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Abstract: Tendons are responsible for transmitting mechanical forces from muscles to bones for body
locomotion and joint stability. However, tendons are frequently damaged with high mechanical forces.
Various methods have been utilized for repairing damaged tendons, including sutures, soft tissue
anchors, and biological grafts. However, tendons experience a higher rate of retear post-surgery due to
their low cellularity and vascularity. Surgically sutured tendons are vulnerable to reinjury due to their
inferior functionality when compared with native tendons. Surgical treatment using biological grafts
also has complications such as joint stiffness, re-rupture, and donor-site morbidity. Therefore, current
research is focused on developing novel materials that can facilitate the regeneration of tendons with
histological and mechanical characteristics similar to those of intact tendons. With respect to the
complications in association with the surgical treatment of tendon injuries, electrospinning may be
an alternative for tendon tissue engineering. Electrospinning is an effective method for fabrication
of polymeric fibers with diameters ranging from nanometers to micrometers. Thus, this method
produces nanofibrous membranes with an extremely high surface area-to-volume ratio, which is
similar to the extracellular matrix structure, making them suitable candidates for application in tissue
engineering. Moreover, it is possible to fabricate nanofibers with specific orientations that are similar
to those of the native tendon tissue using an adequate collector. To increase the hydrophilicity of the
electrospun nanofibers, natural polymers in addition to synthetic polymers are used concurrently.
Therefore, in this study, aligned nanofibers composed of poly-D,L-lactide-co-glycolide (PLGA) and
small intestine submucosa (SIS) were fabricated using electrospinning with rotating mandrel. The
diameter of aligned PLGA/SIS nanofibers was 568.44 ± 135.594 nm, which closely resembles that
of native collagen fibrils. Compared to the results of the control group, the mechanical strength
exhibited by the aligned nanofibers was anisotropic in terms of break strain, ultimate tensile strength,
and elastic modulus. Elongated cellular behavior was observed in the aligned PLGA/SIS nanofibers
using confocal laser scanning microscopy, indicating that the aligned nanofibers were highly effective
with regard to tendon tissue engineering. In conclusion, considering its mechanical properties and
cellular behavior, aligned PLGA/SIS is a promising candidate for tendon tissue engineering.

Keywords: electrospinning; NIH-3T3; poly-D,L-lactide-co-glycolide; scaffold; small intestinal
submucosa; tendon

1. Introduction

A tendon is a densely arranged connective tissue capable of transmitting tensile
forces from the muscle to the bone and is aligned parallel to its long axis [1]. Tendons
are frequently injured when subjected to high mechanical loads [2]. Because the intrinsic
regenerative capacity of tendons is limited due to their low cellularity and vascularity [3,4],
damage to the tendon may result in severe pain and an inability to bear weight if not
properly managed [5].
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Various surgical management techniques involving sutures and soft tissue anchors
have been used to treat tendon injuries [6]. However, surgically recovered tendons are
vulnerable to reinjury because of their inferior functionality when compared with native
tendons [4,6]. Surgical treatment with biological grafts is also often performed; however,
such surgical options have complications such as joint stiffness, re-rupture, and donor-site
morbidity [2,6]. Thus, current research in the field of tendon tissue engineering is focused
on developing novel materials to facilitate the regeneration of tendons with histological
and mechanical characteristics similar to those of uninjured tendons [7,8].

With respect to the aforementioned limitations associated with the surgical manage-
ment of tendon injuries, electrospinning may be a promising alternative for tendon tissue
engineering [9]. Electrospinning is an effective method that can be used to fabricate poly-
meric fibers with diameters ranging from nanometers to micrometers [10]. Thus, this
method generates nanofibrous membranes (NFM) with an extremely high surface area-to-
volume ratio, which is similar to the extracellular matrix (ECM) structure, making them
suitable candidates for application in tissue engineering [11]. Moreover, it is possible to
fabricate nanofibers with specific orientations that are similar to those of the native tendon
tissue using an adequate collector during the electrospinning process [4,12]. Attempts have
been made to obtain aligned nanofibers for various purposes. Aviss et al. produced aligned
electrospun poly-D,L-lactide-co-glycolide (PLGA) nanofibers for skeletal muscle regenera-
tion [13], while Subramanian et al. fabricated aligned electrospun PLGA- polycaprolactone
(PCL) nanofibers for neural regeneration [14]. However, the hydrophobic features of syn-
thetic polymers are often unsuitable for initial cell attachment [15]. In contrast to synthetic
polymers, the hydrophilic properties of natural polymers, such as collagen, chitosan, and
alginate, are more favorable for cell adhesion [15–17]. Over the past few decades, nu-
merous studies have focused on the fabrication of hybrid scaffolds using synthetic and
naturally derived polymers for both mechanical stability and biocompatibility for tissue
engineering [16,18–20].

The small intestine submucosa (SIS), which originates from the submucosa of the
porcine intestine, is one of the most widely used collagenous ECMs. It is primarily com-
posed of type 1 and 2 collagen fibers (more than 90% of the entire collagen content). It also
contains various cytokines, including glycosaminoglycans, heparins, transforming growth
factor-β, insulin-like growth factor-1, epidermal growth factor, and vascular endothelial
growth factor as well as chondroitin sulfates, fibronectins, and hyaluronic acids [21,22].
These cytokines are known to improve cellular attachment, migration, proliferation, and
differentiation [23]. Several studies have used SIS as a blending material for hybridization
with PCL [24,25]. In our previous study, we developed a novel scaffold of electrospun
PLGA and SIS blended nanofibrous membranes and identified their potential for wound
healing in an in vitro study [26]. However, these novel scaffolds were in non-woven web
forms, and the mechanical strength of random nanofibers was generally poor [27]. More-
over, considering that most of the native ECMs, including tendons, have a defined or
regularly oriented architecture, which is important for tissue function, random nanofibers
are unsuitable for tendon tissue engineering [27,28].

The primary objective of this study was to investigate the potential use of aligned
electrospun PLGA/SIS nanofibers in tendon tissue engineering. The aligned electrospun
PLGA/SIS blended nanofibers were characterized using scanning electron microscopy
(SEM), water contact angle (WCA), mechanical strength, cellular morphology, attachment,
and proliferation.

2. Materials and Methods
2.1. Materials

PLGA (50:50; ester terminated; mol. wt, 24,000–38,000 Da), Dulbecco’s modified
Eagle’s medium (DMEM), fetal bovine serum (FBS), antibiotics (penicillin–streptomycin),
and trypsin-ethylenediaminetetraacetic acid (EDTA) were supplied by Sigma (St. Louis,
MO, USA). Phosphate-buffered saline (PBS) was purchased from Gibco (Carlsbad, CA, USA).
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1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) was provided by Oakwood, Inc. (Estill, SC, USA).
The phalloidin-iFluor 594 reagents (ab176757) used for F-actin staining were purchased
from Abcam (Cambridge, MA, USA).

2.2. Preparation of SIS Powder

SIS powder was prepared using a commercial pig, as previously described [29]. Briefly,
SIS was obtained after the mechanical removal of the tunica mucosa, tunica muscularis
externa, and tunica serosa layers using a scalpel blade. After washing with saline, the
SIS was placed in 0.1% peracetic acid for 2 h for decellularization. The SIS was then
washed several times with PBS and distilled water (DW). The SIS was lyophilized at
−55 ◦C with a freeze-dryer and subsequently cryomilled using a freezer mill (6860; SPEX
Inc., Metuchen, NJ, USA). SIS powder was not soluble in either water or HFIP. Therefore,
it (1 wt% concentration) was digested with 0.1% pepsin, neutralized with NaOH, and
lyophilized before electrospinning.

2.3. Fabrication of Random and Aligned Nanofibrous Mats (NFMs)

Random electrospun NFMs were obtained from aluminum foil fixed on a flat metal
collector [26]. A rotating metal collector was used to fabricate uniaxially aligned nanofibers.
The metal collector was rotated at a rate of 1000 rpm to improve the alignment of the
nanofibers while keeping the other operating parameters constant. To fabricate the elec-
trospun scaffolds, PLGA was dissolved at 25 wt% in HFIP, while a blended solution of
PLGA/SIS was prepared by mixing 25 wt% PLGA and 1 wt% SIS in HFIP. Random and
aligned NFMs were fabricated using each solution. All electrospinning experiments were
performed at room temperature. The randomly oriented and aligned NFMs were stored in
a vacuum desiccator until further use.

2.4. Scanning Electron Microscopy

The morphology of the randomly oriented and aligned NFMs was identified using
a scanning electron microscope (SEM; S-4800, Hitachi, Chiyoda, Japan) operating at an
accelerating voltage of 5 kV. Five distinct random regions within the scaffold were se-
lected for sample preparation. Platinum was sputtered onto the surface of each dried
sample for 100 s at a current of 10 mA and continuously imaged. The diameter and ori-
entation of the nanofibers were measured using ImageJ software (version 1.54d, NIH,
Bethesda, MD, USA).

2.5. Water Contact Angle

The water contact angles (WCA) of both the random and aligned NFMs were mea-
sured using a WCA analyzer (DSA 100, Krüss GmbH, Hamburg, Germany). Briefly, 2 µL
deionized water was placed in the middle of each sample, and the water contact angle was
measured using the sessile drop method. Each sample was measured at more than three
different points, and the average was determined from at least five separate runs.

2.6. Mechanical Properties

To investigate the effect of nanofiber alignment on the mechanical properties, the
tensile strength of the NFMs was measured using a universal testing device with a 10,000 N
load cell at a loading rate of 15 mm/min (AGS-X, Shimadzu, Kyoto, Japan). The mechanical
properties of the PLGA and PLGA/SIS NFMs were identified in wet state. Each sample
was cut into a 0.5 mm × 30 mm × 0.2 mm sheet of scaffold material for the measurement
of the mechanical properties, including elastic modulus, ultimate tensile strength, and
break strain. The average value of each parameter was measured for six specimens of
each scaffold.
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2.7. Cell Culture of NIH-3T3 Cells

NIH-3T3 cells were provided by S. Do (Veterinary Clinical Pathology, Konkuk Univer-
sity, Seoul, Korea). The NIH-3T3 cells were subcultured in DMEM containing 10% FBS and
penicillin/streptomycin (100 µg/mL). The medium was changed every three days, and
the cultures were placed in a cell culture incubator at 37 ◦C with 5% CO2. Once the cells
reached 80–90% confluence, they were trypsinized, removed from the culture flask, and
passaged at a 1:3 ratio. Passages 4–5 were used in this study.

2.8. Cell Attachment and Proliferation

The effects of the hydrophilicity and alignment of the nanofibers on cell attachment and
proliferation were evaluated by seeding NIH-3T3 cells onto random or aligned electrospun
PLGA and SIS NFMs. Empty wells of the 96-well plate were used as background control.
Cells were seeded in each well at a concentration of 5× 103 cells and placed in a humidified
incubator for 7 days. During the culture period, the WST assay was performed on days
1, 3, and 7. After the removal of the medium from each well, 100 µL of the medium was
added to each well along with 10 µL of WST-1 reagent. The plates were kept at 37 ◦C
for 1 h to allow the WST reaction to occur. The plates were then placed into a microplate
reader (Sunrise™, TECAN, Lyon, France) to read the absorbance at 450 nm to determine
the amount of Formazan dye, which directly reflects the number of metabolically active
viable cells.

2.9. Immunofluorescence Staining

To evaluate the effect of scaffold architecture on cellular conformation, the cellular
behavior on the aligned PLGA/SIS NFM was compared to that on the random PLGA
NFM by labeling actin microfilaments with Fluorescein Isothiocyanate (FITC)-phalloidin.
Immunofluorescence staining was performed to investigate the morphology and alignment
of the NIH-3T3 cells. After aspirating the medium with special care to avoid dislodging the
cells, the cells were rinsed once with PBS. The cells were then fixed in formalin (4% formalde-
hyde in PBS) at room temperature for 30 min. After removing the fixation solution, the cells
were rinsed three times in PBS, permeabilized with 0.1% Triton X-100 for 5 min, and washed
with PBS again. F-actin filaments were labeled with phalloidin-iFluor 594 (Abcam, Boston,
MA, USA). Finally, the samples were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI) (Vectashield Mounting Medium; Vector Laboratories, Burlingame, CA, USA) to
label the cell nuclei.

2.10. Confocal Laser Scanning Microscope (CLSM)

To investigate the topography-induced behavior of NIH-3T3 cells, their morphol-
ogy on both random and aligned scaffolds was evaluated using a confocal laser scan-
ning microscope (LSM-800, Carl-Zeiss, Oberkochen, Germany). The gain/offset settings
for the detectors were optimized to minimize the background noise. The contrast and
brightness of digital images were optimized using Adobe Photoshop (Adobe Systems,
San Jose, CA, USA). The scaffolds were fixed in 2.5% paraformaldehyde for 30 min at
different time points (1st, 3rd, and 7th day).

2.11. Statistical Analysis

The data were summarized and analyzed using statistical software (SPSS, version 23.0).
Multi-way analysis of variance tests were conducted, and p values less than 0.05 were
considered significant. All data were represented in the form of mean ± standard devia-
tions (SD).

3. Results
3.1. Morphology of Aligned Nanofibrous Membrane

Morphological differences between the random or aligned electrospun PLGA and
PLGA/SIS NFMs were observed using SEM. As shown in Figure 1, the fibers were ran-
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domly arranged on the flat collector (Figure 1A,B). In comparison, although the alignment
of every fiber was not perfectly oriented in the same direction, the fibers obtained on the ro-
tating disc collector displayed a distinctly aligned longitudinal morphology (Figure 1C,D).
The diameters (nm) of random and aligned PLGA NFMs were 1387.45 ± 225.88 nm and
929.34 ± 236.943 nm, respectively, while the diameters of the random and aligned PLGA/SIS
NFMs were 989.34 ± 162.994 nm and 568.44 ± 135.594 nm, respectively. When the ori-
entation of the nanofibers was the same, the addition of SIS significantly decreased the
diameters (p < 0.05). This is assumed to result from the increased electrical conductivity due
to the incorporation of SIS into PLGA [25,26]. However, under the same NFM composition,
the diameter of the aligned nanofibers decreased significantly compared to that of the
random nanofibers (p < 0.05). This was because the rotating mandrel spun faster than
the speed at which nanofibers were produced; thus, physically stretching the nanofibers
in the rotating direction of the mandrel [30]. However, there was no significant differ-
ence between the diameter (mn) of the aligned PLGA nanofibers and that of the random
PLGA/SIS nanofibers.
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aligned NFMs was not identified when compared to the random NFMs. We speculate the 

Figure 1. Scanning electron microscope (SEM) images of the nanofibrous scaffolds consisting of
(A) random poly-D,L-lactide-co-glycolide (PLGA), (B) aligned PLGA, (C) random PLGA/small
intestine submucosa (SIS), and (D) aligned PLGA/SIS and (E) the mean fiber diameter of different
nanofibrous scaffolds (Scale bar = 10 µm). The mean fiber diameters of all the nanofibrous scaffolds
were significantly different from each other, except between random PLGA/SIS and aligned PLGA
(p < 0.05), NS: no significant difference.

3.2. Water Contact Angle (WCA)

Because cells adhere and migrate more efficiently on the surface under appropriate
hydrophilic conditions, we evaluated the static contact angle of deionized water on the ran-
dom and aligned NFMs (Figure 2). As a result, the WCA of random PLGA, aligned PLGA,
random PLGA/SIS, and aligned PLGA/SIS NFMs were 122.56 ± 3.56◦, 119.52 ± 6.52◦,
74.12 ± 4.61◦, and 73.87 ± 5.2◦, respectively. As expected, the surface of the random and
aligned PLGA/SIS NFMs was more hydrophilic than that of the random and aligned PLGA
NFMs, due to the addition of SIS to PLGA [26]. According to a previous study, a WCA of
aligned nanofibers is lower than that of random nanofibers due to the smaller pore size of
aligned scaffolds [14]. However, a significant difference in the WCA of the aligned NFMs
was not identified when compared to the random NFMs. We speculate the reason for this
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result is that the alignment of the nanofibers was not sufficient to cause a difference in
the WCA.
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Figure 2. Variations in the water contact angle of the random and aligned PLGA and SIS nanofibrous
membranes (NFMs). NS: no significant difference.

3.3. Mechanical Properties

To clarify the effects of the incorporation of SIS into the blended nanofibers and the
alignment of the nanofibers on the mechanical properties of the electrospun nanofibers, a
uniaxial tensile strength test was performed. Consequently, the different orientations of the
nanofibers resulted in anisotropic mechanical properties. In the current study, the break
strain, tensile strength, and elastic modulus of aligned PLGA/SIS NFMs were higher than
those of the other NFMs (p < 0.05). We found that the incorporation of SIS into the blended
nanofibers altered the mechanical behavior from brittle to ductile (Figure 3). Considering
that weak mechanical strength exhibits brittle mechanical behavior, the incorporation of
SIS into pure PLGA strengthened the scaffolds, which is consistent with the results of
a previous study [26]. However, the ultimate tensile strength of the aligned nanofibers
was improved compared to that of the random nanofibers, regardless of the incorporation
of SIS (p < 0.05). It is believed that the direction of the nanofibers enhanced mechanical
properties, resulting in superior mechanical performance of the aligned nanofibers than
that of random nanofibers. This was outlined in two previous studies that described the
mechanical properties in association with the angle and of the stretching direction and the
fiber orientation [31,32].
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The tensile strengths of the human patella and rotator tendons are 5–65 and 14–45 MPa,
respectively. Therefore, ultimate tensile strength of the aligned PLGA/SIS nanofibers
observed in this study was higher than the lower value of the tensile strength of each of the
aforementioned actual anisotropic tissues. Moreover, the maximum strength and tensile
modulus of Artelon® (SportMeshTM Artimplant AB, Frölunda, Sweden), a commercial
patch used for soft tissue reinforcement, including tendon, are 11.86 MPa and 14.25 MPa,
respectively [33], which are lower than the maximum strength and tensile modulus of the
aligned PLGA/SIS nanofibers used in this study. The elastic modulus, ultimate tensile
strength, and break strain values are listed in Table 1.

Table 1. Measurements of the mechanical properties of each scaffold (n = 6). All data sets are
significantly different from each other (p < 0.05).

Elastic Modulus (MPa) Ultimate Tensile
Strength (MPa) Break Strain (%)

Random
PLGA 212.01 ± 25.25 3.91 ± 0.98 18.23 ± 3.87

PLGA/SIS 351.87 ± 15.79 7.12 ± 1.22 31.43 ± 4.98

Aligned
PLGA 420.59 ± 49.84 9.51 ± 1.13 7.92 ± 2.91

PLGA/SIS 520.69 ± 54.11 15.14 ± 4.12 22.71 ± 5.12

3.4. Comparison of the Morphology of NIH-3T3 Cells on Random and Aligned NFMs

The alignment of nanofibers is crucial in tissue engineering. Cells in natural tissues
are often regularly oriented [25]. The morphology of the NIH-3T3 cells on both random
PLGA and aligned PLGA/SIS scaffolds was identified using CLSM on days 1, 3, and 7 after
seeding. We found that cells on both random and aligned NFMs continuously increased
during the incubation period, suggesting good proliferation and interaction between the
cells and NFMs. Cells grown on random PLGA NFMs exhibited random adhesion and
growth. In contrast, the cells on aligned NFMs were found to have elongated their actin
microfilaments 1 d after seeding, but more importantly, the direction of their elongation
was the same as that of the aligned nanofibers from the initial phase of their adherence,
compared to the randomly oriented cells on random PLGA NFMs (Figure 4A,D). By day 3
after cell seeding, most cells had attached and elongated themselves along the direction of
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the aligned nanofibers with a spindle-shaped appearance. Although the direction of the
elongated NIH-3T3 cells was not identical to that of the nanofibers, a distinct regularity was
identified throughout the incubation period when compared with the randomly oriented
cells on random PLGA NFMs (Figure 4B,E). On day 7, the cells completely covered the
surface of the NFM, suggesting that the actin filaments in NIH-3T3 cells had aligned along
the aligned nanofibrous scaffold (Figure 4F). Furthermore, aligned NFMs presented a
specific topographical cue to orient the cells, thereby avoiding aggregation at the end of
day 7. In contrast, the cells on random NFMs were likely to adhere to each other, forming
an amorphous aggregate rather than attaching to the nanofibers (Figure 4C).

Polymers 2023, 15, x FOR PEER REVIEW 9 of 12 
 

 

4A,D). By day 3 after cell seeding, most cells had attached and elongated themselves along 
the direction of the aligned nanofibers with a spindle-shaped appearance. Although the 
direction of the elongated NIH-3T3 cells was not identical to that of the nanofibers, a dis-
tinct regularity was identified throughout the incubation period when compared with the 
randomly oriented cells on random PLGA NFMs (Figure 4B,E). On day 7, the cells com-
pletely covered the surface of the NFM, suggesting that the actin filaments in NIH-3T3 
cells had aligned along the aligned nanofibrous scaffold (Figure 4F). Furthermore, aligned 
NFMs presented a specific topographical cue to orient the cells, thereby avoiding aggre-
gation at the end of day 7. In contrast, the cells on random NFMs were likely to adhere to 
each other, forming an amorphous aggregate rather than attaching to the nanofibers (Fig-
ure 4C). 

 
Figure 4. Representative images of the cellular behavior of random PLGA and aligned PLGA/SIS 
NFMs after 1, 3, and 7 days of culture. (A,B,C) Randomly oriented cell growth on random PLGA 
NFMs after 1, 3, and 7 day of culture. (D,E,F) Regular cell growth on aligned PLGA/SIS NFMs after 
1, 3, and 7 day of culture. F-actin was labelled with phalloidin-iFluor 594 (red); cell nuclei were 
counterstained with DAPI (blue). The scale bar for confocal fluorescence micrographs is 50 µm. 

3.5. Cell Attachment and Proliferation  
We evaluated the effects of nanofiber alignment on the initial cell attachment and 

proliferation by seeding NIH-3T3 cells in random PLGA, random PLGA/SIS NFMs, 
aligned PLGA, and aligned PLGA/SIS NFMs. Cell attachment and proliferation was eval-
uated using a WST assay kit after days 1, 3, and 7 (Figure 5). An absorbance at 450 nm 
indicated that random PLGA/SIS had a higher optical density (OD) value than aligned 
PLGA, with significant statistical differences (p < 0.05). This suggests that the increase in 
hydrophilicity due to incorporation of SIS into PLGA is more effective in inducing cell 
proliferation than the alignment of the nanofibers. In contrast, aligned PLGA/SIS had a 
higher OD value than random PLGA/SIS (p < 0.05). It is speculated that the longitudinal 
alignment of the nanofibers guided the spreading direction of the attached cells, thereby 
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Figure 4. Representative images of the cellular behavior of random PLGA and aligned PLGA/SIS
NFMs after 1, 3, and 7 days of culture. (A–C) Randomly oriented cell growth on random PLGA NFMs
after 1, 3, and 7 day of culture. (D–F) Regular cell growth on aligned PLGA/SIS NFMs after 1, 3, and
7 day of culture (white arrow: direction of cell growth). F-actin was labelled with phalloidin-iFluor
594 (red); cell nuclei were counterstained with DAPI (blue). The scale bar for confocal fluorescence
micrographs is 50 µm.

3.5. Cell Attachment and Proliferation

We evaluated the effects of nanofiber alignment on the initial cell attachment and
proliferation by seeding NIH-3T3 cells in random PLGA, random PLGA/SIS NFMs, aligned
PLGA, and aligned PLGA/SIS NFMs. Cell attachment and proliferation was evaluated
using a WST assay kit after days 1, 3, and 7 (Figure 5). An absorbance at 450 nm indicated
that random PLGA/SIS had a higher optical density (OD) value than aligned PLGA, with
significant statistical differences (p < 0.05). This suggests that the increase in hydrophilicity
due to incorporation of SIS into PLGA is more effective in inducing cell proliferation than
the alignment of the nanofibers. In contrast, aligned PLGA/SIS had a higher OD value
than random PLGA/SIS (p < 0.05). It is speculated that the longitudinal alignment of the
nanofibers guided the spreading direction of the attached cells, thereby allowing the cells
to occupy the space more compactly. Thus, more cells were deposited within the surface
of the scaffolds. Moreover, according to a previous study, the degradation rate of aligned
nanofibers is lower than that of random nanofibers [34]. Considering the profound effect of
alignment of the nanofibers on cell proliferation, maintenance of their morphology would
be beneficial for cellular growth.
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Figure 5. Cell viability of NIH-3T3 cells seeded on electrospun random PLGA, aligned PLGA, random
PLGA/SIS, and aligned PLGA/SIS was measured by formazan absorption at 450 nm in WST assay
(n = 6). (Comparison with control, *—p < 0.05, **—p < 0.001).

4. Conclusions

In this study, PLGA/SIS NFMs that were aligned with a rotational wheel collector were
fabricated using electrospinning for potential use in tendon engineering. We demonstrated
that the mechanical properties of the aligned PLGA/SIS NFMs were superior to those
of the random PLGA, random PLGA/SIS, or aligned PLGA NFMs. Furthermore, the
cellular behavior of aligned PLGA/SIS nanofibers was more effective than that of random
PLGA or random PLGA/SIS NFMs, allowing more cells to be deposited above the surface
of the scaffolds. Consequently, the aligned PLGA/SIS NFMs facilitated increased cell
adhesion and proliferation when compared with random PLGA, random PLGA/SIS, or
aligned PLGA NFMs due to the regular orientation of nanofibers or SIS incorporation into
PLGA. Considering its mechanical properties and cellular behavior, aligned PLGA/SIS is a
promising candidate for tendon tissue engineering.
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