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Abstract: Recently, hybrid fillers have been found to be more advantageous in energy-harvesting
composites. This study investigated the mechanical and electromechanical performances of silicone
rubber-based composites made from hybrid fillers containing conductive nanocarbon black (NCB) and
molybdenum disulfide (MoS2). A hybrid filler system containing only 3 phr (per hundred grams of
rubber) MoS2 and 17 phr NCB provided higher fracture strain, better tensile strength, and excellent
toughness values compared to the 20 phr NCB-only-filled and 5 phr MoS2-only-filled rubber composites.
The chemical cross-link densities suggest that NCB promoted the formation of cross-links, whereas MoS2

slightly reduced the cross-link density. The higher mechanical properties in the hybrid filler systems
suggest that the filler particles were more uniformly distributed, which was confirmed by the scanning
electron microscope study. Uniformly distributed filler particles with moderate cross-link density in
hybrid filler systems greatly improved the fracture strain and fracture toughness. For example, the
hybrid filler with a 17:3 ratio of NCB to MoS2 showed a 184% increment in fracture toughness, and
a 93% increment in fracture strain, compared to the 20 phr NCB-only-filled composite. Regarding
electromechanical sensing with 2 kPa of applied cyclic pressure, the hybrid filler (17:3 CB to MoS2)
performed significantly better (~100%) than the 20 phr NCB-only compound. This may have been due
to the excellent distribution of conducting NCB networks and piezoelectric MoS2 that caused symmetric
charging–discharging in the toughened hybrid composite. Thus, hybrid composites with excellent
fatigue resistance can find dynamic applications, such as in blood pressure measurement.

Keywords: silicone rubber; nanocarbon black; molybdenum disulfide; nanocomposites; energy harvester

1. Introduction

Recently, silicone rubber has become increasingly popular in various electronic, medical,
and soft robotic applications, either directly or in combination with reinforcing fillers [1–6].
Silicone rubber is a highly dielectric material, and cannot transmit electricity. It exhibits a very
high actuation value in the presence of electrical fields, considering its application in the field
of soft robotics [7]. Inversely, it exhibits fluctuations in the electrical dipoles upon mechanical
deformation, and converts mechanical energy to electrical energy. These properties make it
valuable for applications in electromechanical pressure, strain, and other sensors [8,9].

To fabricate a soft and flexible electromechanical sensor, silicone rubber must be
compounded with a conducting filler. Among various nanofillers, carbon black (CB), nano
graphite (NG), and carbon nanotubes (CNTs) are the most suitable that can sufficiently
improve the mechanical and electrical properties of silicone rubber [6]. CB is of particular
interest because of its isotropic filler structure, excellent reinforcing properties, and good
electrical properties. Owing to their isotropic shape, the composites are very stable, with
fatigue in all directions; they are suitable for dynamic applications such as tires. Thus,
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electrodes made of CB in silicone rubber should maintain a uniform conductivity, which is
necessary for electromechanical sensing.

Recently, instead of using a single filler, a hybrid filler was used to make rubber
composites to reduce filler percolation and achieve synergistic mechanical and electrical
properties [10]. The hybridization of different-dimensional fillers in rubber could be useful
for improving filler dispersion, reducing filler percolation, and improving the stretchability
of hybrid filler networks. These advantages make hybrid-filler-based rubber composites
tougher than single-filler-based rubber composites. Furthermore, CB has recently been
hybridized with silica [11], nano clay [12], graphene [13], and carbon nanotubes [14,15] in
different polymers.

After the significant achievements of two-dimensional (2D) graphene in science and
technology, many other 2D nanomaterials, such as hexagonal boron nitride, graphitic
carbon nitride, and transition metal dichalcogenides (TMDs), have been investigated as
alternatives to graphene [16,17]. Among the different TMDs, MoS2 has gained significant
interest because of its electronic properties that are complementary to those of graphene.
Unlike graphene, MoS2 has an intrinsic bandgap that enables its use in semiconducting
electronic and optoelectronic applications [18,19]. Single-layered MoS2 has an extraordinary
fracture strength of ~23 GPa and an elastic modulus of 300 GPa, which are similar to those
of chemically reduced graphene [20]. Moreover, MoS2 is a piezoelectric material [21].
Therefore, MoS2 can be used as a reinforcing filler. Different polymer composites [22–26],
including rubber composites [27–31], have been fabricated using modified and unmodified
MoS2 particles for mechanical, microwave absorption, and tribology applications. Tang
et al. [31] hybridized CB and 2D-MoS2 particles to reinforce natural rubber, and found about
a 50% enhancement in the tensile modulus from a single CB-loaded composite. Although
2D MoS2 remarkably improves the properties of rubber composites, few studies have
investigated silicone rubber composites for improving its toughness and its applications in
electromechanical energy harvesting.

Reinforcing filler, with a high aspect ratio such as CNT, can simultaneously improve
the electrical and mechanical moduli, but can significantly reduce the fracture strain [32].
Hence, a low aspect ratio with an electrically conductive filler could be useful to make a soft
and stretchable energy harvester for low-energy sensing applications. This research aimed
to improve the mechanical properties, especially the fracture strain and fracture tough-
ness, of silicone rubber composites that can find suitable applications in energy harvesting
devices for low mechanical energy sensitivity. Nano carbon black (NCB) is a very useful
reinforcing filler for all types of rubber, owing to its considerable mechanical and electrical
properties. NCB provides good electrical conductivity at 15–20 phr of filler amounts in
silicone rubber [33]. In rubber-based flexible piezoresistive strain sensors, the sensitivity de-
pends highly on the gauge factor. At low deformation, the gauge factor is significantly low.
However, at higher deformation, the gauge factor could be enhanced, but the stability of
the piezoresistive strain sensor gradually decreases. Ding et al. prepared flexible electrodes
for energy harvesting devices, considering carbon black and polydimethylsiloxane rubber
have low energy loss and high durability [34]. Due to the isotropic structures of the filler
particles and good filler–polymer interactions, the fatigue life of the rubber composites may
be very high [35]. Although the mechanical modulus at this filler level was sufficient, the
fracture toughness could be improved by increasing the fracture strain value. Toughness
and stretchability are two important factors for most stretchable electronic applications.
Hence, the present study investigated the effects of two-dimensional MoS2 particles on
NCB-reinforced room-temperature-vulcanized (RTV) silicone rubber composites, for tough
but stretchable energy harvesting applications. The mechanical properties and fatigue
under cyclic deformation were studied to determine the importance of hybrid-filler-based
rubber composites. The composites were tested as electrodes in a flexible-type capacitor
such as an energy harvesting device. Owing to the effects on the mechanical and piezo-
electric properties of different amounts of MoS2, the hybrid composites can be synergized.
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The synergistic effects were described, followed by filler distribution and filler–polymer
interactions in hybrid filler systems.

2. Materials and Methods
2.1. Materials

The silicone rubber was condensation-cured one-component room-temperature vul-
canized (RTV)-silicone rubber (SR, grade KE-441) purchased from Shin-Etsu Company,
Tokyo, Japan. The catalyst (CAT-RM) for room-temperature vulcanization was provided
by the same company. The RTV-thinner was purchased from Shin-Etsu Company, Tokyo,
Japan. Molybdenum disulfide (particle size < 2 µm) was purchased from Sigma-Aldrich.
Nanocarbon black (NCB, Conductex SC Ultra grade, electrical conductivity = 2.5 S/cm [36])
was purchased from Saehan Silichem Corporation, Ltd., Seoul, Republic of Korea. All
materials were used as received.

2.2. Characterization of Fillers

Primary characterization of the fillers was performed using an X-ray diffractometer
(XpertPro-PANanalytical-Diffractometer) with an X-ray wavelength for CuKα (0.154 nm),
with scanning Bragg angles (2θ) from 10◦ to 80◦. Field emission scanning electron mi-
croscopy (FE-SEM, S-4800, Hitachi, Japan) was used to investigate the morphology of the
filler structures.

2.3. Preparation of Rubber Nanocomposites

The different amounts of materials used for fabricating the rubber nanocomposites are
provided in Table 1. The required amounts of filler(s) (in phr) were added to 100 g of RTV
silicone rubber and mechanically mixed using a stirrer for 10 min. After homogeneous
mixing, 2 phr vulcanizing initiator was added and thoroughly mixed for 1 min. The
compounded rubber was poured into a mold and maintained for 24 h under compressed
conditions. The vulcanisates were stored in a refrigerator to protect them from further
curing. Before measuring the chemical and mechanical properties, the samples were
removed and maintained for 24 h at room temperature (~25 ◦C).

Table 1. Formulation table of the silicone rubber-based composites.

Formulation RTV-SR (phr) NCB (phr) MoS2 (phr) Vulcanizing Agent (phr)

SR-unfilled 100 - - 2
SR/20-NCB 100 20 - 2

SR/19-NCB/1-MoS2 100 19 1 2
SR/17-NCB/3-MoS2 100 17 3 2
SR/15-NCB/5-MoS2 100 15 5 2

SR/5-MoS2 100 - 5 2

2.4. Measurement of Cross-Link Density

The cross-link densities of the silicone rubber composites were measured using the
equilibrium swelling method [37] after 7 days of immersion in toluene.

Vc = −
[
ln (1 − Vr) + Vr + χV2

r

]
/VsV1/3

r

where Vc is the cross-link density, Vr is the volume fraction of rubber in the swollen
sample, χ = 0.465 is the interaction parameter between toluene and silicone rubber [32],
and Vs = 106.2 is the molar volume of toluene. The Vr values were calculated as follows:

Vr = (wr/dr)[(wr/dr) + (ws/ds)]

where wr is the weight of the rubber, dr is the density of the rubber, ws is the weight of the
swelled toluene, and ds is the density of toluene.
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2.5. Mechanical and Hysteresis Properties

The compressive and tensile mechanical properties were investigated using a universal
testing machine (UTM, LLOYD, United Kingdom) with a 1 kN load cell. Cylindrical
samples (h = 10 mm × d = 20 mm) were used for analysis of the compressive mechanical
properties. For the tensile properties, dumbbell-shaped test specimens were used according
to ISO 37, Type 2 (gauge length = 25 cm). The average of four tests was calculated for each
reported value. For the hysteresis test, a cylindrical sample was used with 30% dynamic
compressive strain over 100 cycles.

2.6. Filler Distribution Studies

The filler distribution was characterized using scanning electron microscopy (SEM).
The level of filler dispersion was investigated, followed by an energy-dispersive spec-
troscopy (EDS) mapping technique fitted with the SEM instrument.

2.7. Fabrication of Energy Harvesting Device

Electrodes of 0.1 mm thickness were painted on both sides of the 1 mm thick unfilled
elastomer slab, following the method described previously [38]. NCB (20 phr) or hybrid
filler (20 phr of NCB: MoS2 at 17:3 ratio) was used to fabricate electrode composites, in
addition to 60 phr of thinner and 100 phr of RTV silicone rubber. The painted electrodes
were then coated with protective silicone rubber layers.

3. Results and Discussion
3.1. Crystal Structure and Morphology of Filler

The characteristic X-ray diffraction (XRD) plots of MoS2 and NCB are shown in
Figure 1a,b, respectively. The different major peaks in Figure 1a with 2θ values of 14.402◦,
32.631◦, 33.459◦, 35.833◦, 39.510◦, 44.233◦, 49.781◦, 55.992◦, 58.236◦, 60.33◦, 72.831◦, and
76.009◦ correspond to the 002, 100, 101, 102, 103, 104, 105, 106, 110, 008, 203, and
116 crystal planes, respectively, for the hexagonal crystal system of pure molybdenum
disulfide according to the reference (JCPDS card no. 00-024-0513). Similarly, the different
major peaks in Figure 1b with 2θ values of 24.029◦, 43.731◦, 44.533◦, and 47.723◦ correspond
to the 009, 104, 015, and 018 crystal planes, respectively, of the rhombohedral crystal system
of NCB, according to the card reference (JCPDS card no. 01-074-2328). Figure 1c shows an
SEM image of plate-like MoS2 layers stacked together to form larger particles. The SEM
image in Figure 1d shows spherical particles aggregated to form branched structures of
NCB, which are responsible for electrical conductivity.

3.2. Curing Properties

The cross-link densities of the different rubber composites after 24 h of curing are
shown in Figure 2. NCB enhanced the cross-link density, and MoS2 slightly reduced the
cross-link density, compared to unfilled rubber. The hybrid filler-containing vulcanisates
showed cross-link densities that were between the NCB and MoS2-only compounds. The
surface chemistry of the filler particles may have been the reason for the different cross-
linking densities in the different filler systems. The cross-link density in condensation-cured
silicone rubber depends mainly on the curing catalyst and filler surface functionalities. Since
MoS2 particles are platelet-shaped without hydrolyzable functional groups, they may act as
a barrier to moisture, which may influence condensation-cured silicone rubber with a lower
cross-link density [39,40]. In contrast, NCB promotes the cross-linking of condensation-
cured silicone rubber because of its hydrolyzable surface functional groups [41].
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Figure 2. Cross-link densities of different vulcanizates.

3.3. Mechanical Properties of Rubber Nanocomposites
3.3.1. Compressive Mechanical Properties

The compressive stress–strain curves for the different rubber composites are shown in
Figure 3a. From the different curves, it is evident that the compressive stress increased with
slightly higher values after 15% of compressive strain. This could be due to the generation
of filler percolation and polymer chain packing at higher compressive strains [42]. The
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addition of NCB significantly improved the compressive stress at 35% strain. Little improve-
ment in the mechanical properties was observed with the addition of MoS2, unlike in the
case of the unfilled rubber. This could be due to the cure retardation of sulfur-based MoS2
particles in silicone rubber [39,40]. The highest compressive stress at 35% of deformation
was obtained for the SR/17-NCB/3-MoS2 hybrid composite, which was much higher than
that for the unfilled rubber. The elastic modulus values of the different composites are
shown in Figure 3b. The enhanced compressive stress and elastic modulus of the SR/17-
NCB/3-MoS2 hybrid composite over those of the SR/20-NCB composite may indicate an
improved filler distribution in the composite matrix [43]. The elastic modulus obtained
in the compressive mode was much higher than the elastic modulus determined in the
tensile mode in the present study. It is believed that the filler networks have a significant
effect on the compressive modulus compared to the tensile modulus. In the compressive
mode of detection, the filler particles became closer to agglomerate, which resulted in filler
percolation, and improved the mechanical strength of the composite. On the other hand,
filler particles became separated by the tensile strain that reduced the filler percolation, and
filler networks showed slightly different behavior to the elastic modulus obtained via the
tensile mode. The higher elastic modulus of SR/17-NCB/3-MoS2 than that of SR/20-NCB
indicates more homogeneously distributed filler particles that require higher energy for
packing at a higher compressive strain.
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Figure 3. Compressive mechanical properties of different composites; (a) compressive stress–strain
and (b) compressive elastic modulus.

3.3.2. Tensile Mechanical Properties

The different tensile mechanical properties are shown in Figure 4a–e. From the stress–
strain curves in Figure 4a, it is evident that hybrid filler-containing composites provide
better stretchability, and the area under the curve is also higher than those of the single and
unfilled rubber composites. This could be due to the higher flexibility of the rubber matrix,
followed by controlled cross-links and strong filler–polymer interactions through NCB.
Thus, in the presence of MoS2, more flexible NCB filler networks may be formed that can
withstand larger deformations. From Figure 4b of the elastic modulus chart, it is evident
that the addition of MoS2 to the NCB-containing composites resulted in a varied elastic
modulus with increasing MoS2 content. The SR/20-NCB composite showed the highest
elastic modulus in tensile mode, which could be due to the higher reinforcing efficiency of
carbon black that restricted the movement of the rubber chains. At 1 phr of MoS2 in the
hybrid (SR/19-NCB/1-MoS2), the decrease in the elastic modulus was mainly due to the
sum of the reduced chemical cross-links and insufficient filler dispersion. At 3 phr of MoS2
(SR/17-NCB/3-MoS2), strong and mutual dispersion [43] of fillers may have occurred,
which resulted in a further increase in the elastic modulus with a subsequent increase in the
tensile strength, fracture strain, and fracture toughness, as shown in Figure 4c–e. Another
reason for the improved tensile strength in hybrid filler systems may be the increase in the
effective surface area owing to better filler dispersion, which improves the van der Waals
interactions between the polymer and filler particles [44]. Further additions of MoS2 may
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result in reduced mutual filler dispersion and a reduced number of polymer cross-links, as
shown by the reduced elastic modulus in Figure 4b. Thus, MoS2 in the hybrid filler controls
curing and improves mutual filler dispersion, which provides long-range filler–polymer
connectivity. At similar modulus values in different composites, higher toughness indicates
that the sample can withstand larger deformations. Hence, for stretchable electronic devices,
a higher toughness is necessary to achieve higher durability. Table 2 compares the tensile
properties of a few silicone rubber composites where CB is the main filler material [45,46].
From this table, it can be concluded that CB/MoS2 hybrid filler obtained overall good
mechanical properties. Moreover, the fracture toughness was highly improved, which
could be beneficial for improving the electromechanical energy harvesting, which was not
reported in the literature [45,46].
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Figure 4. Tensile mechanical properties of different composites; (a) stress–strain, (b) elastic modulus,
(c) tensile strength, (d) fracture strain, and (e) fracture toughness.

Table 2. Comparison of tensile properties of silicone rubber composites with carbon black as the
main filler material.

Composites Filler (Grade) Amount of Filler Tensile Strength (MPa) Elongation at Break (%) References

SR/CB (N990) CB (N990) 20 phr 0.61 93.5 [45]
SR/CB (Vulcan XC-72) CB (Vulcan XC-72) 20 phr 3.6 257.3 [45]
SR/CNT/CB (BP 2000) CNT/CB (BP 2000) 5.76 vol% 4.5 211 [46]

SR/17-NCB/3-MoS2
CB (Conductex SC

Ultra)/MoS2
20 phr 1.57 177.67 This study

3.3.3. Hysteresis Losses on Dynamic Loading–Unloading Cycles

The hysteresis losses in the filled compounds were mainly due to the breakdown of the
filler structures and rubber networks [47]. Up to a certain deformation, the expended energy
was used to break down the filler structures. After the complete breakdown of the filler
structure, the expended energy caused the breakdown of the rubber networks [47]. The
hysteresis loss increased up to a certain level, and then decreased because the breakdown
of the filler network was proportional to the first-order deformation, while the breakdown
rubber network was proportional to the second-order deformation [47]. Thus, a lower
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hysteresis loss signifies bonding stability. Figure 5a,b show the variations in load values of
100 cycles of cyclic compression and relaxation for up to 30% deformation of the rubber
composites. From Figure 5c, it can be seen that the area under the first cyclic deformation is
higher for the NCB-only compound than for the hybrid filler-loaded SR/17-NCB/3-MoS2
composites. In addition, Figure 5a,b show that the highest load value at maximum deforma-
tion reduced more rapidly, with increasing cycles for the SR/20-NCB composite compared
to that for the hybrid filler-based SR/17-NCB/3-MoS2 composite. A higher number of
inelastic changes, such as the permanent deformation of filler structures, indicates higher
fatigue than the elastic change of filler networks [47]. In this respect, it seems that the
hybrid filler containing the SR/17-NCB/3-MoS2 composite is more flexible, and returns
to quick equilibrium networks with higher fatigue resistance than the only NCB-filled
SR/20-NCB composite.
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(b) SR/17-NCB/3-MoS2 with 100 deformation cycles, and (c) SR/20-NCB & SR/17-NCB/3-MoS2

with first 6 deformation cycles.

3.4. Filler Dispersion

The filler dispersion was investigated using SEM analysis. The SEM images in Figure 6a–c
show that a more homogeneous filler distribution was possible in the SR/17-NCB/3-MoS2
composite (Figure 6b) compared with the higher MoS2-containing SR/15-NCB/5-MoS2 com-
posite (Figure 6c), as reflected by the mechanical properties having lower values than those of
the highly dispersed fillers in the SR/17-NCB/3-MoS2 compound. Moreover, the NCB was
well dispersed in the SR/17-NCB/3-MoS2 composite (Figure 6b) compared to the SR/20-NCB
composite (Figure 6b).

The reduced filler distribution in SR/15-NCB/5-MoS2 can be confirmed from the EDS
mapping shown in Figure 7a–f. Figure 7a shows the area under investigation. While the
carbon, silicon, and oxygen elements in Figure 7b–d show homogeneity in the matrix,
the MoS2 particles are distributed heterogeneously, as shown in Figure 7e–f. Figure 7e–f
also show that nano-range filler dispersion was possible along with microdispersion. The
increased nano-level filler dispersion may be due to the increased filler–filler mechanical
interactions during mixing [43]. Thus, an optimum filler ratio could be the best for obtaining
improved reinforcing properties.
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From the mechanical properties, cross-link densities, and SEM analysis, it was evident
that MoS2 has a small reinforcing effect on silicone rubber. However, due to its lubricating
properties, it can promote the distribution of NCB particles that have greater interactions
with silicone rubber. Thus, in hybrid filler systems, more homogeneously distributed
fillers showed improved physical interactions with the silicone rubber matrix, and largely
enhanced the fracture toughness in the hybrid composites. At 17 phr NCB and 3 phr
MoS2, the hybrid composites showed excellent filler distribution of both NCB and MoS2,
which is beneficial for improving the toughness value. It is believed that in highly tough
rubber composites, the stress distribution is more homogenous and could result in higher
electromechanical sensitivity, as found in the later section.
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3.5. Electromechanical Sensing Performance of Energy Harvester

To study the effect of MoS2 on the capacitance-based electromechanical performance,
two specimens, one with 20 phr CB (SR/20-NCB) and the other with 20 phr hybrid filler
containing a 17:3 CB to MoS2 ratio (SR/17-NCB/3-MoS2), were prepared according to
the method described above (Section 2.7). The samples were tested for up to 5000 cycles
of repeated dynamic loading and unloading in a machine, and the results are shown
in Figure 8a–d. With the same applied cyclic pressure up to 2 kPa, the output voltage
was much higher for the SR/17-NCB/3-MoS2 composite than the SR/20-NCB controlled
composite. The decrease in voltage efficiency with increasing cycles may be due to the
permanent breakdown of conducting NCB filler networks in the controlled composite, while
a similar or increasing efficiency in the SR/17-NCB/3-MoS2 composite may indicate better
retention of the conducting filler networks [48,49], which is also evident from Figure 5a,b,
with a lower stress softening tendency for the hybrid composite. The energy output was
~100% higher in the SR/17-NCB/3-MoS2 composite compared to the SR/20-NCB controlled
composite as an electrode. This could be due to the improved CB filler dispersion aided by
MoS2, and the piezoresistive effect of the electronic band gap of MoS2 under strain [50,51]
that may enhance the output voltage difference. Moreover, due to the higher toughness
in the SR/17-NCB/3-MoS2 composite, the stress distribution was more homogeneous
throughout the matrix than the SR/20-NCB controlled composite. The approximately 100%
higher efficiency of SR/17-NCB/3-MoS2 with only 3 phr MoS2 compared to the control
composite indicates the role of the electronic band gap of MoS2 in the sensitivity of the
electromechanical energy harvesting performance. It was also evident from Figure 8b,d
that the SR/17-NCB/3-MoS2 composite had very uniform sensitivity compared to the
SR/20-NCB controlled composite as an electrode. Hence, two-dimensional MoS2 could be
very useful in combination with conducting fillers for capacitance-type energy harvesters
for electromechanical sensing applications [52–54]. Although the peak sharpness is much
better in Figure 8d than in Figure 8b, this could be further enhanced by increasing the
conductivity and the elasticity of the composite. Since viscoelastic materials undergo typical
stress relaxation behavior and have a slow stress relaxation rate, charging and discharging
are consequently not fast, and may reduce the sharpness of the peaks.

When electrical conducting filler disperses in dielectric rubber, such as in silicone
rubber, a capacitor can be produced. Since the capacitance depends on the electrode
surface area and the distance between electrodes, mechanical deformation can change the
capacitance, followed by changing the electrode surface area and the distance between
the electrodes [55]. Due to the deformation, the capacitance value of the capacitor is
changed, and the charging–discharging results as negative and positive output voltages.
In the hybrid filler system, it is believed that the conducting networks are distributed
homogeneously in the rubber matrix, which enhances the capacitance. Since a higher
capacitance belongs to a higher charge, hence the amplitudes of output voltages become
higher. Moreover, in a hybrid filler system, due to the piezoelectric behavior of MoS2, some
additional potential gradients may be generated, and can further increase the efficiency of
the capacitor sensor. Such a type of capacitance-based sensing is a very low-energy process,
and can be useful as a pressure sensor in health monitoring applications [55]. For example,
under normal body conditions, the systolic (16 kPa) to diastolic (11 kPa) pressure difference
is 5 kPa, which is much higher than the applied pressure (≤2 kPa) in this experiment.
Hence, this composite can easily detect and measure blood pressure.
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4. Conclusions

This study examines the mechanical and electromechanical sensing performance of
conducting NCB and MoS2 hybrid fillers in RTV silicone rubber. In examining the me-
chanical properties and fatigue properties, it was evident that a suitable ratio of NCB and
MoS2 in silicone rubber can provide excellent fracture toughness with improved tensile
strength and fracture strain compared to unfilled and single-filler systems. Such improve-
ments in the mechanical properties could be due to the mutually interacting fillers for
excellent filler dispersion in the rubber matrix. Owing to the controlling effect of MoS2 on
excessive cross-links in the silicone rubber matrix, the hybrid composites showed higher
elongation properties, and maintained better conductivity of the NCB networks in the
rubber composites. Thus, the hybrid filler with 17 phr CB and 3 phr MoS2 in silicone rubber
provides improved mechanical properties and excellent efficiency for electromechanical
sensing. A nearly 100% higher energy harvesting efficiency was obtained with ≤2 kPa
of applied pressure for the 17:3 ratio of NCB to MoS2 hybrid compared to NCB only at
20 phr, which confirmed better electromechanical sensitivity of the hybrid composite. The
improved sensitivity of the hybrid filler-loaded composite could be attributed to higher
charging and discharging during capacitance change followed by the piezoelectricity of the
two-dimensional MoS2 particles during mechanical deformation. Hence, 2D MoS2 could
be a fascinating hybrid component filler with nanocarbon black for the future develop-
ment of rubber nanocomposites with advanced mechanical and electromechanical energy
harvesting and sensing applications.
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