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Abstract: The emergence of the novel coronavirus in Wuhan, China since 2019, has put the world in
an exotic state of emergency and affected millions of lives. It is five times more deadly than Influenza
and causes significant morbidity and mortality. COVID-19 mainly affects the pulmonary system
leading to respiratory disorders. However, earlier studies indicated that COVID-19 infection may
cause cardiovascular diseases, which can be detected using an electrocardiogram (ECG). This work
introduces an advanced deep learning architecture for the automatic detection of COVID-19 and
heart diseases from ECG images. In particular, a hybrid combination of the EfficientNet-B0 CNN
model and Vision Transformer is adopted in the proposed architecture. To our knowledge, this
study is the first research endeavor to investigate the potential of the vision transformer model to
identify COVID-19 in ECG data. We carry out two classification schemes, a binary classification
to identify COVID-19 cases, and a multi-class classification, to differentiate COVID-19 cases from
normal cases and other cardiovascular diseases. The proposed method surpasses existing state-
of-the-art approaches, demonstrating an accuracy of 100% and 95.10% for binary and multiclass
levels, respectively. These results prove that artificial intelligence can potentially be used to detect
cardiovascular anomalies caused by COVID-19, which may help clinicians overcome the limitations
of traditional diagnosis.

Keywords: COVID-19; cardiovascular diseases; ECG; vision transformer; deep learning

1. Introduction

In recent years, the world has been affected by the COVID-19 outbreak. This perilous
virus has affected millions of lives [1]. COVID-19 is now known to affect all major systems
in the body [2]. The most reliable diagnostic technique is the RT-PCR, but this test remains
scarce and costly in developing countries and rural areas. In addition, it requires extended
waiting periods of at least 6 h, the expertise of qualified personnel, and the requirement
for a logistically centralized installation. More effective methods are therefore required to
improve the rapidity and effectiveness of the diagnosis.

The literature has shown that medical imaging, involving both radiography X-ray
and computed tomography offers information that can be useful for COVID-19 diagno-
sis [3–5]. However, these techniques are very expensive and require the interpretation
of radiographs by expert radiologists, as COVID-19 patterns present a close similarity to
other viral and bacterial pneumonia on chest radiographs, making diagnosis difficult. Also,
medical imaging presents certain challenges as it involves transferring the patient to the
appropriate room, which requires careful cleaning of the machines every time they are used
and entails an increased risk of radiation exposure. Hence, novel approaches are needed
to complement the COVID-19 diagnosis while the outbreak persists. This perilous virus
mainly affects either the superior respiratory system (including sinuses, nose, and throat)
or the inferior respiratory system (involving the windpipe and lungs), but some clinical
research has also shown a potential relation between COVID-19 and cardiac disorders. It
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was found that COVID-19 causes severe damage to the cardiovascular system and it may be
the cause of many heart problems, including myocardial injury (MI) [6], arrhythmias, acute
myocarditis [7], and venous thromboembolism [8]. These abnormalities can be identified
using electrocardiogram (ECG). The purpose of electrocardiography is to measure the
electric activity of the heart [9]. Observation and analysis of those activities are important
steps in diagnosing the heart rate reflected in ECG sequences. Each sequence includes
five waves: P, Q, R, S, and T representing the phases of cardiac activity. One way to detect
cardiac disease is to determine the presence of abnormalities in the PQRST interval [10].
Given the considerable benefits of the electrocardiogram application, such as portability,
accessibility, safety, and real-time monitoring, it can be useful for assessing early cardiovas-
cular involvement in COVID-19 cases. Typically, COVID-19 patients show several forms of
abnormality in their ECG, such as ST changes [7,11], PR interval shortening [12,13], and QT
prolongation [14,15].

The major impact of cardiovascular diseases on mortality and morbidity requires a
global assessment of the disease and efficient detection techniques. Accurate and rapid de-
tection of cardiac disorders is of vital importance in healthcare practice. The rapid detection
of high-risk patients makes it possible to apply preventive actions, proactive procedures,
and customized treatment modalities to ensure effective control of the disease’s evolu-
tion and mitigate its adverse effects. In the last decade, advances in artificial intelligence
have led to considerable progress in automatic disease detection. The application of deep
learning (DL) in the field of medicine has spurred many studies focused on the diagnosis
of diverse diseases, including brain tumors from MR images [16], several types of brain
problems from EEG [17], and skin diseases [18]. Moreover, in some medical imaging cases,
it has been shown that the deep learning model’s classification performance can reach or
even surpass that of medical experts [19].

In this work, we present an approach that can help to diagnose cardiac manifestations
of coronavirus from ECG images and overcome the limitations of traditional diagnostic
approaches. The aim of this study is to differentiate COVID-19 ECGs from others (normal
or with cardiovascular disorders). We perform two classification levels, a binary classifica-
tion to identify COVID-19 cases, and a multi-class classification, to differentiate between
COVID-19, other cardiovascular diseases, and patients with no findings. The relevance
and novelty of our work lies in the fact that it integrates a vision transformer (ViT) [20]
with a lightweight CNN model (EfficientNetB0) [21]. The choice for using the ViT archi-
tecture is that it demonstrates excellent performance in terms of computational efficiency
and accuracy compared to existing CNN models for several computer vision applications.
The results demonstrate that our solution surpasses state-of-the-art (SOTA) approaches
without any pre-processing or post-processing.

The main contributions of this work are as follows:

(1) A hybrid vision transformer-CNN for cardiac anomaly detection from ECG images.
(2) Ablation study to evaluate the effect of fusion CNN with vision transformer architecture.
(3) A high-performance approach on ECG dataset from subjects with both cardiovascular

conditions and COVID-19.
(4) Fast solution adapted for real-world applications.

The remainder of the paper is as follows. In Section 2 we briefly summarize existing
studies. In Section 3 we explain our proposed solution. Section 4 presents the evaluation
of the approach using an ECG dataset from patients with cardiovascular diseases and
COVID-19. Then, in Section 5 we conclude and suggest potential improvements.

2. Related Work

Several works in the automatic detection of cardiac anomalies from ECG records are
reported in the literature [22–27]. Heart anomaly detection has become more and more
popular since the expansion of healthcare data and the progress of big data analytics.
Two distinct approaches are used to study ECG data by AI: low-level features and deep
features. The low-level features generally are used with machine learning classifiers, while
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DL methods are used to automatically extract useful features from ECG sequences. Most of
the proposed approaches share a common configuration comprising four processing stages:
data pre-processing, feature extraction (hand-crafted or deep), dimension reduction, and
classification. In recent years, deep learning has outperformed hand-crafted methods and
shown remarkable performance in ECG classification [28,29]. Zadeh et al. [30] presented an
approach to identify five classes from ECG data. Their method includes three main steps:
feature extraction based on discrete wavelet transform, classification based on SVM, and
optimization based on genetic algorithm. They obtained an accuracy of 95.89%. Li et al. [31]
trained a convolution network to classify ECG signals. They achieve an accuracy exceeding
97.50%, outperforming multiple ECG classification methods. Ribeiro et al. [32] constructed
a large dataset of labeled 12-lead ECG records for diagnostic purposes. Then, they train a
deep network to identify six categories of ECG abnormalities, comprising rhythmic and
morphological findings. The authors reported that their model outperformed cardiology
residents in identifying these anomalies, achieving F1 scores of 80.00% and specificities
of 99.00%.

Despite the success of these methods on standardized datasets, their adaptation in
real medical environments remains challenging. The majority of such studies rely on ECG
signals-based datasets and therefore cannot be easily used in a real medical environment,
while most ECG data in real medical practice is stored as images. The most suitable solution
is to convert the ECG image to a digital signal but the transformation step is complex and
the generated signal is of low quality, which consequently may affect the performance of
AI techniques. Also, the digital ECG signal is acquired at a high sampling frequency while
the ECG image is acquired in a few hertz. The significant reduction in the sampling rate
results in a significant loss of information. For these reasons, some studies are based on
ECG images to classify heart abnormalities. In recent work, Du et al. [33] have presented a
DL framework to identify anomalies in ECG images. They used a weakly supervised fine-
grained classification mechanism. Then, an RNN model was used to achieve remarkable
performance, with a sensitivity of 83.59% and precision of 90.42%. Khan et al. [34] presented
a method to detect four main cardiac abnormalities in 12-lead ECG images, using the
MobileNet v2 model. They reached an accuracy of 98.00%. Hao et al. [35] presented a
multi-branch fusion system designed for automated diagnosis of myocardial infarction in
ECG images. The 12 leads are introduced in the network, generating 12 feature maps. Then,
these feature maps are concatenated by fusion, followed by classification to determine the
presence of a myocardial infarction in the ECG image. The proposed approach reaches good
performance with an accuracy of 94.73%, a sensitivity of 96.41%, a specificity of 95.94%, and
an F1 score of 93.79%. Li et al. [36] used transfer learning with Inception-V3 to diagnose
seven kinds of arrhythmia. They obtained a balanced accuracy of 98.46%, sensitivity of
95.43%, and specificity of 96.75%.

In recent years, with the release of the ECG images dataset [37,38], which contains
subjects with both COVID-19 and cardiovascular diseases, several research efforts have
been undertaken to assess the relevance of using DL techniques with ECG images to
identify COVID-19. Rahman et al. [39] investigate the potential application of CNN ar-
chitectures for identifying COVID-19 patterns in electrocardiogram images. Employing
a variety of models such as ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201,
and MobileNetv2, they explore their efficacy in detecting COVID-19 signals within ECG
records. They achieved the best performance using DensNet201 with 99.10% and 97.36%
for binary and multiclass, respectively. Ozdemir et al. [40] used a novel and efficient
approach referred to as hexaxial feature mapping to depict ECG signals in 2D colored im-
ages. The resulting images were then introduced to a CNN network to identify COVID-19.
They obtained an accuracy of 96.20% for binary classification. Irmak [41] presented a novel
CNN network for the classification task. An overall accuracy of 98.57% and 86.55% is
reported for binary and multiclass classifications, respectively. Sobahi et al. [42] proposed a
3D CNN model with an attention mechanism. Using 10-fold cross-validation, an average
accuracy of 99.0% for the binary level and 92.00% for the multi-class level were reported.
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Prashant et al. [43] used an ensemble technique with three pre-trained CNN models. They
achieved an average accuracy of 100% for the binary level and 95.29 % for the multiclass
level. Attallah [44] designed a framework called ECG-BiCoNet to identify COVID-19. This
approach introduces five DL architectures and extracts distinct levels of features from
separate layers of every DL model. Next, a feature selection approach is used to select
the relevant features. Then, an ensemble learning method with three classifiers is used to
perform the classification task. This approach achieves an accuracy of 98.80% and 91.73%
for binary and multiclass classifications, respectively. Sakr et al. [45] presented a novel
CNN model to differentiate between COVID-19 ECGs and normal ECGs. They achieved
an average accuracy of 94.91%. Chorney et al. [46] proposed AttentionCOVIDNet, a CNN
architecture based on attention. They achieved an average accuracy of 99.29% for the binary
task and 91.26% for the binary multiclass.

3. Materials and Methods

This study explores the possibility of using a hybrid CNN vision transformer to
identify COVID-19 and other cardiovascular abnormalities in ECG images.

3.1. Dataset

In this paper, we used an open-source ECG dataset from subjects with both cardiovas-
cular conditions and COVID-19 [37]. So far, to our knowledge, it is the main and unique
open-source dataset for COVID-19 ECG recordings. It provides 1937 12-lead ECG images
of unique patients grouped into 5 classes: (COVID-19, myocardial infarction, history of MI,
abnormal heartbeats, and normal patients). All collected data have been reviewed and
annotated by several medical professionals [38]. Table 1 reports the distribution of images
in each class. Some sample images are shown in Figure 1.

Table 1. ECG images distribution among classes (original distribution) [37].

Class Number of Images

COVID-19 250
Normal patients 859

Myocardial Infarction 77
Patients with a History of MI 203

Patients with Abnormal Heartbeats 548

For a fair comparison with other methods, we evaluate our approach using the same
class distribution for each classification level. For binary classification, we consider im-
ages from COVID-19 and normal patients, while for multiclass, three categories are used
(COVID-19, Abnormal heartbeats, and Normal).

Figure 1. Cont.
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Figure 1. Samples of ECG images from each class from [37].

3.2. Pre-Processing

To improve the ECG image quality, each ECG image is passed through a minimal
image pre-processing pipeline. The ECG data were pre-processed in the following steps:

Cropping: Each image is cut from top to bottom to eliminate unnecessary parts (date,
patient data, etc.)

Binarization: The 12-leads ECG image is converted to a binary image by Otsu’s
method [47], such that each ECG lead can be represented by a contrasting black signal on a
white background.

Resizing: The image is scaled to 500 × 500, to match the input shape of the proposed
architecture.

3.3. Adapted EfficientNet Network-Based Vision Transformer for COVID-19 Diagnosis

In this paper, we explore the fusion of the CNN network vision transformer to identify
COVID-19 and normal and abnormal heart rhythms from ECG images. By integrating CNN
components with the vision transformer architecture, the model benefits from the comple-
mentary strengths of both approaches. CNNs excel at identifying spatial dependencies and
local patterns, while vision transformers can identify global relationships and long-term
dependencies through self-attention mechanisms. The combination of local and global
information enables the model to capture fine-grained details and subtle patterns crucial
for accurate classification, particularly in multi-class scenarios with distinct classes like
COVID-19, normal, and abnormal. In particular, the feature maps generated by the CNN
serve as informative input embeddings for the subsequent layers of the vision transformer.
These feature maps encapsulate relevant spatial information extracted from the input
images, providing the ViT with rich and detailed representations of the visual content.

3.4. EfficientNet-B0 CNN Model

In recent years, Tan et al. [21] explored the relationship between the depth and width
of CNN models, demonstrating a more effective way to design models with reduced param-
eters while improving classification accuracy. The authors published a paper introducing a
new family of CNNs called EfficientNet (EfficientNetB0....EfficientNetB7). The key compo-
nent in the EfficientNet family [21] is the mobile inverted bottleneck convolution (MBConv),
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enhanced with SE optimization (Figure 2). This concept is derived from MobileNet ar-
chitecture [48]. Also, EfficientNet models introduce Swish as a new activation function.
It takes a comparable form to ReLU and LeakyReLU, sharing some of their performance
advantages. However, swish provides a continuous curve along the loss optimization
procedure with gradient descent. These architectures have shown superior accuracy to a
large number of convolutional neural networks while maintaining considerably enhanced
computational capabilities.

In this study, we use EfficientNetB0 Figure 3, as a feature extractor to extract deep
features from the ECG records. Then, this features map is fed into a ViT model, which
uses attention mechanisms to process the feature representations and identify patterns.
The proposed architecture is illustrated in Figure 4. The motivation behind the fusion
approach lies in addressing the inherent limitations of individual architectures. While vision
transformers excel in capturing global context and semantic relationships in images through
self-attention mechanisms, they may struggle with capturing fine-grained details and
local spatial information effectively. Conversely, CNNs are adept at learning hierarchical
representations and extracting low-level features but may lack the ability to capture long-
range dependencies efficiently.

Figure 2. The architecture of the MBConv block. MBConv1 vs. MBConv6 [49].

3.5. Vision Transformer-EfficientNet-B0

The vision transformer (ViT) [50] is a pioneering deep learning architecture that
extends the success of natural language processing (NLP) transformers to the field of
computer vision. The backbone of the ViT model [50] is vanilla transformer architecture [50].
Unlike CNNs, which use convolution operations to extract spatial features from input
data, the transformer is based only on the attention mechanism without recurrent or
convolutional layers and focuses on the relationship between different parts of the input.
The initial part of the network has a patch encoder layer that divides the features map
generated from the EfficientNetB0 model (16 × 16 × 1280) into 2D patches of P × P (we
choose P = 4); because only sequential data are compatible with the transformer bloc.
Specifically, for a given features map of 16 × 16 × 1280 size, it is split into N = 16 × 16/42

patches, where each patch is flattened to a vector of length CP2. Then, the flattened
patches are passed through a trainable linear transformation layer, which reduces their
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dimensionality while preserving important features; the patches are mapped from E to
D dimensions to get patch embedding (D = 64). Each patch embedding provides an
input for the transformer bloc. Since transformers do not inherently understand the
spatial relationships between image patches, positional embeddings are added to provide
information about the position of each patch within the image. These embeddings help
the model to learn the spatial relationships between different patches in the image [51].
The sequence of lower-dimensional embeddings (including positional embeddings) is
fed into a transformer encoder. The transformer blocks used in our architecture consist
mainly of three sublayers: a multi-headed self-attention (MSA), feed forward (MLP), and
normalization layer (Norm).

Figure 3. The EffecientNet-B0 general architecture.
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Figure 4. The overview of the proposed approach based on the vision transformer architecture,
multi-class scenario. Ecg images are passed through EfficientNetB0 to extract feature maps, then
these maps are fed into the ViT model, which uses self-attention to extract patterns in the images and
MLP head for the classification task.

The MSA layers are one of the main mechanisms used in transformer architecture.
They enable the model to take into account interactions between different parts of the input,
generating attention maps from the input patches. Within the multi-head attention mecha-
nism, the model computes attention scores between all pairs of input token embeddings.
Each attention head (we used 4 heads), calculates a weighting for each pair of positions
in the input sequence, focusing on different combinations of information. By combining
the outputs of several heads, the model can capture different and complementary aspects
of the relationships between the input elements. Three vectors are learned: Query, Key,
and Value. These vectors are linearly projected from the input embeddings, allowing
each head to focus on distinct parts of the entry simultaneously. The attention scores are
computed independently for each attention head using the query and key vectors, using
a dot product. Then, they are rescaled and undergo a softmax to get attention weights,
and a weighted sum is then calculated from these weights. It represents the output of the
attention mechanism for each attention head. Specifically, it determines how much each
element in the input sequence contributes to the output of the attention bloc. In this way,
the network learns to focus only on relevant information while filtering out noise [51].

The outputs of the multiple attention heads are concatenated and linearly transformed
to generate the final output of the MSA block. This aggregated representation is then
passed through feed-forward neural network layers to project the attentional output, giving
it a richer representation. The output of the second layer is fed back into the network as
input, and a normalization layer is applied. The norm layer is performed to stabilize the
network, considerably reducing training time and improving generalization capabilities.
Residual connections are added to tackle the vanishing gradient and enable each bloc to
flow directly in the network instead of passing through non-linear activations. For each
layer, we added dropout and we used GELU as an activation function since it is considered
a smoother version of the ReLU [51].
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At the end, the transformer output is then transformed to the MLP Head to perform the
classification task. Unlike the original technique [20], which combines the sequence of encoded
patches with a learnable embedding to serve as the image representation, the final transformer
block outputs are reshaped before being used as input for the MLP head. The MLP Head
consists of two hidden layers of 1024 units and a classification layer with softmax activation.
It gives the probabilities for each class: COVID-19, abnormal heartbeats, and normal.

4. Experiments
4.1. Environment Setup

The experiments were performed using Python 3.8.0 and TensorFlow 2.14.0 framework
with the following specifications:

• RAM of 12.70 GB.
• NVIDIA T4 GPU of 16 GB.

4.2. Implementation Details and Hyper-Parameters Tuning

To deal with the problem of classification bias deriving from the unbalanced data, we
selected 250 ECG images from each class, resulting in a total of 500 images for binary classi-
fication and 750 images for multi-class classification, maintaining the same proportionate
distribution across classes.

When the dataset is small, as is the in case our studies, cross-validation is an important
technique to have a fair evaluation of the classification system. We evaluate our approach
using 10-fold cross-validation. The dataset is split into ten equal folds, and there was no
patient overlap between the folds. Each time, 90% of the data are used as a training set,
while the remaining 10% are kept for the test.

For binary classification, normal and COVID-19 classes are considered. Each fold
consists of 50 images (25 images for each class). Nine folds are used for training (450
images) and the remaining folds for testing (50 images). For the multiclass level, normal,
abnormal heartbeats, and COVID-19 classes are considered. Each fold consists of 75 images
(25 images for each class). Nine folds are used for training (675 images) and the remaining
folds for testing (75 images), Table 2.

Table 2. Distribution of images between training and test sets.

Classification Train (9 Folds) Test (1 Fold) Total

Binary 450 50 500
Multiclass 675 75 750

As mentioned at the beginning, we are dealing with a classification problem. We use
categorical cross-entropy. It is specifically designed for scenarios where the target variable
has multiple classes, and it measures the dissimilarity between the predicted value and the
ground truth, as described below:

LOSS = −

output
size

∑
i=1

yi · log ŷi (1)

where ŷi represents the predicted probability, and yi is the relevant class label. The dimen-
sion is the number of categories (2 for binary level and 3 for multiclass level).

We train the entire architecture using the NovoGrad [52] optimizer. Unlike, Adam,
NovoGrad is an SGD-based algorithm that operates at a first-order level, calculating second
moments per layer rather than per weight. Also, this optimizer is known for its lower
memory requirements and has demonstrated enhanced numerical stability [52]. Table 3
shows the initialization of the hyperparameters.
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Table 3. Hyper-parameters configuration.

Parameter Value

Image size 500 × 500 × 3
EfficientNetB0 features map size 16 × 16 × 1280

Patch size 4 × 4
Projection dimension 64

Transformer layers 32
MSA heads 4

MLP head units 1024
Epochs (Binary) 50

Epochs (Multiclass) 200
Batch size 8
Optimizer NovoGrad

Learning rate 0.001
Weight decay 0.0001

4.3. Results

The binary classification results for each fold are summarized in Table 4. We achieve a
performance of 100% for all classification metrics with a cross-validation strategy for both
models (ViT-EfficientNetB0 and ViT) using the same folds. This result suggests that both
architectures are highly effective in identifying the presence or absence of COVID-19 from
medical images with no observable performance difference between them. The identical
performance of both models indicates strong generalization capabilities in distinguishing
between COVID-19 and normal cases across the dataset used in the study. We hypothe-
size that it is due to the presence of remarkable cardiac findings in the COVID-19 ECG,
which are easily detectable by the vision transformer model. This suggests that the in-
herent capabilities of the vision transformer architecture alone are sufficient for binary
classification tasks.

Table 4. Binary classification result (COVID-19 vs. normal) of an ablation study with cross-validation
using the same folds.

Fold
Precision Recall F1-Score Acc

ViT ViT-EffB0 ViT ViT-EffB0 ViT ViT-EffB0 ViT ViT-EffB0

1 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100 100

10 100 100 100 100 100 100 100 100
Avg 100 100 100 100 100 100 100 100

For the three class levels (COVID-19 vs abnormal heartbeats vs no finding), the av-
erage performance metrics are summarized in Table 5. The ViT–EfficientNetB0 model
outperformed the ViT alone in multiclass classification scenarios, achieving higher pre-
cision, recall, F1-score, and accuracy across all classes (COVID, normal, and abnormal).
The integration of CNN features enhances the discriminative power of the vision trans-
former by providing it with a more comprehensive understanding of the visual context.
While ViT excels at capturing global relationships within data, EfficientNetB0 can capture
local spatial information. These local patterns and anomalies are crucial for accurate clas-
sification. By incorporating EfficientNetB0, the model can effectively capture these local
features, complementing the global context provided by the ViT. Also, EfficientNetB0 is
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proficient at extracting hierarchical features from images. It utilizes convolutional layers
to detect low-level features like edges and textures, gradually building up to higher-level
features such as shapes and patterns. Furthermore, it efficiently extracts relevant features
from the raw images, such as waveform patterns indicative of different cardiac condi-
tions. We achieve an average accuracy of 95.10%, precision of 95.30%, sensitivity of 95.10%,
and F1-score of 95.10%. The performance metrics at each fold for abnormal heartbeats,
COVID-19, and the normal class are shown in Table 6.

Table 5. Multi class classification result (abnormal heartbeats vs. COVID-19 vs. normal) of an ablation
study with cross-validation using the same folds.

Fold
Precision Recall F1-Score Acc

ViT ViT-EffB0 ViT ViT-EffB0 ViT ViT-EffB0 ViT ViT-EffB0

1 83.00 87.00 87.00 87.00 82.00 87.00 87.00 87.00
2 88.00 99.00 90.00 99.00 87.00 99.00 90.00 99.00
3 84.00 99.00 87.00 99.00 82.00 99.00 87.00 99.00
4 85.00 93.00 87.00 93.00 85.00 93.00 87.00 93.00
5 80.00 95.00 81.00 95.00 79.00 95.00 81.00 95.00
6 91.00 98.00 91.00 97.00 91.00 97.00 91.00 97.00
7 77.00 98.00 77.00 97.00 77.00 97.00 77.00 97.00
8 81.00 95.00 88.00 95.00 80.00 95.00 88.00 95.00
9 86.00 93.00 80.00 93.00 78.00 93.00 80.00 93.00
10 90.00 96.00 89.00 96.00 89.00 96.00 89.00 96.00

Avg 84.50 95.30 85.70 95.10 83.00 95.10 85.70 95.10
SD ±4.22 ±3.49 ±4.45 ±3.36 ±4.56 ±3.36 ±4.45 ±3.36

Table 6. Performance metrics of our approach (ViT–EfficientNetB0) for multiclass classification using
a 10-fold cross-validation strategy.

Fold
Abnormal Heart Beats COVID-19 Normal

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

1 80.00 80.00 80.00 100 100 100 80.00 80.00 80.00
2 96.00 100 98.00 100 100 100 100 96.00 98.00
3 96.00 100 98.00 100 100 100 100 96.00 98.00
4 88.00 92.00 90.00 100 100 100 92.00 88.00 90.00
5 96.00 88.00 92.00 96.00 100 98.00 92.00 96.00 94.00
6 93.00 100 96.00 100 100 100 100 92.00 96.00
7 100 92.00 96.00 100 100 100 93.00 100 96.00
8 96.00 88.00 92.00 100 100 100 89.00 96.00 92.00
9 88.00 92.00 90.00 100 100 100 92.00 88.00 90.00
10 96.00 92.00 94.00 100 100 100 92.00 96.00 94.00

4.4. Comparative Study

In this study, the proposed solution is compared with some recent SOTA methods on
the same dataset. As given in Table 7. The majority of these methods give better results
for binary classification and this is due to the presence of cardiac findings in the ECG of
COVID-19 patients, which are easily detectable. However, for multi-class classification, the
methods suffer from identifying COVID patients from other cardiac pathologies due to the
resemblance of abnormalities in the ECG. Our solution outperforms the majority of SOTA
methods in terms of binary and multi-class classification levels. We achieve an average
accuracy of 100% and 95.10% for binary and multiclass, respectively.

Despite the higher performance achieved by the different approaches, we think that
the proposed model still performs very strongly, on the evidence that it is much more
efficient than many models. In particular, the proposed model is lightweight and capable of
effectively distinguishing the classes in question, being only slightly outperformed by much
larger models. Our method was outperformed at the multiclass level by Rahman et al. [39]
with 2%. However, our method demonstrates superior adaptability due to its less complex
architecture. In contrast to their approach, which is based on a DenseNet model with over
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20 million parameters, ours is based on the simpler Vit and EfficientNetB0 models, with
only 10 million parameters. This lighter approach makes our method better suited to real-
life scenarios. In addition, our approach is validated by a rigorous 10-fold cross-validation
process, doubling the robustness of the validation compared to their method, which uses
only 5-fold. This extensive validation scheme guarantees the reliability and generalizability
of our results across a wide range of data distributions.

Table 7. Comparison of the proposed approach with SOTA methods on the same data distribution.

Method Cross Validation AvgAccuracy (%)

Binary classification
Rahman et al. 2021 [39] 5-Fold 99.10

Attallah. 2022 [44] 10-Fold 98.80
Attallah. 2022 [53] 10-Fold 98.20

Prashant et al. 2022 [43] 3-Fold 100
Sobahi et al. 2022 [42] 10-Fold 99.00

Sakr et al. 2023 [45] 10-Fold 94.91
Chorney et al. 2024 [46] 5-Fold 99.29
The proposed approach 10-Fold 100

Multi class classification
Rahman et al. 2021 [39] 5-Fold 97.36

Attallah. 2022 [44] 10-Fold 91.73
Attallah. 2022 [53] 10-Fold 91.60

Sobahi et al. 2022 [42] 10-Fold 92.00
Prashant et al. 2022 [43] 3-Fold 95.29
Chorney et al. 2024 [46] 5-Fold 91.26
The proposed approach 10-Fold 95.10

On the other hand, our method introduces a new architecture that combines a CNN
network with a vision transformer. The combination of this CNN model and the attention
mechanism used enables our model to learn patterns sophisticated enough to differentiate
COVID-19 from other pathologies.

5. Conclusions and Future Works

In this work, we have developed an artificial intelligence approach that complements
the clinician’s diagnosis of COVID-19. Experimental results show that the integration of
CNN features improves the discriminative power of the vision transformer, providing it
with a more complete understanding of the visual context. Looking ahead, the proposed
approach opens up new research and application possibilities in the field of medical
imaging and diagnostics. As we continue to refine and optimize this technique, we can
strive for more accurate and effective healthcare solutions, leading to improved patient
outcomes and quality of care.

As a technical limitation of this research, it is important to highlight the problem of
the restricted COVID-19 images. It can be observed that the majority of state-of-the-art
methods (including our method) have used a small dataset with limited images in which
only a few samples from COVID-19-positive patients are included. In addition, this study
did not use optimization techniques for hyperparameter tuning. Future work could include,
hyperparameter optimization, data augmentation, and, with the continued collection of
data, we would like to extend the experimental work by validating the method with larger
datasets. On the other hand, we are excited to apply our diagnostic system to a broader
spectrum of cardiovascular conditions, including, but not limited to, myocardial infarction,
arrhythmia, and other cardiac pathologies. To this end, we intend to conduct comprehensive
validation studies to assess the performance of our system in various datasets and patient
populations. In addition, we recognize the importance of integrating advanced technologies
into our diagnostic system to enhance its capabilities. This may involve incorporating



Computers 2024, 13, 109 13 of 15

data from wearable devices or integrating with telemedicine platforms to enable remote
monitoring and diagnosis. By harnessing these technologies, we aim to improve the
diagnostic accuracy, accessibility, and scalability of our approach.
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