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Abstract: Cellulose was extracted from coconut shell powder (CSP) as a renewable biomass resource
and utilized as a reinforcing material in poly(lactic acid)/poly(butylene succinate) (PLA/PBS) solvent
casting films. The extraction process involved delignification and mercerization of CSP. Microscopic
investigation of the extracted microfibers demonstrated a reduction in diameter and a rougher surface
characteristic compared to the raw CSP. The cellulose prepared in this study exhibited improved
thermal stability and higher crystallinity (54.3%) compared to CSP. The morphology of the cycrofrac-
tured surface, thermal analysis, mechanical property, and UV transmittance of films were measured
and compared. Agglomeration of 3 wt.% of cellulose was observed in PLA/PBS films. The presence
of cellulose higher than 1 wt.% in the PLA/PBS decreased the onset decomposition temperature
and maximum decomposition temperature of films. However, the films loading 3 wt.% of cellulose
had a higher char formation (5.47%) compared to neat PLA/PBS films. The presence of cellulose
promoted the formation of non-uniform crystals, while cellulose had a slightly negative impact
on crystallinity due to the disruption of polymer chains at lower cellulose content (0.3, 0.5 wt.%).
The mechanical strength of PLA/PBS films decreased as the cellulose content increased. Moreover,
PLA/PBS film with 3 wt.% of cellulose appeared to show a 3% and 7.5% decrease in transmittance
in UVC (275 nm) and UVA (335 nm) regions compared to neat PLA/PBS films while maintaining a
certain transparency.

Keywords: coconut shell extract; cellulose; biodegradable films; UV barrier property

1. Introduction

With the rapid depletion of natural resources and the escalating environmental is-
sues caused by the recalcitrant wastes of non-biodegradable plastics, there is a massive
demand for the utilization of biodegradable and renewable raw materials [1]. Polylactic
acid (PLA), as a biodegradable aliphatic polyester, has received extensive attention due
to its reliable industrial-scaled productions and excellent properties, especially its pro-
cessability and wide range of applications in sustainable and environmentally friendly
products [2,3]. Although the many merits of PLA guarantee its utilization in various fields
such as biological engineering, daily tableware and containers, agriculture, and auto-
motive [4–6], the application of PLA in the biocomposite packaging field is still limited
by its brittleness, poor thermal stability, low impact strength, low flexibility, and slow
crystallization [7–10]. Many approaches have been explored to further remedy the lim-
itations mentioned above, for example, grafting with suitable polymers via melt com-
pounding or solvent casting, or physical blending with plasticizers [11,12]. It is confirmed
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that blending PLA with other biodegradable polymers with low glass transition temper-
atures (Tg), such as poly(butylene succinate) (PBS) (Tg ≈ −32 ◦C) [13–17], poly(butylene
succinate-co-butylene adipate) (PBSA) (Tg ≈−45 ◦C) [18–20], and poly(butylene adipate-co-
terephthalate) (PBAT) (Tg ≈ −50 ◦C), is an efficient solution since it not only maintains the
biodegradability but also well tunes the Tg, addressing the brittleness problem [19,21–24].

However, it is important to note that blending PBS with PLA can result in a loss of
clarity, especially in applications where transparency is necessary. The phase separation
in the PLA/PBS blend tends to make it translucent. Achieving transparency is not solely
dependent on miscibility but also relies on factors such as crystallite size and the balance
between amorphous and crystalline phases to minimize light scattering. Wang et al. demon-
strated that incorporating DCP (0.05–0.2 phr) could enhance the percent transmittance of
the PLA/PBS (80/20 wt.%) blend [25]. This improvement could be attributed to increased
compatibility, a reduction in the size of the PBS domains, and a decrease in PBS crystallinity.
In addition, the random copolymer of PLA and PBS (rPBSL) also enhanced the film clarity
as a consequence of the compatibility of PLA/PBS (80/20) blend as well as the decrease in
the size of spherulite diameter (~15 mm) [12].

On the other hand, one principal drawback of PBS is the substantial increase in
cost. Therefore, achieving a balance between the strength, toughness, and price of PLA
composites requires a synergistic approach that incorporates low-cost and easily obtainable
fillers. From this viewpoint, modification of PLA/PBS by physical blending and loading of
a filler is an economic and effective approach to overcome these limitations.

Lignocellulosic fibers obtained from plant and cellulose-based sources are common
bio-fillers for reinforcing polymer matrices [26–28]. Notably, quality fibrous fillers can be
obtained from agricultural wastes such as bagasse, wheat straws, rice husks, groundnut
shells, coconut husks, and cotton stalks [29]. Coconut shells are primarily composed of
cellulose, hemicellulose, and lignin, sharing a chemical composition that closely resembles
wood and is suitable for value-added extraction [30]. In China, the annual production of
coconut shell residues exceeds 400 million tons, representing immense potential for conver-
sion into fuels and chemicals. In this context, the fractionation of a coconut shell material
in its main constituents—cellulose, hemicellulose, and lignin—is of great importance for
the development of a sustainable economy [31]. Cellulose extraction is commonly achieved
through sulfuric acid or nitric acid hydrolysis. However, the resulting cellulose products
usually have limited thermal stability, indicated by a maximum degradation temperature
(Tmax) of 250 ◦C, which would limit utilization in various melt processing techniques like
injection molding, twin-screw compounding, and extrusion [32]. Alternative procedures
for the extraction of cellulose have been proposed and successfully implemented; mild
acids, such as glacial acetic acid, along with sodium chlorite, have been employed un-
der ultrasonic or microwave irradiation. These alternative methods aim to enhance the
extraction process while maintaining or improving the thermal stability of the extracted
cellulose, enabling its application in a broader range [33–35]. Cotton linters were partially
hydrolyzed in dilute acid. These facts suggest that amorphous cellulose in the bulk is not
accessible for hydrolysis and that microfibril bundles are hydrolyzed through a surface
reaction process [36].

As mentioned above, PLA, PBS, and cellulose are some of the most promising candi-
dates and play vital roles in contributing toward the marketing of bioplastics designed for
sustainable packaging. None of them alone can meet the demands for various structural
materials in packaging applications. For food packaging applications, a barrier against UV
light is essential to inhibit the decomposition of packed foodstuffs [37]. PLA/3.0%Napier
cellulose nanowhiskers (NWCs) film exhibited UVA and UVB transmittance of 7.49% and
4.02%, respectively, making it suitable for packaging materials [38].

To the best of our knowledge, there has been no report on PLA/PBS composite films
reinforced by cellulose extracted from coconut shells. Herein, this work investigated the
detailed cellulosic preparations from coconut shells by yield, thermal stability, crystallinity,
spectroscopic characterization, and morphology and aims at exploiting the potential of the
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cellulose extracted from coconut shells to reinforce PLA/PBS films. The thermal stability,
crystallization behavior, UV-Vis transmittance, and cryofractured surface characteristics of
the films were investigated, revealing features that make the films promising for applica-
tions as environmentally friendly food packaging products.

2. Materials and Methods
2.1. Materials

Polylactic acid (PLA) FY801 (Mw = 120,000 g/mol, stereochemical purity in L-isomer
99.8%, MFR 4.1 g/10 min at 190 ◦C) was purchased from Anhui BBCA Biochemical Futerro
PLA Co., Ltd., Bengbu, China. Poly (butylene succinate) (PBS) TH803S (Mw = 140,000 g/mol,
MFR 7.5 g/10 min at 190 ◦C) was provided by Xinjiang Blue Ridge Tunhe Chemi-
cal Industry Co., Ltd., Changji, China. Sodium chlorite (purity 80%), glacial acetic
acid (purity 99.7%), sodium hydroxide (NaOH, purity 97%), dichloromethane (DCM,
purity 99.9%), and all other chemicals were supplied by Macklin Chemical Co., Ltd., Shang-
hai, China. The coconuts were kindly donated by Zhejiang Freenow Food Co., Ltd., Jiaxing,
China. Before use, the white portion of the coconut shells was peeled off, oven-dried, and
ground to pass through a 40-mesh sieve.

2.2. Extraction of Cellulose from Coconut Shells

A total of 12 g of CSP was sequentially treated with 390 mL of distilled water, 3 mL of
glacial acetic acid, and 4.5 g of sodium chlorite. The reactants were continuously stirred for
1 h in a thermostatic water bath at 75 ◦C [33]. After 1 h, another 3 mL of glacial acetic acid
and 4.5 g of sodium chlorite were added to the reactants again. This process was repeated
a total of six times, with each repetition occurring every 1 h to ensure a uniform mixture of
CSP and the chemicals. The resulting mixture was filtered and washed repeatedly with
distilled water until reaching a neutral pH (approximately 7). The obtained holocellulose
was then oven-dried for 48 h, and the yield of holocellulose was calculated based on the
initial mass of CSP and the amount of holocellulose.

A total of 10 g of holocellulose was placed into a 250 mL aqueous solution of 17.5%
NaOH and reacted at 20 ◦C for 40 min. Then, an additional 250 mL of distilled water was
added. After 5 min, the mixture was filtered, and the resulting filtrate was soaked in 400 mL
of 10% acetic acid solution. The cellulose was washed three times with 100 mL of boiling
water and filtered. The cellulose was then placed in a vacuum drying oven and dried at
105 ◦C for 48 h. The cellulose incorporated into the PLA/PBS films underwent a sieving
process using a 300 mesh screen prior to its utilization.

The holocellulose and cellulose yield was expressed as a percentage of CSP using
(Equation (1)).

Yield (%) =
Mf
Mi
× 100 (1)

where Mi is the initial weight of CSP and Mf is the final dried weight of holocellulose or
extracted cellulose.

The sample for hemicellulose removal was prepared as follows: 10 g of CSP was
placed in 250 mL of a 17.5% NaOH aqueous solution. The mixture was allowed to react at
20 ◦C for 40 min, and then 250 mL of distilled water was added. After a 5 min interval, the
resulting mixture was filtered and the collected material was transferred to 400 mL of a
10% acetic acid solution. Thorough stirring was performed for 10 min to ensure complete
neutralization of both NaOH and acetic acid. To eliminate any remaining impurities, the
obtained sample was repeatedly rinsed with boiling water until reaching a neutral pH.

2.3. Preparation of PLA/PBS/Cellulose Blended Films

The solvent casting method was employed to prepare PLA/PBS films as follows. A
mixture of 0.45 g PLA pellets and 0.05 g PBS pellets (totaling 0.5 g) was dissolved in 25 mL
of DCM and stirred for 4 h at room temperature. The resulting solution was then subjected
to ultrasonic dispersion and cast onto a glass petri dish for evaporation under ambient



Polymers 2023, 15, 3000 4 of 15

atmospheric conditions. To enhance the thermal properties of the PLA/PBS films, four
different concentrations of cellulose (0.3, 0.5, 1, and 3 wt.% of PLA/PBS) were incorporated
into the films. The thicknesses of PLA/PBS composite films were 30 ± 2 µm.

2.4. Characterization of Primary Components of Coconut Shell and Composite Films

The morphology of CSP, holocellulose, and extracted cellulose was examined with an
optical microscope (CX31, OLYMPUS, Tokyo, Japan).

X-ray diffraction (XRD) was used to examine the crystallinity of CSP, cellulose, holocel-
lulose, and hemicellulose extracted samples. The samples were analyzed in an X-ray diffrac-
tometer (Model: Rigaku D/max 2200, Tokyo, Japan) using Cu-Kα radiation (λ = 0.154 nm)
at 40 kV and 30 mA with a goniometer speed of 0.02 s−1. The spectra were measured for 2θ
in the range of 5–60◦. The X-ray detector used was a scintillation counter with a detector
angle of 40◦, placed at a distance of 300 mm. The crystallinity index was calculated using
Equation (2) as suggested by Segal, Creely, Martin Jr., and Conrad (1959) [39].

Crystallinity index =
I002 − Iam

I002
× 100 (2)

where I002 is the peak intensity of the 002 lattice diffraction at 2θ = 22.8◦ (crystalline regions)
and Iam is the intensity of the diffraction at 2θ = 18◦ considering the amorphous region.

The primary components of coconut shells were analyzed in an FT-IR spectrometer
(ThermoFisher IS 10, Massachusetts, America) in reflection mode with the ATR accessory
(resolution 4 cm−1, range 4000 to 650 cm−1, 64 scans).

Thermal weight loss analysis was conducted using a thermogravimetric instrument
(TGA 2, Mettler Toledo, Zurich, Switzerland). In this analysis, approximately 8–10 mg of the
polymeric materials were placed in an aluminum dish under a nitrogen (N2) atmosphere at
room temperature. The sample was then subjected to heating at a rate of 10 ◦C/min using
a high-resolution dynamic mode until reaching a temperature of 600 ◦C. Throughout the
heating process, the weight loss of the sample in response to the temperature change was
recorded.

The morphology of cryofractured cross sections of the PLA/PBS composite films
containing cellulose was examined with a field emission scanning electron microscope
(SEM) (HITACHI S4800, Tokyo, Japan) operating at 5 kV. The samples were fractured in
liquid nitrogen and sputter-coated with gold.

The crystallizing effect of cellulose on the composite films was evaluated using differ-
ential scanning calorimetry (DSC 3, Mettler Toledo, Zurich, Switzerland) on around 2–4 mg
of the sample at a heating/cooling rate of 10 ◦C/min from 25–190 ◦C in an aluminum pan,
under a nitrogen flow of 50 mL/min. The crystallinity degree (Xc) was calculated with
Equation (3):

Xc(%) = (
∆Hm − ∆Hcc

∆H0 ∗ 1−wt.%(cellulose)
100

)× 100 (3)

where ∆Hm, ∆Hcc and ∆H0 are the experimental melting enthalpy, cold crystallization
enthalpy, and the theoretical heat of fusion of 100% crystalline PLA (∆H0 = 93 J/g) and PBS
(∆H0 = 110.3 J/g), respectively [12,40].

The mechanical properties of the films (1.5 cm× 9 cm) were evaluated with a universal
testing machine (GBH 2, GBPI, Guangzhou, China) at room temperature using a cross-head
speed of 50 mm/min and a tensile load of 0.5 kN, according to ISO 527-3: 2018.

The light transmittance of the films was evaluated using a UV-Vis spectrophotometer
(UV 5200PC, Shimadzu, Kyoto, Japan) in the range of wavelength from 800 nm to 200 nm.

3. Results and Discussion
3.1. Morphology and Yield of Cellulose

White coconut shells were utilized as the raw materials to mitigate the impact of
chromophoric groups on the purity and yield of cellulose (Figure 1). After grinding and
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drying, the coconut shells underwent oxidation, resulting in a light brown color. The color
change from brown to off-white after each successive treatment confirmed the progressive
removal of hemicellulose, lignin, and lipid and the subsequent increase in cellulose content
of the CSP. Optical microscopic images clearly demonstrated that delignification did not
significantly alter the diameter and length of CSP but imparted a smoother surface to the
holocellulose (Figure 2). The final cellulose yield, after delignification and alkali treatment,
was approximately 32.8% of the initial weight of CSP. These findings were consistent with
the cellulose yield reported by Kalla [33]. The diameter and length of cellulose decreased
compared to the initial CSP due to fibrillation. Similar reductions in cellulose diameter
were previously observed in studies involving cellulose extraction from coffee and rice
husks [41].
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3.2. Crystallinity of CSP and Primary Components

The X-ray diffraction patterns of CSP, holocellulose, cellulose, and hemicellulose
extracted are shown in Figure 3. The patterns were typical of semicrystalline cellulosic
materials with an amorphous broadband and distinct crystalline peaks. In all the samples
analyzed, the diffractogram profile indicated the prevalence of cellulose type I (JCPDS 50-
2241), with the primary intensity observed at about 2θ = 22.2◦ (plane 002) and identifiable
peaks at 2θ = 17.1◦ (plane 101) and 34◦ (plane 004) [35]. The delignification and alkali
treatment applied to CSP resulted in an enhanced crystallinity of the fibers, primarily
due to the dissolution of amorphous compounds, including hemicelluloses and lignin.



Polymers 2023, 15, 3000 6 of 15

Consequently, the chemically treated samples exhibited a crystalline structure consisting of
polymorphs of cellulose type I, wherein the cellulose molecules are aligned in parallel. The
crystallinity of the extracted samples, including holocellulose, cellulose, and hemicellulose,
increased to 47%, 54.3%, and 45.7%, respectively, in comparison to the original CSP (32.7%).
These findings suggest that the proportion of the crystalline fraction increases as the
amorphous constituents are removed.
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3.3. Spectroscopic Characterization

The FTIR spectra of CSP, CSP, holocellulose, cellulose, and hemicellulose extracted
powder are presented in Figure 4. The bands at 1458 (VI) and 1247 (VII) cm−1 were
attributed to the bending of CH3 groups and the out-of-plane stretching vibrations of C=O
in aryl groups. The peaks at 1608 (IV) and 1511 cm−1 (V) corresponded to the stretching
vibrations of the C=C bonds in the aromatic ring of lignin [42]. These peaks completely
disappeared in the extracted cellulose after chemical treatment, indicating the successful
removal of lignin from the CSP fibers. The band observed at 1735 cm−1 (III) in CSP
can be ascribed to the stretching vibration of C=O in acetyl and uronic ester groups of
hemicellulose. This band was absent in cellulose and hemicellulose removal samples,
suggesting the effective removal of hemicellulose through mercerization. The broad bands
centered at 3340 cm−1 (I) and 2890 cm−1 (II) were associated with the stretching vibration
of OH groups, which are observed in hydrophilic materials [43]. The peak observed at
2890 cm−1 in cellulose was relatively more intense, indicating a higher number of OH
groups in cellulose. The most prominent peak, centered at 895 cm−1 (VIII), was assigned
to the β-(1→4) linked glycosidic bonds in cellulose [34]. This peak became sharper after
treatments, particularly in the case of cellulose, which experienced a substantial increase in
cellulose content. In summary, characteristics observed in the FTIR spectrum confirm the
successful preparation of cellulose from coconut shells.
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Figure 4. Fourier transform infrared spectra (800 to 4000 cm−1 wavenumber) of CSP, holocellu-
lose, cellulose, and hemicellulose extracted powder, (I) 3340 cm−1, (II) 2890 cm−1, (III) 1735 cm−1,
(IV) 1608 cm−1, (V) 1511 cm−1, (VI) 1458 cm−1, (VII) 1247 cm−1, (VIII) 895 cm−1.

3.4. Thermal Analysis of Fibers

Figure 5a,b displays the thermogravimetric analysis (TGA) and the corresponding
derivative (DTG) curves of analyzed samples, respectively. All the samples exhibited the
first decompose intensity at 55 ◦C, mass loss of 2.5%, corresponding to the desorption
of physically and chemically bound water and volatiles. Hemicellulose is made of short,
branched heteropolysaccharides that are built up from various C5 (pentoses, such as xylose
and arabinose) and C6 (hexoses, such as glucose, galactose, and mannose) sugars with
some amount of uronic acid. The above components of hemicellulose have a lack of crys-
tallinity, causing low thermal stability in addition to a low degree of polymerization [44–46].
The decomposition of CSP started at 200 ◦C due to the presence of hemicellulose. The
stable cellulose decomposed at around 300 ◦C and exhibited different thermal stability
than hemicellulose due to inherent differences in chemical structure, even though both
are polysaccharides. CSP, holocellulose, and hemicellulose removal particles dropped
significantly, accounting for subtracting the amount of hemicellulose and lignin pyrolyzed
within this temperature range. Cellulose decomposed in a rather narrow range compared
to CSP, and the maximum pyrolysis rate of pure cellulose was at 347.3 ◦C, and 18% of
residues were retained at about 400 ◦C. For the treated samples, the removal of lignin
or hemicelluloses generated higher solid residues such as ashes and inorganic materials
(around 20% of the initial mass). The third additional event (not observed for raw ground
materials) occurred from 420 to 500 ◦C, with a maximum at 440 ◦C of CSP. It was ascribed
solely to the degradation of lignin (the most stable of the three compounds). Above this
temperature, pyrolysis occurred, which was associated with the release of carbon dioxide
and consequent reduction in the residual mass. Cellulose and hemicellulose exhibit differ-
ent thermal stability due to inherent differences in chemical structure, even though they
are polysaccharides.
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3.5. Morphology of Films

Figure 6a–e shows the SEM images of the cryofractured surface of neat PLA/PBS
films and PLA/PBS films containing 0.3, 0.5, 1, and 3 wt.%, respectively. It can be seen in
Figure 6a that the neat PLA/PBS film exhibited an irregular and tough fracture pattern
with ductile characteristics. PBS acted as a toughening agent in PLA/PBS films, imparted
toughness, and resulted in a ductile fracture behavior of composite films. Similar mor-
phology was reported in the literature when PLA was plasticized with PPG and natural
rubber [47,48]. The irregular and non-linear crack propagation and deformation observed
on the cryofractured surface of PLA/PBS films indicated that the addition of cellulose
did not have a negative impact on the ductile fracture behavior of the films. However,
agglomeration of cellulose occurred at the highest cellulose content of 3 wt.%, indicating
poor dispersion in PLA/PBS films.
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cellulose content (0, 0.3, 0.5, 1, 3 wt.%).
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3.6. Effect of Cellulose on Crystallization Behaviour of Films

Figure 7 shows the DSC thermograms of PLA/PBS films containing various cellulose
content, and Table 1. summarizes melting enthalpy (∆Hm), crystallizing enthalpy (∆Hcc),
and crystallinity of PLA/PBS composite films containing different cellulose content. Melt-
ing temperatures of PLA at 175 ◦C were observed in all the analyzed samples during the
heating scan; PBS adopted in this study exhibited two melting temperatures at 101 and
112 ◦C, respectively, mainly due to the raw PBS materials still containing some portion of
PBSA. For a series of PLA/PBS blends at various cellulose contents, the crystallization tem-
perature of PLA shifted to 101 ◦C and higher than 97 ◦C of neat PLA/PBS (Figure 7b). As
the crystallization temperature represents the crystalline phase, the higher crystallization
temperature signifies that cellulose enables the crystallization to begin at an early stage; this
reflects the cellulose as a heterogeneous nucleating agent to enhance the crystal formation
of the PLA/PBS blends. However, the addition of 0.3% and 0.5% cellulose content reduced
the crystallinity of films compared to the neat PLA/PBS blends, while exceeding 1 wt.%
cellulose content slightly increased the crystallinity of PLA/PBS films. The addition of a
small amount of cellulose may disrupt the polymer’s molecular chain regularity and inhibit
the folding mobility of crystallizable chain segments [49]. The crystallization temperature
of PBS and PBSA shows 65 ◦C as a close shoulder of the crystallization of PLA. This sug-
gests that the vibration of the cellulose chain during thermal treatment might effectively
induce the movement of PLA/PBS matrices as both chains are somewhat miscible, which
is in accordance with the results of the previous study. It reveals that cellulose acts as a
heterogeneous nucleating agent and contributes to ununiformed crystallites varying in
size, such that the crystallization peak of PLA/PBS/cellulose films at higher temperatures
was formed on the cooling exothermic of the incomplete crystallization. Meanwhile, a
small amount (0.3–0.5 wt.%) of cellulose took a dominant disruption role in PLA/PBS films,
increased steric obstacles for segmental motion, and increased the rigidity of PLA/PBS
chains. The preferable formation of crystalline regions with the increasing amount of cellu-
lose (1, 3 wt.%) is mainly due to an increased interface interaction, via hydrogen bonding,
between abundant hydroxyl groups of cellulose and polymers [37].
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Table 1. Melting enthalpy (∆Hm) of PLA and PBS, crystallizing enthalpy (∆Hcc), and crystallinity
(Xc) of PLA/PBS in films containing different contents of cellulose.

Formulation ∆HmPBS (J/g) ∆HmPLA (J/g) ∆Hcc (J/g) Xc (%)

Ctrl 4.4 37.42 15.77 27.34
0.3 5.38 37.49 23.53 20.36
0.5 3.46 26.63 11.19 19.93
1 8.47 38.75 19.58 29.34
3 5.61 38.7 20.14 29.12

3.7. Effect of Cellulose on Thermal Stability of Films

Thermogravimetric analysis (TGA) was performed to study the effect of extracted cellu-
lose on the thermal degradation behavior of PLA/PBS in the inert atmosphere. Figure 8a,b
illustrate the TGA and derivative thermogravimetric (DTG) curves of the PLA/PBS films
with varying cellulose content (0.3, 0.5, 1, and 3 wt.%). Table 2 summarizes the charac-
teristic decomposition temperature (Tonset and Tmax) and residues at 600 ◦C of PLA/PBS
films containing different cellulose content. It can be seen from Figure 8a that single-step
degradation occurred for all the samples, with more than 90% mass loss occurring between
300 and 400 ◦C. As shown in Figure 8a and reported in Table 2, the presence of cellulose
higher than 1 wt.% in the PLA/PBS decreased the onset decomposition temperature and
maximum decomposition temperature of films. Acid hydrolysis can remove the amor-
phous region, producing a highly crystalline cellulose. Nevertheless, the different treatment
variables and cellulose sources directly affect the degree of cellulose crystallinity [50]. Based
on the crystallinity index of extracted cellulose (54.3%), it can be confirmed that extracted
cellulose contained significant amorphous regions, which were less thermally stable than
crystalline regions. Consequently, the thermal stability of films decreased as cellulose
content increased to 1 wt.%. Furthermore, it is noteworthy that the films loading 3 wt.%
of cellulose had a higher residual mass (5.47%) compared to neat PLA/PBS films (0.13%).
Cellulose extracted from CSP is an organic material and even less thermostable than the
PLA/PBS polymer matrix; the incorporation of cellulose reduced the burning rate by pro-
moting more dehydration and char formation [51]. This finding suggests that the presence
of cellulose contributes to the formation of more residual mass, potentially enhancing the
flame resistance properties of the composite films.
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Table 2. Characteristic decomposition temperature (Tonset and Tmax) and residues at 600 ◦C of
PLA/PBS films containing different cellulose content.

Formulation Tonset (◦C) Tmax (◦C) Residue (%)

Ctrl 339.6 363.6 0.13
0.3 341 365 0.05
0.5 339.6 363.6 0
1 329 359.6 0.15
3 327.6 357 5.47

3.8. Effect of Cellulose on Mechanical Property of Films

The effect of cellulose on the tensile strength and elongation at break of PLA/PBS/cellulose
films is shown in Figure 9. Tensile strength and elongation at break of the PLA/PBS
film were 59.6 MPa and 12.3%, respectively. Tensile strength was expressively decreased
when increasing the content of cellulose, from 59.6 MPa for PLA/PBS blend to 36.6 MPa
PLA/PBS composite having 0.3 wt.% of cellulose. Tensile strength for 3 wt.% of cellulose
PLA/PBS composite film decreased to 16.2 MPa, which is equivalent to the tensile strength
of PBAT/PLA films. The elongation at break of PLA/PBS film was 12.27%, whereas it
slightly decreased to 8.57% for PLA/PBS composite films containing 3 wt.% cellulose. The
decrease in mechanical property after the addition of cellulose was presumably due to the
rigidity of cellulose fibers, weak interfacial affinity, and stress transfer property between
cellulose and polymers. In addition, poor dispersion of 3 wt.% cellulose in PLA/PBS
films further compromised structural integrity and decreased the overall strength of the
films, which is consistent with the cyrofractured morphology of films. The results of
film properties were in accordance with those of cellulose nanocrystal-reinforced PLA
composites [52].

Polymers 2023, 15, x FOR PEER REVIEW 11 of 15 
 

 

decrease in mechanical property after the addition of cellulose was presumably due to the 
rigidity of cellulose fibers, weak interfacial affinity, and stress transfer property between 
cellulose and polymers. In addition, poor dispersion of 3 wt.% cellulose in PLA/PBS films 
further compromised structural integrity and decreased the overall strength of the films, 
which is consistent with the cyrofractured morphology of films. The results of film prop-
erties were in accordance with those of cellulose nanocrystal-reinforced PLA composites 
[52]. 

 
Figure 9. Tensile strength (a) and elongation at break (b) of PLA/PBS films containing various cel-
lulose content (0.3, 0.5, 1, and 3 wt.%). 

3.9. Effect of Cellulose on UV Transmittance of Films 
Transmittance and camera images of a series of PLA/PBS films containing cellulose 

are shown in Figure 10a,c, and specific transmittance of films at 275 nm (UVC region) and 
335 nm (UVA region) are summarized in Figure 10b. As can be seen, PLA/PBS film ap-
pears as a transparent matrix, and the PLA/PBS film maintains its transparency, even after 
the incorporation of 3 wt.% cellulose (Figure 10c). The transparency of films containing 
cellulose can be attributed to the miscibility between PLA and PBS and the limited influ-
ence of cellulose on the crystallinity of PLA/PBS films. The transmittance of films in the 
visible region (420–800 nm) decreased as the content of cellulose increased, and PLA/PBS 
films exhibited higher transmittance than the PLA/PBS films containing different amounts 
of cellulose. This may be attributed to the large grain size of cellulose that hindered the 
transmittance of visible light. Despite the reduction in transmittance in the visible region 
with an increase in cellulose content, films still had certain transparency. Regarding the 
transmittance values at 275 nm and 335 nm, PLA/PBS film with cellulose at 3 wt.% exhib-
ited decreasing trends of 3% and 7.5%, respectively, compared to neat PLA/PBS films. This 
suggests that the incorporation of cellulose has the potential to enhance the UV barrier 
property of PLA/PBS films while leading to a slight loss of transmittance in the visible 
region (10%). There are still challenges in balancing the transmittance of PLA/PBS films 
with the full UV barrier potential of cellulose. 

Figure 9. Tensile strength (a) and elongation at break (b) of PLA/PBS films containing various
cellulose content (0.3, 0.5, 1, and 3 wt.%).

3.9. Effect of Cellulose on UV Transmittance of Films

Transmittance and camera images of a series of PLA/PBS films containing cellulose
are shown in Figure 10a,c, and specific transmittance of films at 275 nm (UVC region)
and 335 nm (UVA region) are summarized in Figure 10b. As can be seen, PLA/PBS film
appears as a transparent matrix, and the PLA/PBS film maintains its transparency, even
after the incorporation of 3 wt.% cellulose (Figure 10c). The transparency of films containing
cellulose can be attributed to the miscibility between PLA and PBS and the limited influence
of cellulose on the crystallinity of PLA/PBS films. The transmittance of films in the visible
region (420–800 nm) decreased as the content of cellulose increased, and PLA/PBS films
exhibited higher transmittance than the PLA/PBS films containing different amounts
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of cellulose. This may be attributed to the large grain size of cellulose that hindered
the transmittance of visible light. Despite the reduction in transmittance in the visible
region with an increase in cellulose content, films still had certain transparency. Regarding
the transmittance values at 275 nm and 335 nm, PLA/PBS film with cellulose at 3 wt.%
exhibited decreasing trends of 3% and 7.5%, respectively, compared to neat PLA/PBS films.
This suggests that the incorporation of cellulose has the potential to enhance the UV barrier
property of PLA/PBS films while leading to a slight loss of transmittance in the visible
region (10%). There are still challenges in balancing the transmittance of PLA/PBS films
with the full UV barrier potential of cellulose.

 

2 

Figure 10. UV-Vis transmittance of the PLA/PBS composite films loading various cellulose content
(0.3, 0.5, 1, and 3 wt.%) (a), transmittance of films at 275 nm and 335 nm (b), photographic images of
PLA/PBS composite films (c).

4. Conclusions

In summary, delignication and mercerization treatment processes were conducted in
this work as a rapid, effective (with yields of more than 32%), and eco-friendly approach
for the extraction of cellulose from coconut shells. The optical images of extracted cellulose
showed a reduction in fiber diameter as compared to CSP because the composite fibril
structure was broken into individual cellulose micro-fibrils after the removal of lignin
and hemicellulose. The absence of lignin and hemicellulose in extracted cellulose was
confirmed from FTIR spectra. The extracted cellulose had a crystallinity of 54.3% and had
better thermostability as compared to raw CSP.

In addition, the extracted cellulose was applied to reinforce solvent-casting PLA/PBS
films; uniform distribution of cellulose in PLA/PBS films can be achieved at the highest
concentration of 1 wt.%, and all the composite films showed excellent transparency even
when 3 wt.% of cellulose was added. The thermal stability of the PLA/PBS composites
containing cellulose (>1 wt.%) was lower than the PLA/PBS films. However, the incor-
poration of 3 wt.% cellulose reduced the burning rate of films by promoting more char
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formation. Cellulose acted as a heterogenous nucleation agent to promote the formation
of non-uniform crystals, while cellulose had a slightly negative impact on crystallinity
due to the disruption of polymer chains at lower cellulose content (0.3, 0.5 wt.%). This
finding suggests that the presence of cellulose contributes to the formation of more residual
mass, potentially enhancing the flame resistance properties of the composite films. The
incorporation of cellulose as reinforcing fibers in PLA/PBS films decreased the mechani-
cal properties of the composite films considerably. Moreover, the film incorporated with
3 wt.% of cellulose exhibited promising UV barrier properties, as the transmittance slightly
decreased in the UVA and UVC regions compared to PLA/PBS films. Despite the reduc-
tion in transmittance in the visible region with an increase in cellulose content, films still
had certain transparency. The present study may help to solve the environmental hazard
issue regarding the solid waste of packaging with commodity plastics by considering
replacement with biodegradable PLA and PBS polymer blends and functional composites.
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