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Abstract: Since the proposal of self-healing materials, numerous researchers have focused on explor-
ing their potential applications in flexible sensors, bionic robots, satellites, etc. However, there have
been few studies on the relationship between the morphology of the dynamic crosslink network and
the comprehensive properties of self-healing polymer nanocomposites (PNCs). In this study, we
designed a series of modified nanoparticles with different sphericity (η) to establish a supramolecular
network, which provide the self-healing ability to PNCs. We analyzed the relationship between
the morphology of the supramolecular network and the mechanical performance and self-healing
behavior. We observed that as η increased, the distribution of the supramolecular network became
more uniform in most cases. Examination of the segment dynamics of polymer chains showed that
the completeness of the supramolecular network significantly hindered the mobility of polymer
matrix chains. The mechanical performance and self-healing behavior of the PNCs showed that the
supramolecular network mainly contributed to the mechanical performance, while the self-healing
efficiency was dominated by the variation of η. We observed that appropriate grafting density is
the proper way to effectively enhance the mechanical and self-healing performance of PNCs. This
study provides a unique guideline for designing and fabricating self-healing PNCs with modified
Nanoparticles (NPs).

Keywords: self-healing materials; supramolecular crosslink network; molecular dynamic simulation

1. Introduction

As one of the most significant soft materials, polymer nanocomposites (PNCs) exhibit
remarkable comprehensive properties such as static elastic modulus, tensile strength,
flexibility, abrasion performance, tear resistance, etc. By introducing nanoparticles and
crosslinking networks [1], these unique performances make PNCs widely employed in
numerous applications, especially for tire tread materials [2–4]. However, traditional PNCs
are unfixable when damaged, and when they are no longer useful, it is challenging to
recycle the materials into feedstock. Therefore, many scientists are exploring ways to
endow PNCs with self-healing abilities to address these challenges [5–8].

There are typically two types of self-healing materials: extrinsic healing systems and
intrinsic self-healing materials. Intrinsic self-healing materials are usually based on non-
covalent chemistries or dynamic covalent chemistries [9]. For instance, Perera introduced a
dynamic covalent adaptive network into hydrogel, designing a novel soft-material with
self-healing, shape memory, and stimuli-induced stiffness changes [10]. Liu, et al., inserted
sacrificial bond into covalent network to enhance the dynamics mechanical performance of
PNCs. The highlight of this research is that the distribution of sacrificial bonds accelerates
the rearrangement of network topology networks, significantly enhancing the overall
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mechanical properties of PNCs [11]. However, due to complex influencing factors, such as
the fraction of nanoparticles (NPs), interfacial compatibility between matrix and fillers, the
mechanism by which nanofillers affect the conformation of covalent networks is not fully
understood, and the relationship between the distribution of the conformation of physical
crosslinking networks is unclear.

To discover the influence of nanofiller on the distribution of dynamic crosslinking
network, numerous studies have been conducted [12–18]. An, et al., discovered that the
moderate fraction of modified boron nitride would not affect the distribution of dynamic
crosslinking network, which would significantly improve the tensile strength and the
elongation of PNCs [19]. Wang, et al., found that when the weight fraction of modified
silica NPs was approximately equal to 1%, the mechanical performance of hydrogel was
maximized [20]. Park, et al., demonstrated that the introduction of graphene-oxide will
stimulate the bond exchange reaction, significantly reinforcing the self-healing efficiency of
PNCs [21]. Recently, the use of modified NPs as link-points to establish dynamic crosslink-
ing networks has garnered attention from scientists [22–25]. Barrios, et al., combined sulfur
(S) and zinc oxide (ZnO) as vulcanizing agents in a carboxylated nitrile rubber (XNBR)
matrix to establish a dual network aimed at improving the material’s abrasion resistance.
The mechanical performance of XNBR was significantly improved (up to 26%) [26].

Computer simulations offer several advantages for investigating the static and dy-
namic properties of polymer networks over traditional experimental approaches, includ-
ing better control of network formation and precise knowledge of dynamic network
features [27]. For instance, Wick et al., employed the molecular dynamics simulation
(MD) method to create several dual-crosslinking systems and analyze which dynamic
crosslinking density can endow the system with the greatest mechanical performance.
The results indicated that at higher crosslinking densities, the material exhibited excellent
self-healing performance and high tensile strain [28]. Fu et al., combined MD and experi-
mental methods to investigate the thermal properties and microstructure morphology of A
(DGEBA)/methyl tetrahydrophthalic anhydride (MTHPA) and DGEBA/nadic anhydride
(NA). The experimental results confirmed the accuracy of the crosslinking model and
indicated that the slight change in the curing agent structure significantly affected the
synergy rotational energy barrier, cohesive energy density, and free volume fraction, thus
affecting the glass transition temperature (Tg) and modulus of the system [29]. However,
few studies have focused on the influence of NPs on the formation of dynamic crosslink
networks and the performance of PNCs.

Therefore, in this study, the coarse-grained molecular dynamics simulation (CGMD)
method is employed to investigate the influence of nanoparticle (NP) structure on the for-
mation of a dual network (chemical/supramolecular crosslink network). Various modified
NPs with different structures are designed and introduced into a polymer matrix with
a dynamic crosslink network. Taking the previous works as the reference [16,17,30–32],
this supramolecular dynamic network is further constructed via the strong interaction
between the end-groups of the grafted nanoparticles and grafted polymer chains. The
influence of the completeness of the supramolecular network on the mechanical properties
and self-healing efficiency of the corresponding composite materials is further studied,
where the completeness is defined as the supramolecular cross-linked network structure is
fully and uniformly represented throughout the system, indicating that there are no areas
of the system that lack the cross-linked network or have disproportionately large clusters
of the network. This term implies that the network is evenly distributed and integrated
throughout the entire system. This research is expected to provide guidance for the design
and fabrication of self-healing polymeric materials.

2. Simulation Methods

In this study, the coarse-grain MD simulation were used to study the effect of the
structure of the NPs. For this simulation model, different number of short chains (L = 4σ,
composed with 4 beads with diameter, D = 1σ) with modified end group are grafted on
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the core NP (D = 4σ) (Figure 1). In our previous research, we proposed a concept named
“sphericity (η)”, in which the number of arms was represented by divisions of “circle” [33].
In this study, we use this idea to definite the grafted density of modified-NPs, where η = 0
represents that there is no grafted polymer chain attached on the core-NP, and η = 1.0
represents that the grafted density is achieve the maximum value. To let the modified-NP
reach maximum grafted density, based on the Thomson’s theory [34], we adopt a numerical
method: a set of points with random velocity and coordinates are constrained on a spherical
surface, and they repulse with each other, and then, the average distance of neighbors
can be calculated until the system becomes stable. Iterating the process, we can get the
maximum number of points when the average distance is equal to the diameter of surficial
particles. the maximum number of grafted points is calculated by Equation (1):

d =< H(ri, rj) > (1)

where d is the average distance of neighbor and ri/rj represents particle i and its neighbor j.
H is the nearest neighbor function measured by Euclidean distance. Based on the equation
results, we find that when the number of arms is larger than 64, the system will become
unstable, therefore, we set this value as η = 1.0. A schematic diagram of PNCs is shown in
Figure 1, while Figure S1 exhibits the snapshots of PNCs with different η, and Table S1 are
shown the root mean square radius of gyration (Rg) of various modified-NPs.
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Figure 1. The schematic diagram of self-healing PNCs. The red spheres represent the core-NP, the
purple lines represent the grafted polymer chains with length = 4σ, the green spheres represent the
modified groups that provide a strong interaction strength to establish the dynamic crosslink network.
The blue balls represent the matrix AA and the brown balls represent the matrix BB.

The typical Lennard-Jones (LJ) potential was employed to model the interaction
between different types of beads. The formula of the potential is:

Uij(r) =

4εij

[(
σ

r−rEV

)12
−
(

σ
r−rEV

)6
]
−Ucuto f f 0 < r− rEV < rcuto f f

0 r− rEV > rcuto f f

(2)

where rcutoff denotes the distance at which the interaction was truncated and shifted so that
the energy and force were zero. Here the interaction range was offset by rEV to eliminate the
excluded volume effect of different interaction sites. The interaction parameter (ε), which
endow a measure of the interaction between different type of beads, is shown in Table 1,
where the ε between modified-end groups is set as 10.0 to guarantee the strong interaction
between the modified-end groups is existed to form the supramolecular crosslink network,
and the ε between NP-matrix (AA and BB) is set as 3.5 to endows a measure of the
interaction between the NP and matrix to ensure the dispersion of NP is uniform [33].
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Table 1. The interaction parameter setting for different type of beads.

Interaction Type Interaction Parameter (ε) Value Cutoff Distance rcutoff

Modified group-Modified group 10.0 2.5
NP-matrix (AA and BB) 3.5 2.24

NP-grafted beads 1.0 1.12
others 1.0 2.5

The bond energy between the connected beads in a polymer chain is represented by a
harmonic potential:

Ubond = k(r− r0)
2 (3)

the bond is set as k = 100(ε/σ2), r0 = 1.12, 2.5, and 1.0, corresponding to the 3 types
of bonds: crosslink network, core-NP-grafted chain bead, and other bonds (including
grafted polymer chains, matrix AA and BB) [35]. This setting ensured a certain stiffness of
the bonds and avoided high-frequency modes and chain crossing. Meanwhile, we build
a primary chemical crosslink network to simulate the vulcanization process of rubber
nanocomposites in the experiment, ensuring that the rubber nanocomposites possess basic
mechanical properties [36]. The chemical cross-linking bonds are generated by a random
bonding algorithm, ensuring that all cross-linking bonds will not be generated on the same
molecular chain. The number of chemical crosslinking bond is set as 100 [36].

The angle energy between connected beads in a polymer chain is represented by a
harmonic potential:

Uangle = K(θ − θ0) (4)

where θ0 = 180.0◦, and K is an alterable parameter influencing the stiffness of grafted
polymer chains, and the unit of K is set to Rad−2.

Because we do not focus on any specific polymer, the reduced LJ units ε and σ are
used and set to unity, which means that all calculated quantities are dimensionless. In this
research, the reduced units of the temperature and the pressure are adopted and defined
as follows:

T∗ = (kBT/ε) (5)

P∗ = P · σ3/ε (6)

where kB is the Boltzmann constant which is equal to 1 for LJ potential. The simulations
have been performed under the NPT ensemble where the temperature is fixed at T* = 1.0
and p* = 1.0 by using the Nose-Hoover temperature thermostat and barostat, respectively.
Periodic boundary conditions are employed in all three directions. The velocity-Verlet
algorithm is used to integrate the equations of motion, with a time step δt = 0.001, where the
simulation time is represented by the reduced LJ time τ. We equilibrate all structures over a
long time so that each chain has moved at least 2Rg, where Rg is the root mean square radius
of gyration of polymer matrix chains. These fully equilibrated configurations are further
used as starting structures for production runs during the structural and dynamic analysis.

The uniaxial tensile deformation has been performed using the protocol implemented
in our previous work [37]. The box length along the z direction is increased at a constant
engineering strain rate, while the box lengths along the x and y directions are reduced
simultaneously, to maintain the constant volume of the simulation box. The engineering
strain rate is specified as

.
ε1 = (L(t)z − Lz)/Lz = 0.0327τ−1. The average stress s in the z

direction was obtained from the deviated part of the stress tensor: σ1 = (1+ µ)(−Pzz + P) ≈
3(−Pzz + P)/2, whereas P = ∑

i
Pii/3 was the hydrostatic pressure. The parameter m was

Poisson’s ratio, which was equal to 0.5 in the present simulations.
Triaxial tensile deformation is also performed to study the self-healing behavior by

following the procedure in our previous work [16]. To achieve triaxial deformation, the
simulation box is stretched along the z direction at a constant engineering strain rate, while
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the box lengths in the x and y directions are kept unchanged. The engineering strain
rate is

.
ε2 =

(L(t)z−L(t0)z)
L(t0)z

= 0.015τ−1, which was exactly the same as the uniaxial tensile
deformation process. The average tensile stress σ in the z direction was obtained from the
deviatoric tensor σ2 = −Pzz, which is the hydrostatic pressure in the z direction.

All the MD simulations were carried out using the Largescale Atomic/Molecular
Massively Parallel Simulator (distributed by Sandia National Laboratories) [38]. More
details of the simulation techniques can be found in our previous work [39–42].

3. Results and Discussion
3.1. Effect of η on the Structure and Dynamics of PNCs

To characterize the morphology of a supramolecular network with different η values,
various types of characterization are implemented. Based on the illustration in Figure 2,
we can see that as η increases, numerous modified groups are introduced into the PNCs,
causing the supramolecular network to become denser. To quantitatively analyze the
formation of the supramolecular network, the number of clusters (Nc) and the average
number of single clusters (Nsc) are calculated, as shown in Figure 2e. Based on the results,
it is observed that as η increases, the size of the clusters decreases. However, when η = 1.0,
the size of the cluster increases suddenly. The reason is that when η = 1.0, the excessive
concentration of modified groups within the material causes some beads to agglomerate.
According to the analysis of the distribution of modified groups (Figure S1), some large
clusters (Nsc > 90) are formed, while other systems just obtain small clusters (Nsc < 10).
Therefore, in order to establish a uniform supramolecular network, a moderate number of
modified groups are necessary.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 16 
 

 

engineering strain rate is specified as 
1

1 ( ( ) ) / 0.0327z z zL t L Lε τ −= − = . The average stress s 
in the z direction was obtained from the deviated part of the stress tensor: 

1 (1 )( ) 3( ) / 2zz zzP P P Pσ μ= + − + ≈ − +  , whereas 
/ 3ii

i
P P= 

  was the hydrostatic pressure. 
The parameter m was Poisson’s ratio, which was equal to 0.5 in the present simulations. 

Triaxial tensile deformation is also performed to study the self-healing behavior by 
following the procedure in our previous work [16]. To achieve triaxial deformation, the 
simulation box is stretched along the z direction at a constant engineering strain rate, 
while the box lengths in the x and y directions are kept unchanged. The engineering strain 

rate is 

10
2

0

( ( ) ( ) ) 0.015
( )
z z

z

L t L t
L t

ε τ −−= =
 , which was exactly the same as the uniaxial 

tensile deformation process. The average tensile stress σ in the z direction was obtained 

from the deviatoric tensor 2 zzPσ = − , which is the hydrostatic pressure in the z direction. 
All the MD simulations were carried out using the Largescale Atomic/Molecular Mas-

sively Parallel Simulator (distributed by Sandia National Laboratories) [38]. More details 
of the simulation techniques can be found in our previous work [39–42]. 

3. Results and Discussion 
3.1. Effect of η on the Structure and Dynamics of PNCs 

To characterize the morphology of a supramolecular network with different η values, 
various types of characterization are implemented. Based on the illustration in Figure 2, 
we can see that as η increases, numerous modified groups are introduced into the PNCs, 
causing the supramolecular network to become denser. To quantitatively analyze the for-
mation of the supramolecular network, the number of clusters (Nc) and the average num-
ber of single clusters (Nsc) are calculated, as shown in Figure 2e. Based on the results, it is 
observed that as η increases, the size of the clusters decreases. However, when η = 1.0, the 
size of the cluster increases suddenly. The reason is that when η = 1.0, the excessive con-
centration of modified groups within the material causes some beads to agglomerate. Ac-
cording to the analysis of the distribution of modified groups (Figure S1), some large clus-
ters (Nsc > 90) are formed, while other systems just obtain small clusters (Nsc < 10). There-
fore, in order to establish a uniform supramolecular network, a moderate number of mod-
ified groups are necessary. 

 
Figure 2. The snapshot of modified group that are formed the supramolecular network, where:
(a) η = 0; (b) η = 0.3; (c) η = 0.5; (d) η = 0.8; (e) η = 1.0. The green balls represent the modified-end
groups of PNCs. (f) the number of clusters (black line, Nc) and the average number of single clusters
(red line, Nsc) as a function of the variation of η. The black arrow represents the definition radius
of cluster.

To characterize the dispersion of core-NPs, the radial distribution function (RDF)
between core-NPs with varying values of η is calculated, and shown in Figure 3b. For
η = 0 and η = 0.3, a pronounced peak appears at r = 5.14σ, indicating that the NPs are
dispersed via segmental-level tight particle bridging. For η = 0.5 and η = 0.8, peaks appear
at r = 5.75σ and 7.87σ, indicating that there are two states of NP dispersion: segmental-level
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tight particle bridging and adsorbed layers coexisting with longer range bridging. For
η = 1.0, only one peak appears at r = 7.92σ, indicating that the core-NPs are sandwiched by
grafted chains and polymer matrix. Meanwhile, based on the results in Figure 3b, when
0 < η < 1, the maximum value of g(r) is reduced as η increases, signaling an improvement
in the dispersion of core-NPs. In general, the characterization of RDF proves that the
dispersion of NPs is governed by the configuration of the supramolecular network.
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The effect of η on Tg is investigated and the results are shown in Figure 4a, which were
obtained where we identified the temperature at which the specific volume varied. The
curves of specific volume-temperature are shown in Figure S3. It is found that as η increases,
the value of Tg increases synchronously and slowly, indicating that the completeness of
the supramolecular network affects the mobility of polymer chains. This suggests that
the dynamic crosslink network creates a hindrance effect, which hinders the mobility of
polymer chains.

To quantitatively analyse the relationship between η and the mobility of polymer
chains, the mean-square displacement (MSD) is calculated, which is shown in Figure 4b,c.
As η increases, the value of MSD decreases obviously, which proves the inference summa-
rized in Figure 4a. Meanwhile, the bond autocorrelation function, Cb(t), as a function of η,
is calculated to further measure the dynamics of polymer chains. The equation of Cb(t) is
exhibited as follows:

Cb(t) = (µ(t)× µ(t0)) (7)

where µ(t) denotes a unit vector characterizing the orientation at a time. Figure 5 shown
after a prolonged relaxation process, the decay of Cb(t) decreases in tandem with an increase
in η, signifying the significant impact of the supramolecular network on the relaxation
behavior of polymer chains. Furthermore, it is observed that when η > 0.5, the minimum
value of Cb(t) is higher than 1/e, which further proves the negative correlation between the
completeness of the supramolecular network and the relaxation of polymer chains.

The entanglement of the polymer chains was characterized using the Z1 code to
determine the confinement effect of η on segment dynamics [43–46]. The entanglement
network analysis for different PNCs is summarized in Table 2. Based on the results,
the increase of η corresponds positively to the mean-squared end-to-end distance

√
R2,

indicating that the modified NPs absorb the polymer chains on the surface. The value of
the average number of entanglements per chain, denoted by <Z>, is also enhanced with
an increase in η, signifying that the formation of the supramolecular network significantly
affects the entanglement network.



Polymers 2023, 15, 3259 7 of 14

Polymers 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 4. (a) the variation of Tg with the increment of η, and the mean-square displacement (MSD) 
as a function of time with different value of η, where (b) is MSD of matrix AA and (c) is MSD of 
matrix BB. 

To quantitatively analyse the relationship between η and the mobility of polymer 
chains, the mean-square displacement (MSD) is calculated, which is shown in Figure 4b, 
c. As η increases, the value of MSD decreases obviously, which proves the inference sum-
marized in Figure 4a. Meanwhile, the bond autocorrelation function, Cb(t), as a function 
of η, is calculated to further measure the dynamics of polymer chains. The equation of 
Cb(t) is exhibited as follows: 

0( ) ( ( ) ( ))bC t t tμ μ= ×  (7)

where µ(t) denotes a unit vector characterizing the orientation at a time. Figure 5 shown 
after a prolonged relaxation process, the decay of Cb(t) decreases in tandem with an in-
crease in η, signifying the significant impact of the supramolecular network on the relax-
ation behavior of polymer chains. Furthermore, it is observed that when η > 0.5, the min-
imum value of Cb(t) is higher than 1/e, which further proves the negative correlation be-
tween the completeness of the supramolecular network and the relaxation of polymer 
chains. 

Figure 4. (a) the variation of Tg with the increment of η, and the mean-square displacement (MSD)
as a function of time with different value of η, where (b) is MSD of matrix AA and (c) is MSD of
matrix BB.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. The bond-autocorrelation function Cb(t) as a function of simulation time with various η, 
where (a) is matrix AA and (b) is matrix BB. 

The entanglement of the polymer chains was characterized using the Z1 code to de-
termine the confinement effect of η on segment dynamics [43–46]. The entanglement net-
work analysis for different PNCs is summarized in Table 2. Based on the results, the in-
crease of η corresponds positively to the mean-squared end-to-end distance 2R , indicat-
ing that the modified NPs absorb the polymer chains on the surface. The value of the av-
erage number of entanglements per chain, denoted by <Z>, is also enhanced with an in-
crease in η, signifying that the formation of the supramolecular network significantly af-
fects the entanglement network. 

Meanwhile, it is observed that although the introduction of modified groups acceler-
ates the entanglement behavior of polymer chains, when η > 0, the value of the mean con-
tour length of the polymer chains (Lp) decreases and exhibits an irregular tendency with 
an increase in η. This suggests that the supramolecular network affects the flexibility of 
the polymer chains, and the effect of η on the flexibility of polymer chains is unpredictable. 
This unpredictability may affect the process ability of PNCs. 

Table 2. The entanglement network analysis of PNCs with various η. 

System 2R  Lp <Z> 
η = 0 12.158 17.384 2.950 
η = 0.3 89.174 11.098 17.404 
η = 0.5 95.435 11.339 20.276 
η = 0.8 103.783 14.404 33.281 
η = 1.0 120.478 14.82 41.101 

3.2. The Static Mechanical Performance and Self-Healing Behavior of PNCs 
To investigate the influence of η on the mechanical performance of PNCs, uniaxial 

deformation tests of PNCs were carried out. As η increases, the tensile stress of PNCs 
increases synchronously, indicating that the supramolecular network reinforces the me-
chanical performance of PNCs as shown in Figure 6a. It is noteworthy that when η = 1.0, 
the curve breaks when the tensile strain is equal to 5, indicating that excessive dynamic 
crosslink nodes can affect the mechanical performance of PNCs. Except for this special 
case, when η = 0.8, the PNC exhibits the best static mechanical property. The chain orien-
tation behavior during uniaxial deformation process is also examined by employing the 
second-order Legendre polynomials, which is exhibited as follows [33,47]: 

Figure 5. The bond-autocorrelation function Cb(t) as a function of simulation time with various η,
where (a) is matrix AA and (b) is matrix BB.

Table 2. The entanglement network analysis of PNCs with various η.

System
√

R2 Lp <Z>

η = 0 12.158 17.384 2.950
η = 0.3 89.174 11.098 17.404
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Meanwhile, it is observed that although the introduction of modified groups accel-
erates the entanglement behavior of polymer chains, when η > 0, the value of the mean
contour length of the polymer chains (Lp) decreases and exhibits an irregular tendency with
an increase in η. This suggests that the supramolecular network affects the flexibility of
the polymer chains, and the effect of η on the flexibility of polymer chains is unpredictable.
This unpredictability may affect the process ability of PNCs.

3.2. The Static Mechanical Performance and Self-Healing Behavior of PNCs

To investigate the influence of η on the mechanical performance of PNCs, uniaxial
deformation tests of PNCs were carried out. As η increases, the tensile stress of PNCs
increases synchronously, indicating that the supramolecular network reinforces the me-
chanical performance of PNCs as shown in Figure 6a. It is noteworthy that when η = 1.0,
the curve breaks when the tensile strain is equal to 5, indicating that excessive dynamic
crosslink nodes can affect the mechanical performance of PNCs. Except for this special
case, when η = 0.8, the PNC exhibits the best static mechanical property. The chain orien-
tation behavior during uniaxial deformation process is also examined by employing the
second-order Legendre polynomials, which is exhibited as follows [33,47]:

< P2(cos θ) >=
1
2
[3(cos2 θ)− 1] (8)

where θ denotes the angle between a given element (two adjoining monomers in the
chains) and the reference stretching direction. The possible values of < P2(cos θ) >
range from −0.5 to 1, and the values of −0.5, 1 and 0 indicate a perfection orientation
perpendicular to the reference direction, a perfection orientation parallel to the reference
direction or randomly oriented, respectively. Based on the results in Figure 6b, the value of
< P2(cos θ) > is negatively correlated with η. Especially when the tensile strain is relatively
large (>5), the difference in < P2(cos θ) > is apparent. This result illustrates that the
supramolecular network highly affects the orientation behavior of polymer chains, and the
major contribution to the mechanical performance of PNCs belongs to the supramolecular
network, not the reinforcement of NPs or polymer matrix chains.

To understand the self-healing behavior of PNCs, the stress-strain curve of PNCs with
various values of η was studied as a function of self-healing temperature under triaxial
deformation. Firstly, the 1st triaxial deformation process was carried out, which is shown
in Figure 7a. Based on the results, it was observed that when the tensile strain is relatively
small (<1), the tensile stress is positively correlated with the increment of η. This indicates
that the completeness of the supramolecular network enhances the mechanical performance
of PNCs, which is consistent with the conclusion obtained from Figure 6. However, as the
triaxial deformation is conducted, the system with a high η exhibits low tensile stress. This
means that when the crosslink network is broken, the number of dynamic crosslink nodes
is not necessary for the mechanical performance of PNCs.

Then the influence of temperature on the self-healing efficiency, ψsh, of PNCs is studied.
ψsh is defined as the σmax,z (the maximum tensile stress along z direction with different
self-healing temperature in 2nd triaxial deformation) over σmax,o (the maximum tensile
stress at 1st triaxial deformation). The PNCs were deformed by the triaxial deformation
and compressed afterward. Then, they were kept in a range of fixed temperatures for a
period of time. Based on the results in Figure 4a, all systems obtain Tg lower than 1.0, so
the self-healing temperatures are set as 1.0, 1.5, 2.0, 2.5 to study the self-healing behavior
of PNC, which ensure the PNCs are in rubbery state. Based on the results in Figure 8, it
is observed that the value of ψsh is positively correlated with the temperature, signaling
that the increase in temperature enhances the self-healing process of PNCs. It is observed
that when η = 0.3, the value of ψsh is decreased. This phenomenon indicates that low
content of modified-end groups cannot enhance the re-establishment of supramolecular
crosslink network, but hinder the re-build process of crosslink network. Therefore, it
is necessary to ensure the moderate modified-end groups to accelerate the self-healing
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behavior of PNCs. Meanwhile, it can be seen that for η ≥ 0.5, when T = 2.0 and 2.5, the
difference in ψsh is not distinct, indicating that the self-healing efficiency has a limitation
value dependent on the self-healing temperature when the completeness of supramolecular
crosslink network is relatively high. Meanwhile, as the increment of η, the efficiency
is generally enhanced, indicating that the improvement of the supramolecular network
benefits the self-healing efficiency. Nonetheless, when η > 0.8, the value of ψsh stops
increasing, and even decreases slightly, indicating that the excessive modified groups are a
shortcoming of the self-healing behavior. This inference proves that the supramolecular
network with moderate completeness is the most suitable selection for designing self-
healing PNCs.
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temperature, where ψsh is defined as the σmax,z (the maximum tensile stress along z direction at
different self-healing temperature) over σmax,o (the maximum tensile stress at 1st triaxial deformation).

To investigate the morphology of PNCs during triaxial deformation, we examine the
contribution of each component to the total stress, σT, during two triaxial deformations. We
evaluate the value of σT using color, where redder denotes higher σT and bluer denotes
lower σT. To make the argument more representative, we consider systems with η values of
0, 0.5, and 1.0, which represent low, medium, and high completeness of the supramolecular
network, respectively. As shown in Figure 9, we observe that as η increases, the stress
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distribution becomes narrower during either the 1st or 2nd triaxial deformation, which
confirms the analysis based on Figure 7a. Furthermore, when the completeness of the
supramolecular network is low or medium, the structure of the PNC does not fully collapse
during the 2nd triaxial deformation. Meanwhile, it is observed that when η = 1.0, the
stress distribution becomes narrower than η = 0.5, and still contain the crosslink structure
stable under high self-healing temperature, while the structure is totally collapse under
low self-healing temperature, signaling that for the relatively high grafted density, the high
temperature is a necessary condition to achieve remarkable self-healing efficiency.
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4. Conclusions

In this study, the effect of the structure of modified-NPs on the performance of PNCs
is investigated through CGMDs. A series of PNCs with different sphericities (η) is es-
tablished. First, the morphology of the supramolecular network and the dispersion of
NPs are characterized. It is observed that as the η increases, the dispersion state of the
NP is transferred from particle bridging to being sandwiched by polymer chains, and the
increment of η enhances the completeness of the supramolecular network. Furthermore,
the investigation of the segment’s dynamic shows that the mobility of the polymer chains
was highly dependent on η, while the increment of η has a negative correlation with the
mobility and relaxation behavior of polymer chains. The variation of the average number
of entanglements per chain, <Z>, indicates that the completeness of the supramolecular
network reinforces the entanglements of polymer chains significantly. The mechanical
performance of the PNCs indicates that the contribution of the mechanical properties is
mainly from the supramolecular network, and fully modified-NPs will damage the static
mechanical performance of PNCs. The self-healing behavior of PNCs with different η is
also investigated. The results show that the η has a positive correlation with the self-healing
efficiency, and high temperature can improve efficiency as well. However, based on the
study of the stress heatmap of PNCs, it is observed that high ηwill make the structure of
PNCs unstable, which is against the stability of the supramolecular network. Furthermore,
it is proven that the inference from the analysis of the mechanical responses of PNCs during
triaxial deformation. This study offers valuable insights into the impact of modified NP
structure on the self-healing behavior of PNCs. Furthermore, this study proposes a novel
perspective on the relationship between the integrity of the dynamic crosslink network and
the self-healing performance of PNCs.



Polymers 2023, 15, 3259 12 of 14

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15153259/s1, Table S1: the mean-square root radius of
gyration of modified-NP (Rg); Figure S1: The size and distribution of clusters, which are formed by
the modified group, with various sphericity (η) where (a) η = 0; (b) η = 0.3; (c) η = 0.5; (d) η = 0.8 and
(e) η = 1.0. Figure S2: The glass transition temperature (Tg) obtained by the specific volume versus
the temperature for different η, where (a) η = 0; (b) η = 0.3; (c) η = 0.5; (d) η = 0.8 and (e) η = 1.0.
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