theoretical and clinical investigation into the effect of the
microenvironment on ctDNA origin and quantification.

2. Methods

The tumor growth model. While there are many models of tumor growth, to analyze
the role of a solid tumor’s spatial structure in shaping the observed variation in ctDNA,
we used a model of boundary-driven growth, in which cells on the periphery of a tu-
mor are assumed to experience higher proliferation rates over time as compared to the
tumor core. This type of spatially restricted growth is usually observed in tissues with
weak physical resistance, and it can significantly alter tumor evolution by blunting the
strength of selection, promoting clonal interference, and increasing mutation burden from
the tumor core to its edges [35,38]. Because of its simplicity and well-understood proper-
ties, it is an excellent starting point for exploring how spatial variation in apoptosis can
impact ctDNA release and can bias the observed genetic differences between blood and
main tissue.

In our Eden model, cells grow on a 2D regular lattice and each cell has eight neighbors
(a Moore neighborhood), similar to Waclaw et al. [35], Chkhaidze et al. [37], Noble et al. [38],
Lewinsohn et al. [39]. Each simulation begins with a single cell and terminates when the
population either becomes extinct or reaches a size of 60,000 voxels. In the initial stage of
growth, the tumor experiences an environment with death rate d1. Once the tumor reaches
a large enough size (here, a radius of 90 voxels or, equivalently, 3 billion cells), we assume
the tumor is detected, and treatment can occur, which can shrink the initial tumor. After
detection, we assume that due to differential chemotherapy drug penetration or differences
in immune infiltration and oxygenation, spatial differences in apoptosis appear between
the tumor core and the edge of the tumor. Specifically, cells in the core, or the sanctuary
site (radius R ≤ 90), continue to experience death at rate d1, while on the tumor edge, cells
have death rate d2 ≤ d1. For the sake of simplicity, we do not model angiogenesis or the
interactions of cancer cells with other cell types.

This spatial difference in death rates effectively creates a selective barrier for tumor
expansion. We consider two parameter regimes: d1 < b < d2 and d1 < d2 < b, which we
call “driver-dependent” and “driver-independent” invasion, respectively (Figure 1). In
the driver-dependent regime, only lineages that have acquired sufficient driver mutations
can expand past the core radius R, while, with driver-independent invasion, all lineages
continue to grow in the presence of the new edge environment. At each time step, a random
cell is chosen uniformly from the population, which attempts division with a probability
equal to its birth rate b ∗ (1+ s)n, where b is the baseline birth rate in the population, s is the
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selective advantage of driver mutations, and n is the chosen cell’s driver mutation count. If
the cell attempts division, it places a daughter cell in a randomly chosen empty site in its
Moore neighborhood. If the cell is completely surrounded, it cannot divide. Upon division,
we assume that the daughter cell acquires a Poisson-distributed number of additional
driver mutations with rate µ. We assume each mutation appears only once (infinite site
assumption). After attempting division, the chosen cell is removed from the population
with probability equal to its death rate di, where i ∈ 1, 2 indicates which region of the tumor
the cell inhabits.

We also analyzed a version of the main model where cells do not die if they are fully
surrounded, so that the tumor core remains in a quiescent state and where selection acts by
reducing the apoptosis rate rather than increasing birth rate, so that d← d ∗ (1− s).

Parameter Choices. To significantly reduce simulation time and memory, we assumed a
Poisson distributed driver mutation rate of µ = 0.001, roughly 100 times the estimated
empirical rate, which we denote by µreal = 1 × 10−5, as in Bozic et al. [36]. We also
simulated the tumors in 2D, so that the spatial heterogeneity reflects that of a cross-section
of a much larger 3D tumor, a rationale used in Noble et al. [38] for similar 2D spatial
models. Each 2D voxel then represents µ

µreal
identical cells. For a simulation with m voxels,

we roughly approximate the 3D tumor size, N, to be that of a sphere, with a cross-section
equal in area to the number of 2D cells, such that N = 4

3 π( µ
µreal

m
π )

3
2 . We further chose a

sanctuary site radius, R, ranging from 20 to 60 voxels. Assuming 20 µm diameter tumor
cells and 100 cells per 2D voxel, this R would correspond to an equivalent tumor with a
radius of 0.4 to 1.2 cm and approximately 1000 to 20,000 cells, representing a cross-section
of a 3D tumor of roughly 30 million–1 billion cells [40]. We simulated tumors until they
expanded well beyond the core sanctuary site and stopped the simulations when tumors
reached a size of 60,000 voxels, corresponding to a tumor size of approximately 10 billion
cells or a radius of 2.5 cm. Without loss of generality, throughout what follows, we also
assumed a constant selective benefit for driver mutations, s = 0.1. See the main parameters
used in the model in Table 1.

Table 1. Main parameters used in the model.

N Final tumor size

R Core / sanctuary site radius

b Initial cell birth rate

d1 Cell death rate in the tumor core

d2 Cell death rate in the tumor edge

s Driver mutation fitness advantage

µ Poisson-distributed driver mutation rate

Modeling clone fractions and variant allele frequencies (VAFs) in ctDNA. To compute
the clone frequencies in ctDNA, let Nij be the number of cells of clone i from region j, with
corresponding death rate dj. We assume that shedding into the blood is proportional to the
death rate of a tumor region [32], i.e., the fraction of a tumor clone in the ctDNA population
at time t can be computed as a weighted average over the frequency of the clone in each

region, ∑j dj Nij(t)
∑i ∑j dj Nij(t)

.
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Figure 1. (A) Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section
of a 3-billion-cell tumor) and are then partially exposed to a new environment, where the cells die
with rate d2. The growth rate in the new environment determines the invasive potential of a clone.
If the death rate d2 is higher than the initial birth rate, only clones with mutations increasing the
growth rate to a positive number can grow in the new environment, so invasion is driver-dependent.
Otherwise, it is driver-independent. Tumor growth can be proliferative or quiescent. In the former,
cells divide when they have an empty neighbor on the lattice and die at a rate independent of their
neighbors. In the latter, cells also divide when they have an empty neighbor on the lattice; however,
cell death also requires empty neighbors. The shedding rate of DNA into the blood is assumed to be
proportionate to the death rate. (B) Example trajectories, driver-dependent invasion. Trajectories of
clone fractions and total population size for driver-dependent invasion, with 2D visualizations of the
tumor at selected timepoints. Each color corresponds to a unique clone, also shown in the trajectory
plot. (C) Example trajectories, driver-independent invasion. Trajectories of clone fractions and total
population size for driver-independent invasion, with 2D visualizations of the tumor at selected
timepoints. For both cases, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent invasion,
d2 = 0.9. For driver-independent invasion, d2 = 0.69.

While this represents the clone’s fraction of the tumor population, to test the effect
of clone fraction distortion on mutation detection, we also estimated clinically realistic
VAFs in the blood, which also contains DNA fragments from healthy tissue. To do this,
we computed the frequencies of each driver mutation belonging to each clone and then
estimated the fraction of the total number of fragments that originate from the tumor
(the tumor fraction). At the point of diagnosis, Phallen et al. found that the mean tumor
fraction in the bloodstream for stage I and II breast, lung, ovarian, and colorectal tumors
was 1% [41]. We calibrated the simulated tumor fraction by assuming this is the fraction for
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proliferative tumors at the point of detection, assumed to occur at 3 billion cells, with an
initial death rate of d1 = 0.1.

To estimate a shedding probability, we adapted a formula from Avanzini et al. [32].
Assuming an exponentially growing tumor with a constant growth rate, the formula
computes the number of fragments shed into the bloodstream as a Poisson-distributed
random variable, with mean C = Ndq

ϵ + r , where N, d, q, ϵ, and r are the number of cells,
death rate, shedding rate, decay rate, and growth rate, respectively. We estimated C
using the Phallen data set, which found the median DNA concentration in plasma to be
29 ng/mL. Repeating a calculation from their paper, a haploid genome weighs roughly
0.0033 ng, suggesting that there are 8788 haploid genome equivalents (HGEs) in 1 mL of
plasma. With 5 L total blood volume in the human body and 55% plasma, we can therefore
estimate C to be 5000× 0.55× 8788× 0.01 = 241,670. While the formula depends on r (the
tumor birth rate can in fact slightly alter the total ctDNA molecules present in a blood
draw), the tumor population changes in the order of days, while DNA decays in the blood
with a half-life of about 30 min [10]. This implies ϵ = 48 ln 2 ≈ 33.3, while r < 1. In a
spatial setting, the effective growth rate is even lower because cells do not divide when

surrounded, so we assumed r ≈ 0. Setting C = 3 × 109 × 0.1 × q
ϵ , we estimate q ≈ 0.026.

While this shedding probability is likely to vary between tumors based on location in the
body, type, and exposure to blood vessels, we did not consider these in order to focus
on how stochastic variation in where mutations appear and spread causes clone death
rates and bias in VAFs to vary among otherwise identically growing tumors. The mean

number of tumor fragments at other time points is then computed as Ct = Nqd
ϵ , where

d is the mean death rate of the whole tumor. For a mutation m with tissue frequency fm
and overall death rate dm, we wrote the total number of fragments with that mutation

as Cm∼Pois( fm Ndmq
ϵ ). For a 15 mL blood draw (0.3% of the total supply), we scaled the

mean number of fragments by 0.003. Let Ctot0 be the total fragments in a 15 mL blood draw
at the point of detection. Then Ctot0∼Pois(5000× 0.55× 8800× 0.003). We assumed the
mean number of nontumor fragments remains constant at Ch = 0.99 ∗ Ctot0 . If we assume
all cells are diploid, each mutation appears on a single chromosome copy and we ignore
the possibility of recurrent mutation or subsequent allelic gain or loss, we can write the

expression for the spatially biased VAF of a specific mutation in the blood as Pois( 1
2 Cm)

Pois(Ct + Ch)
.

To analyze the effect of spatially correlated death rates on the detection of tumor mutations,
we computed both spatially biased and unbiased VAFs by using the mean death rate of the
specific mutation (dm) for the former, and the mean death rate of the entire tumor (replace
dm with d in the expression for Cm) for the latter.

Inverse Simpson diversity as a measure of intratumor heterogeneity (ITH). Since an
important goal of this work is understanding how ctDNA data collected from the blood
may distort estimates of clonal heterogeneity present in the main solid tumor, we used the
inverse Simpson diversity index to quantify and compare heterogeneity estimates from
blood and tissue sequences. The inverse Simpson diversity index is a classic diversity
measure employed in many previous studies of population diversity that takes into account
the number of lineages present, as well as the relative abundance of each [38,42]. For a set
of clone fractions f1, . . . , fN , with ∑N

1 fi = 1, it is defined as D = 1
∑N

1 f 2
i

.

3. Results
3.1. Spatial Differences in Apoptosis and Shedding Can Bias Clone Fractions in ctDNA

To study how the spatial structure of a solid tumor, through spatial heterogeneity in
apoptosis, can bias the observed ctDNA in blood draws, we first analyzed the difference
in the clonal fractions between blood and tumor tissue. In Figure 2, we compared the
results for proliferative versus quiescent cell models, small versus large sanctuary sites,
and driver-dependent versus driver-independent invasion. Across all modeling scenarios,
Figure 2 shows that new clones on the expanding front tend to be over-emphasized in the



Cancers 2024, 16, 844 7 of 15

ctDNA, while older clones, trapped in the tumor sanctuary, tend to be under-represented.
The magnitude of the differences in clonal fraction and their likelihood to impact clinical
detectability depend on the accumulated clonal diversity on the edge of the tumor, mediated
by the edge environmental effects.

Figure 2. Clone fraction differences between blood and tissue: (A–D) Each plot shows the results of
50 simulation runs, where each point represents the difference between clonal frequencies estimated
from the blood versus those present in the tumor, for a single clone, with the color showing the age of
the clone relative to the total simulation time. Tumors were grown from a single cell until reaching a
2D cross-section of a 10-billion-cell tumor. For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7.
For driver-dependent invasion, d2 = 0.9. For driver-independent invasion, d2 = 0.69. The orange
and blue lines show the average positive and negative clone fraction difference, respectively. Only
clones comprising at least 10% of the tumor were included in the average. Shading is ±1 s.d. We
show the same plots over normalized time in Supplementary Figure S2.

In the driver-dependent case (Figure 2A,B), the few driver clones able to invade the
new environment experience a higher death rate during expansion on the edge and end
up over-represented in the blood, making the absolute difference between the blood and
tissue clone fractions substantial. The maximum difference between the two occurs in the
limiting case of a single clone, originating on the expanding front and growing without
competition in the new edge environment. For proliferative tumors, we can write an upper
bound for this clone fraction difference. If we assume the tumor initiates with death rate
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d1 and grows to a constant size S, after which a single invasive subclone grows to size x,
experiencing death rate d2, the difference in the expected clone fraction can be written as

f =
d2x

d2x + d1S
− x

x + S
.

It is easy to show that the maximum value of f is
√

d2 −
√

d1√
d2 +

√
d1

, which occurs when

x = S
√

d1
d2

. We plot the maximum possible clone fraction difference for all d1 and d2 in
Supplementary Figure S1 and show that despite the apparently high choice of d2 in some
of our simulations, large differences in the estimated clonal frequencies can occur with very
small absolute death rates. In line with the prediction that the peak clone fraction difference
does not depend on region size, the simulations also showed that for driver-dependent
invasion, the size of the tumor sanctuary does not greatly impact the distribution of clonal
fraction differences (Figure 2A,B).

The sanctuary size does affect the results for proliferative driver-independent tumors,
which show very little difference between the ctDNA and main tissue when the sanctuary
site is small (Figure 2C). This is because early clones from the small sanctuary region can
invade the edge environment before the appearance and spread of later clones and are
therefore represented throughout all tumor regions that differentially shed into the blood.
This effect is still present with a larger sanctuary site, since the observed minimum clonal
fraction difference is still much smaller than the corresponding one in the driver-dependent
case (compare Figure 2B,D).

For quiescent tumors, ctDNA can only come from the shedding of cells on the ex-
panding front, which is determined by the total size of the tumor prior to detection, and
the sanctuary size again has little effect on the observed differences (Figure 2B,D). Despite
this, the magnitude of the differences in death rates are comparable to those of prolifer-
ative tumors. However, we notice that quiescent tumors distort clone fractions across
all population sizes and time points due to the additional spatial bias in death rate. One
thing to note is that while we assumed that differences in shedding are caused by spatial
heterogeneity in death rates, we expect results to be similar in any extension of the model
in which clones are weighted differently in the ctDNA than the tissue, for example, with
differential access to the bloodstream based on proximity to blood vessels or via a model
of active secretion. Additionally, we found that the version of the model where driver
mutations reduce death rate, akin to apoptosis resistance, results in similar clone fraction
distortions (Supplementary Figure S3).

3.2. Differential Shedding Leads to Overestimation of True Intratumor Heterogeneity

In Figure 3, we used the inverse Simpson diversity index across normalized time points
as a proxy for ITH in the ctDNA and in the tissue over the course of tumor progression. We
found that driver-independent tumors with a large sanctuary site consistently show a large
difference between blood and tissue ITH (Figure 3D), while tumors with a small sanctuary
site do not show any difference. This is a consequence of the clone fraction differences
observed in Figure 2, which, for proliferative tumors, vanish once the sanctuary site is too
small. Also consistent with Figure 2, quiescent driver-independent tumors show elevated
ITH for both sanctuary sizes (Supplementary Figure S4). As expected, driver-dependent
tumor growth is driven by very few clones following detection, which results in much
lower overall clonal diversity (Figures 3A,B and S4).



Cancers 2024, 16, 844 9 of 15

Large Sanctuary SiteSmall Sanctuary SiteA

C D

B

Normalized Time Normalized Time

Normalized Time Normalized Time

C
lo
na

lD
iv
er
si
ty

C
lo
na

lD
iv
er
si
ty

C
lo
na

lD
iv
er
si
ty

C
lo
na

lD
iv
er
si
ty

D
riv
er
-d
ep
en
de
nt

D
riv
er
-in
de
pe
nd
en
t

Tissue
Blood

Tissue
Blood

Tissue
Blood

Tissue
Blood

0.2

4

0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10

0.2 0.4 0.6 0.8 10

0

20
20

10

30
40

40

60

60

50

70
80

6

8

10

12

14

0

2

4

6

8

10

12

0

0

2

0.2 0.4 0.6 0.8 10

Figure 3. Discrepancies between blood and tissue clonal diversity: (A–D) The subplots show the
inverse Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in
50 simulated tumors. Timepoints are normalized by run and then binned and downsampled. Tumors
were grown from a single cell until reaching a 2D cross-section of a 10-billion-cell tumor. For all
simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent regrowth, d2 = 0.9. For
driver-independent regrowth, d2 = 0.69. Shading represents ±1 s.d. The figure shows results for
proliferative tumors only. For all scenarios, see Supplementary Figure S4.

3.3. The Effect of Sequencing Detection Limits and Sanctuary Site Size on Observed VAFs in
the Blood

We next analyzed how biased clonal fractions in the blood translate into biased ob-
served VAFs under various sequencing detection limits. In Figure 4, we considered
sequence detection limits of 10−3 and 10−2, which are often utilized for panel-based as-
says optimized for MRD detection [43]. As expected, a higher sequence detection limit
of 10−2 diminishes the number of detected drivers (VAF exceeds the detection limit) and
increases the tumor size at which the first mutations are detected, compared to a limit of
10−3 (Figure 4A). This effect is more pronounced in quiescent tumors than in proliferative
ones. While driver-independent tumors produce many more mutations, responsible for the
higher ITH shown in (Figure 3), they are nonetheless very low frequency and so the number
of mutations above a 10−2 threshold is comparable to that of driver-independent tumors.
Most mutations evade detection entirely, as the overall percentage of driver mutations
detected at any point is below 10% for all scenarios (Supplementary Figure S5C,D).

In Figure 4B, we compared the percent change in number of detectable drivers
when the simulated VAFs are compared to VAFs from a spatially uniform null model,
computed assuming the tumor sheds all clones at the same rate. We show that spatial
tumor heterogeneity can greatly affect the number of detectable driver mutations in the
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blood, and sequencing detection limits can further alter the extent of this bias, with the
timing and magnitude of difference spikes further dependent on the detection limit of the
sequencing technology.

Because clonal VAFs cannot change due to shedding differences, the effect depends
entirely on the detection limit relative to subclonal VAFs. We see that spatial bias in
proliferative driver-dependent tumors increases when the detection limit is raised, but
quiescent spatial bias either decreases in magnitude and appears at a larger tumor size
or disappears all together. We show the percent spatial bias over normalized time in
Supplementary Figure S5B.

In Figure 4C–F, we show the dependency of spatial bias on detection limit by plotting
the frequency versus the mean tumor radius of every mutation present in 50 simulation
runs at the point of maximal spatial bias (the labeled peaks in Figure 4B). Plots correspond-
ing to the peaks of the other scenarios are shown in Supplementary Figure S6. We can
observe a cluster of clonal mutations in the core of the tumor (colored black), which are
equally represented in the blood and tissue. Due to boundary-driven growth, subclonal
mutations accumulate more on the edge of the tumor and tend to remain there across
generations, increasing the frequency of mutations further from the core. Because the
mutations also shed at higher rates, filtering for larger mutations can increase bias but will
decrease it once the majority of detectable VAFs are clonal (Figure 4F). Of clinical relevance
is the case where subclonal variants are exaggerated to near-clonal frequencies, which
occurs in the driver-dependent case (Figure 4C–F). This showcases the benefits and risks of
distorted ctDNA: while exaggerated subclonal mutations would provide more biomarkers
to aid in detecting recurrence, they would make poor targets for treatment.
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Figure 4. Influence of spatial bias on limits of detection. (A) Plots of the number of detectable driver
mutations starting from the point of relapse for minimum detection frequencies of 1 × 10−3 and
1 × 10−2 for proliferative and quiescent tumors relapsing at ∼108 and ∼109 cells. Mutations were
detectable if the estimated VAF exceeded the detection limit. VAFs were estimated based on a tumor
fraction of 1% for a 3-billion-cell tumor with death rate of 0.1 (see Methods). (B) Percent change in
number of detectable drivers when the VAFs in (A) are compared to VAFs computed assuming the
tumor sheds all clones at the same rate for the same detection limits see Methods). (C–F) Scatter
plots of mean spatially biased VAFs (green) and unbiased VAFs (blue) at the size where the average
spatial bias over all replicates is maximal (marked with the corresponding letter in (B)) Each plot
shows all mutations for 50 replicates of the corresponding simulation scenario. The x-axis is the mean
distance of the mutation from the tumor’s center. Black points are clonal mutations, which show
perfect overlap between the blood and tissue. The vertical line marks the end of the sanctuary region.
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4. Discussion

As cancers grow, they slough off cells and DNA from apoptotic or necrotic cancer cells,
which enter the bloodstream. Through the use of technologies such as next-generation
sequencing, these fragments of DNA can reveal a wealth of information about cancer,
without the need for invasive surgical biopsies. Here, we explored how boundary-driven
tumor growth and spatial heterogeneity in cellular death rates impact both the clonal
evolution of the tumor and its representation in ctDNA. We found that the appearance of
genetic distortions between blood and tissue ultimately depends on whether the tumor’s
genetic heterogeneity varies with respect to rates of apoptosis and ctDNA shedding, which
themselves can vary between tumors or over time for a single tumor. When there is a
strong correlation, such as when a change in cellular death rate occurs in direction of tumor
growth, ctDNA can drastically bias which clones are observed and can lead to biased
estimates of intratumor heterogeneity (ITH).

In the driver-dependent case and, to a lesser extent, the driver-independent case
explored here, this bias can be beneficial by increasing the visibility of and sensitivity
for the particular mutations responsible for tumor progression. Spatial differences in
cell death rates could also lead to subclonal mutations appearing at clonal frequencies in
ctDNA, thus increasing the likelihood that they are mistaken for clonal mutations and
chosen as therapeutic targets (Figure 4). Our results agree with findings that quiescent
tumors may be difficult to detect in the bloodstream (Figure 4A) and further suggest that
any detectable ctDNA is likely to dramatically under-represent some tumor regions with
reduced shedding (Figure 2). One possibility is that a lesion with a quiescent interior
could be nearly undetectable and suddenly begin to shed appreciably due to a clonal
expansion. Because of the extremely biased location of shedding in quiescent tumors, the
overall size should not be assumed to correlate well with ctDNA yield. The potential
for the exaggerated observed heterogeneity in the blood relative to the tissue for tumors
experiencing high apoptosis on the expanding front suggests that low-frequency clones,
with a high probability of being undetected in a tissue sample, could be better captured in
the blood and provide an early indicator of heterogeneous growth. At the same time, when
clinical studies find greater heterogeneity in blood than in tissue samples, this is usually
mainly attributed to missed heterogeneity in the tissue sample. However, localized high
death rates could generate more mutations and at the same time enrich these in ctDNA
through increased shedding. This is both a potential confounding factor for assessing
tumor mutational burden from ctDNA and simultaneously supports the potential of blood-
based diagnostics to be a more sensitive indicator of changing levels of heterogeneity than
tissue biopsies. Recent work has found that in contrast to a high tissue mutational burden,
which may indicate high neoantigen load and better overall survival, high blood mutational
burden may better reflect overall ITH and therefore indicate poor overall survival [44]. High
heterogeneity correlated to high-shedding regions could contribute to this discordance.

This general principle that genetic distortion between blood and tissue is a function
of clonal dynamics is not limited to spatial heterogeneity in intrinsic death rates: it could
also arise as the result of differential access to blood vessels or nutrients. Further specific
scenarios can be theoretically and clinically explored, such as local metastasis of a primary
breast tumor to the lymph nodes or the microinvasion of a colorectal tumor into the
subserosal tissue, particularly during neoadjuvant treatment when the tumor faces novel
selective pressure. In both of these cases, there is recent evidence that ctDNA shedding can
vary as a function of spatial location. Clonal replacement during treatment for early-stage
breast tumors is also well documented, and a small study of early-stage breast cancer
patients discovered mutations private to clones that invaded the lymph nodes. In one
patient, as an example of subclone over-representation, these mutations comprised the
majority of detected ctDNA [45–47].

While our simulations considered only a single form of spatial growth and dis not
incorporate a fully realistic downstream analysis of ctDNA, here, we nonetheless found
that even a simple model of spatially heterogeneous tumor growth and shedding can
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showcase how blood sample data may not represent the tissue accurately, depending on the
evolutionary processes shaping the tumor around the time of a blood draw. Further biases
as a result of low tumor fraction in cfDNA, copy number variation, germline mutations,
hematopoetic mutations, and heterogeneity absent from small tissue samples introduce
significant additional complexity that we ignored here [48,49]. Future directions include
incorporating a spatial model of blood vessel distribution that impacts drug delivery,
oxygenation, and the resulting apoptosis and shedding rates. Rather than modeling
changes to overall clone frequencies under an infinite sites assumption, incorporating a
specific resistance model would further allow predictions of the detectability of specific
drivers. If we considered resistance to a specific druggable target rather than generic driver
mutations, the mutation rate would likely be much lower as it would now be site-specific,
and back mutations would be possible. This would likely reduce the number of distinct
resistance mutations detected and increase the waiting time to resistance. This issue could
be further explored through a modified version of our driver-dependent invasion scenario.
Here, we assumed that changes to birth and death rates occur incrementally through a
series of point mutations, while specific models of chemotherapy resistance or immune
escape may have a different effect on growth rates and the resulting shedding. Because the
expanding clones in our model continue to experience high apoptosis, our results would
best apply when apoptosis reduction is absent or only partial in the resistant population,
such as in apoptosis-induced compensatory proliferation (AICP) [50].

A further area of study is using model insights to correct for the observed bias between
ctDNA and tissue genetics. The work here revealed some of the circumstances in which
we would expect such a bias to manifest and the mechanisms through which it would
occur, but systematically inverting that bias to reconstruct with maximum fidelity the clonal
composition of the tumor from the blood data will require further work. For example,
some important applications of tumor genome samples to clonal lineage tracing (“tumor
phylogenetics”) depend on accurate quantification of allele frequencies, and extending
such methods to use blood data productively will require ways to not only identify but
also correct for these biases. It will be important to characterize the circumstances under
which this problem is invertible and what additional data might be needed. Development
of models such as ours to provide accurate quantitation of tumor state from ctDNA can in
turn enable new clinical applications, such as quantifying changes in tumor size or clonal
composition, that are indicative of response to treatment or disease progression.

5. Conclusions

ctDNA can be used to reveal information about the likely presence and burden of
cancer within the body. To make full use of this new technology, further work is needed
to understand all of the ways that ctDNA can provide a distorted mirror of the genetic
composition of the main tissue, how the evolution of the main tumor shapes these genetic
biases, and how to correct for them.
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