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1 Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
2 Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;

emestrov@fkit.hr
* Correspondence: iva_rezic@net.hr

Abstract: The green transition in the sustainable production and processing of polymers poses multi-
faceted challenges that demand integral comprehensive solutions. Specific problems of presences
of toxic trace elements are often missed and this prevents shifting towards eco-friendly alternatives.
Therefore, substantial research and the development of novel approaches is needed to discover and
implement innovative, sustainable production materials and methods. This paper is focused on the
most vital problems of the green transition from the aspect of establishing universally accepted criteria
for the characterization and classification of eco-friendly polymers, which is essential to ensuring
transparency and trust among consumers. Additionally, the recycling infrastructure needs substantial
improvement to manage the end-of-life stage of polymer products effectively. Moreover, the lack of
standardized regulations and certifications for sustainable polymers adds to the complexity of this
problem. In this paper we propose solutions from the aspect of standardization protocols for the
characterization of polymers foreseen as materials that should be used in Zero Energy Innovations in
Hydrogen Storage. The role model standards originate from eco-labeling procedures for materials
that come into direct or prolonged contact with human skin, and that are monitored by different
methods and testing procedures. In conclusion, the challenges of transitioning to green practices in
polymer production and processing demands a concerted effort from experts in the field which need
to emphasize the problems of the analysis of toxic ultra trace and trace impurities in samples that will
be used in hydrogen storage, as trace impurities may cause terrific obstacles due to their decreasing
the safety of materials. Overcoming these obstacles requires the development and application of
current state-of-the-art methodologies for monitoring the quality of polymers during their recycling,
processing, and using, as well as the development of other technological innovations, financial
initiatives, and a collective commitment to fostering a sustainable and environmentally responsible
future for the polymer industry and innovations in the field of zero energy applications.

Keywords: polymer; zero energy; innovation; hydrogen storage; green sustainable transition

1. Introduction

The presence of trace impurities in polymers poses several challenges in the context
of a sustainable economy. Firstly, there is an environmental impact. It is known that trace
impurities in polymers can have adverse environmental consequences when released into
the environment during manufacturing, use, or disposal [1–3]. These impurities may leach
out of the polymer matrix and contaminate the soil, water, and air, leading to pollution and
ecosystem damage.

Secondly, health concerns are significant. Many impurities in polymers may pose risks
to human health. For example, certain dyes and catalysts used in polymer production
may contain toxic substances that can migrate into the food or beverages stored in plastic
containers, potentially causing health problems upon consumption.
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Thirdly, there are also significant recycling challenges since trace impurities can com-
plicate the recycling process of polymers. Contaminants present in recycled plastics can
degrade material quality, reduce mechanical properties, and limit the range of applications
for which the recycled material can be used. This hinders the effectiveness of recycling
efforts and undermines the circular economy’s principles.

Moreover, due to more and more strict regulatory compliance standards, it is quite
possible that the materials we do not consider to be problematic to the environment and
human health come up on the unwanted lists of chemicals. The presence of trace impurities
in polymers may raise even more concerns regarding regulatory compliance with safety
and environmental standards. Manufacturers may face regulatory scrutiny and legal
obligations to ensure that their products meet stringent quality and safety requirements,
which can entail additional costs and administrative burdens.

Last, but not least, there is a consumer perception that strongly influences marketing
possibilities. If noted, trace impurities, in terms of the toxic organic or inorganic compounds
evidenced in polymers, can erode consumer confidence in the sustainability and safety
of products. The public awareness of the environmental and health issues associated
with plastic pollution is increasing, leading consumers to demand more transparent and
eco-friendly products. Any perception of risk or uncertainty regarding trace impurities can
deter consumers from purchasing polymer-based products [4–6].

Such polymers should enable safe hydrogen storage, and conducting polymers (shown
in Figure 1) have recently emerged as promising materials on the horizon that are suitable
for this purpose due to their significant advantages: their low cost, simple steps in synthesis
and processing (the preparation and shaping due to aromatic rings resulting in (i) high
resonance energy and stability, making them less reactive, the (ii) tendency to undergo
substitution reactions rather than addition reactions, and (iii) the delocalized pi-electrons
which are spread out over the entire ring, contribute to stability), the achievable different
tailoring in their morphology and architecture, and the possibility of doping and composite
formation that enable their enhanced performance through modification. Moreover, such
materials are chemically stable and offer interesting functional properties. For all of those
reasons, those materials are suitable for hydrogen storage and fuel cell membranes.
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Figure 1. Conducting polymers for hydrogen storage: polyaniline, polypyrrole, and polythiophene.

Addressing these challenges requires concerted efforts from stakeholders across the
polymer value chain. Strategies to mitigate the impact of trace impurities include adopting
cleaner production processes, implementing stringent quality control measures, developing
safer alternatives to hazardous additives, improving recycling technologies, and enhancing
public awareness and education on sustainable consumption practices. By addressing trace
impurities in polymers, we can move towards a more sustainable economy that prioritizes
environmental protection, human health, and resource conservation [7–9].

In addition, the application of polymers for zero-energy innovations in hydrogen
storage and green, sustainable transitions presents several challenges. Firstly, the develop-
ment of polymers with high hydrogen storage capacities while maintaining their stability
and durability is a significant and urgent topic. These polymers need to efficiently adsorb
and release hydrogen under practical conditions, which requires precise control over their
molecular structures and porosity [10,11]. Only after this can their properties be applied in
zero-waste innovations and green, sustainable transitions (as is shown in Figure 2).
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Additionally, the integration of these polymers into practical hydrogen storage systems
poses engineering challenges, including the design of suitable containment materials and
interfaces to prevent hydrogen leakage. Furthermore, ensuring the scalability and cost-
effectiveness of polymer-based hydrogen storage technologies remains a key challenge, as
the large-scale production of specialized polymers may require advanced manufacturing
processes and materials [12–15]. Moreover, the compatibility of polymer-based storage
systems with existing infrastructure and regulatory frameworks needs to be addressed
to facilitate their widespread adoption in the transition towards a green and sustainable
energy landscape.

Novel materials are needed in hydrogen storage. In the transition towards clean en-
ergy, this is a pathway to reducing greenhouse gas emissions and enhancing energy security
across sectors like transportation and power generation. Its zero-emission profile, particu-
larly when utilized in fuel cells, underscores its potential as an environmentally friendly
energy carrier. The current development stage in this field includes several pathways of
development: (i) methods such as compressed gas and adsorption on porous materials like
metal–organic frameworks (MOFs), (ii) liquid hydrogen storage options, (iii) solid hydro-
gen storage options (through metal hydrides and carbon-based materials), and, particularly,
(iv) polymers such as polyaniline, polypyrrole, polythiophene, hyper-crosslinked polymers,
polymers of intrinsic microporosity, conjugated microporous polymers, porous aromatic
frameworks, and carboxymethyl cellulose.

Overall, addressing these challenges will be essential for realizing the full poten-
tial of polymers in enabling zero-energy innovations for hydrogen storage and green,
sustainable transitions.

2. Zero-Waste Energy: Towards a Sustainable Future

We have witnessed an era marked by environmental degradation and climate change,
so the concept of zero-waste energy emerges as a beacon of hope for a sustainable future.
Zero-waste energy entails the efficient utilization of resources, minimizing waste generation,
and maximizing energy recovery from discarded materials. This chapter delves into the
principles, technologies, challenges, and opportunities associated with zero-waste energy,
highlighting its crucial role in mitigating environmental impacts and advancing towards a
circular economy.

The principles of Zero-Waste Energy are simple, as at its core, zero-waste energy
embodies the principles of waste prevention, reuse, recycling, and energy recovery. Waste
prevention involves minimizing waste generation through conscious consumption and
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production practices. Reuse entails prolonging the lifespan of products and materials
through repair, refurbishment, and repurposing. Recycling involves the conversion of
waste materials into new products or raw materials, thereby closing the loop of resource
utilization. Energy recovery focuses on harnessing energy from waste materials through
processes such as combustion, anaerobic digestion, and thermal or biological conversion.

There is a wide variety of technologies used for Zero-Waste Energy, encompassing
energy from various waste streams, ranging from municipal, solid waste to industrial,
agricultural, and biomass residues. Anaerobic digestion processes convert organic waste
into biogas, a renewable energy source rich in methane. Waste-to-energy (WtE) facilities
utilize thermal treatment methods such as incineration or gasification to combust waste and
generate heat or electricity. Advanced technologies such as pyrolysis and hydrothermal
carbonization offer innovative approaches to convert organic waste into biochar or synthetic
fuels. Additionally, emerging technologies like microbial fuel cells and enzymatic digestion
hold promise for decentralizing energy production from organic waste [16–19].

Despite its potential benefits, the widespread adoption of zero-waste energy faces
several challenges. Its economic viability, technological barriers, regulatory constraints,
and public perceptions are among the key hurdles to overcome. Its economic feasibility
remains a critical factor, as the cost of waste management and energy recovery must be
balanced against potential revenue streams. Technological barriers include the need for
improved efficiency, scalability, and compatibility with diverse waste streams. Regulatory
frameworks must be conducive to incentivizing zero-waste practices and supporting the
development of renewable energy infrastructure. Furthermore, public awareness and
engagement are essential to garnering support for zero-waste initiatives and fostering a
culture of resource conservation.

However, among these challenges is a huge field of opportunities for innovation,
collaboration, and systemic change. Advances in technology, coupled with favorable policy
incentives and public–private partnerships, can drive the transition towards a zero-waste
energy future. Integrated waste management systems that prioritize source reduction,
recycling, and energy recovery offer a holistic approach to waste valorization [20,21].
Furthermore, decentralized and community-based initiatives empower local stakeholders
to participate in the transition towards sustainable waste management practices.

3. Sustainable Polymers for Hydrogen Storage and a Circular Polymer Economy

The concept of a circular polymer economy represents a paradigm shift in the man-
agement of plastic materials, aiming to minimize waste generation, maximize resource
efficiency, and promote sustainable practices throughout the lifecycle of polymers. In con-
trast to the traditional linear economy model of “take-make-dispose”, a circular polymer
economy prioritizes strategies such as reusing, recycling, and redesigning to create a closed-
loop system where polymers are continually reused, remanufactured, or regenerated. This
chapter explores the principles, challenges, opportunities, and implications of transitioning
towards a circular polymer economy, highlighting its potential to mitigate plastic pollution,
conserve resources, and foster a more sustainable future.

The principles of the circular polymer economy are the ideas of waste prevention,
resource recovery, and circular design. Waste prevention involves minimizing the genera-
tion of plastic waste through measures such as product redesigning, material substitution,
and extended producer responsibility. Resource recovery encompasses strategies such as
recycling, mechanical and chemical recycling, and energy recovery to extract value from
post-consumer and post-industrial plastic waste streams. Circular design emphasizes the
importance of designing products and packaging with circularity in mind, considering
factors such as material selection, recyclability, and end-of-life options to facilitate the ease
of reuse, repair, or recycling.

Transitioning towards a circular polymer economy is not without its challenges. A lim-
ited infrastructure, technological barriers, economic constraints, and consumer behaviors
pose significant hurdles to overcome. Achieving high-quality recycling and closing material
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loops requires investment in recycling infrastructure, innovation in recycling technologies,
and collaboration across the value chain. Furthermore, shifting consumer preferences
towards sustainable products, incentivizing circular business models, and overcoming reg-
ulatory barriers are essential for driving systemic change. However, amidst these challenges
lie opportunities for innovation, collaboration, and systemic transformation. Advances in
material science, recycling technologies, and digitalization offer new avenues for enhancing
resource efficiency and circularity in polymer production and consumption. However,
without proper standard quality protocols, monitoring, education, and new regulations, it
is hard to believe that proper reusing and recycling will be possible (Figure 3).
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The implications of a circular polymer economy extend beyond its environmental
benefits to encompass economic, social, and geopolitical considerations. By reducing the
dependency on virgin fossil resources, promoting local recycling and manufacturing, and
creating new market opportunities for recycled materials, a circular polymer economy
can stimulate economic growth, job creation, and innovation. Moreover, fostering collabo-
ration between stakeholders, empowering local communities, and promoting consumer
awareness and engagement are crucial for realizing the full potential of circularity in
polymer management.

The transition towards a circular polymer economy represents a fundamental shift
in how we produce, consume, and manage plastic materials. By embracing the princi-
ples of waste prevention, resource recovery, and circular design, societies can mitigate
plastic pollution, conserve natural resources, and create a more sustainable and resilient
future. However, achieving a circular polymer economy requires concerted efforts from
policymakers, industry stakeholders, and civil society to overcome challenges, capitalize
on opportunities, and drive systemic change towards a more circular and sustainable
polymer ecosystem.

Hydrogen has emerged as a promising alternative energy carrier due to its high energy
density and potential for clean combustion [22–28]. However, the effective storage of hydro-
gen remains a key challenge for its widespread adoption in various applications, including
transportation and renewable energy systems. Sustainable polymers offer a promising
solution for hydrogen storage, leveraging their tunable properties, lightweight nature,
and compatibility with existing infrastructures. The recent advancements, challenges, and
opportunities in utilizing sustainable polymers for hydrogen storage, with a focus on their
enhancing storage capacity, stability, and recyclability will be mentioned here [29–37].
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There are many advantages in using polymers for hydrogen storage as sustainable
materials [38–40]. The term “Sustainable” polymers encompasses a diverse range of
materials derived from renewable resources or designed with eco-friendly synthesis routes.
These polymers exhibit tunable properties such as their porosity, surface area, and chemical
functionality, which can be tailored for efficient hydrogen adsorption and desorption.
Porous polymers, including covalent organic frameworks, metal–organic frameworks as
well as porous organic polymers, have garnered significant attention for their high surface
area and controllable pore structures, enabling enhanced hydrogen storage capacities.
Additionally, functionalized polymers incorporating metal or metal oxide nanoparticles
demonstrate synergistic effects, facilitating hydrogen uptake through physisorption or
chemisorption mechanisms [41,42].

However, despite the promising advancements, several challenges hinder the practical
implementation of sustainable polymers for hydrogen storage. Limited hydrogen uptake
capacities, the slow kinetics of hydrogen adsorption/desorption, and the stability under
operating conditions are among the key challenges to address [43–48]. Furthermore, the
cost-effectiveness, scalability, and recyclability of sustainable polymer-based storage sys-
tems require optimization to compete with conventional storage technologies. However,
ongoing research efforts focused on material design, structural optimization, and process
engineering offer opportunities to overcome these challenges and unlock the full potential
of sustainable polymers for hydrogen storage (Figure 4).
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Recent trends have shown that future research directions in sustainable polymers for
hydrogen storage encompass interdisciplinary approaches integrating materials science,
chemistry, and engineering [49–53]. Tailoring polymer structures at the molecular level, ex-
ploring novel synthesis methodologies, and optimizing storage conditions hold promise for
achieving higher hydrogen storage capacities and improved performance metrics [54–88].
Furthermore, the integration of sustainable polymer-based storage systems into hydrogen
infrastructures, including onboard storage for fuel cell vehicles, stationary storage for
renewable energy integration, and portable applications, presents exciting opportunities
for real-world impact [89–92].

4. Detection of Trace Impurities in Polymers for a Sustainable Economy

As was previously emphasized, there are significant health concerns related to the
trace amounts of impurities in polymer materials since many of those compounds pose
risks to human health [93]. Dyes and catalysts used in polymer production may contain
toxic substances that can migrate into the environment after disposal, or even into our food
or beverages stored in plastic containers during the usage of polymers, potentially causing
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health problems upon the consumption of such foods or the exposure to such waste (in the
land, air, and rivers) [94].

The life cycle assessment describes the fate of the polymer materials in a sustainable
economy (Figure 5).
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The spectroscopic determination of impurities in polymers before recycling involves
the use of various spectroscopic techniques to identify and quantify the contaminants
present in polymer waste streams [95–99]. These impurities can include residual monomers,
additives, pigments, fillers, and other substances that may affect the quality and perfor-
mance of recycled polymers. Several spectroscopic methods are commonly employed for
this purpose.

Infrared spectroscopy with Fourier transformation can be widely used to identify
polymers’ functional groups and particular bonds of interest. For example, after the func-
tionalization of the polymer surface via this method, it can be easily concluded if novel
chemical bonds occurred or not. In addition, this methodology is used to detect impu-
rities based on their characteristic absorption bands in the infrared spectrum, providing
qualitative and semi-quantitative information about the composition of polymer samples.

The UV–Visible spectroscopy of polymers can be utilized to detect colored impurities,
such as dyes, stabilization agents, and pigments. By measuring the absorption of light at
specific wavelengths, UV–Vis spectroscopy can quantify the concentration of impurities
and assess the color quality of polymer samples.

Fluorescence spectroscopy can be employed to detect fluorescent impurities in poly-
mers. Certain contaminants may exhibit fluorescence when excited by light of a specific
wavelength, allowing for their identification and quantification.

X-ray photoelectron spectroscopy is a technique that provides information about the
chemical composition of polymer surfaces, usually used to identify surface contaminants
and assess the cleanliness of polymer samples before recycling.

Raman spectroscopy offers molecular fingerprinting capabilities for the identification
of impurities in polymers. It can detect changes in molecular structures and compositions,
providing valuable information about the presence of contaminants in polymer samples.

By employing these spectroscopic techniques, recyclers can effectively analyze poly-
mer waste streams for impurities and assess their impact on the quality of recycled
materials. This information can inform process optimization, quality control measures,
and material selection strategies to enhance the efficiency and sustainability of polymer
recycling operations.

The analysis of toxic trace elements in polymers holds significant importance, not only
for the purposes of reuse and recycling, but also for safeguarding the global population
against the hazards of improper waste management. Experimental studies conducted on
animals have demonstrated that several heavy metals, such as the elements presented in
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Table 1, can induce the development of cancers. Furthermore, epidemiological investiga-
tions have revealed a correlation between carcinogenesis in humans and exposure to such
compounds, as outlined in Table 2.

Table 1. Average toxic elements in polymeric dyes.

Element Anionic Cationic Substansive

Arsenic Less than one ppm Less than one ppm Less than one ppm
Cadmium Less than one ppm Less than one ppm Less than one ppm
Chromium Less than 10 ppm Less than three ppm Less than three ppm
Lead Less than 40 ppm Less than seven ppm Less than 30 ppm
Mercury Less than one ppm Less than one ppm Less than one ppm
Nickel Less than 15 ppm Less than 35 ppm Less than 10 ppm

Table 2. Interactions and accumulations of toxic metals in particular parts of body [23] *.

System Arsenic Cadmium Cobalt Mercury Lead

Circular + + +
Digestive + + + + +
Hormonal + + +
Immune + + +
Neural + + + + +

* the toxic metals that accumulate and interact with only one system in a human body are chromium (the digestive
system) and nickel (the immune system), which are therefore not presented in Table 2.

The detrimental effects of heavy metals on human health encompass organ damage,
respiratory organ and tract disorders, lung problems, cardiac problems, blood abnor-
malities, neurological disorders, skin ailments, as well as complications in fertility and
pregnancy. The heavy metals present in human or animal bodies accumulate in different
body tissues and, after this, they interact with enzymes which can disrupt cellular functions,
potentially leading to the development of tumors or cancers. In response to these risks,
various ecological textile standards have been implemented. These standards aim to ensure
the safety of textiles and minimize the presence of harmful substances.

Some of the prominent ecological standards provide recommended limits for toxic
elements, which are crucial for ensuring the safety and sustainability of textiles. These
limits are outlined in Table 3 to guide manufacturers and consumers in making informed
choices regarding textile products.

Table 3. List of health-concerning metals according to the TOX Proof Standard.

Element Element Symbol Heavy Metal µg/mL

Antimony Sb 0.2
Arsenic As 0.2
Cadmium Cd 0.1
Chromium Cr 0.0
Cobal Co 1.0
Coper Cu 20.0
Lead Pb 0.8
Mercury Hg 0.02
Nickel Ni 1.0
Zinc Zn 20.0

As can be seen from Table 2, the metals that accumulate in almost all systems are cobalt
and lead, making them very problematic elements when present in polymer samples.

However, the toxic trace metals are not the only problems present in polymers, as
there are other groups of problematic molecules, as is presented in Table 4.
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Table 4. Öko–Tex Standard list of parameters and their prescribed limits for extracted compounds.

Important Parameters of
Extracts from Polymers Limit Important Parameters of

Extracts from Polymers Limit

pH 4.8–7.5 Halogenated carriers Bellow limit of detection
Saliva (baby items) Resistant Carcinogenic dyes Bellow limit of detection
Perspiration 3–4 Sensitizing dyes Bellow limit of detection
Washing 3–4 Pesticides (/ppm) Less then 1 ppm
Water, severe 3 Total content
Crocking (dry/wet) 4/2–3 Aldrin Less than 0.2 ppm
Heavy metals /(ppm) Dieldrin Less than 0.3 ppm
Antimony (Sb) 30 2,4–D Less than 0.1 ppm
Arsenic (As) 0.2–1.0 2,4,5–T Less than 0.05 ppm
Cadmium (Cd) 0.1 DDT Less than 1 ppm
Chromium six (Cr(VI)) Not detectable HCH Less than 0.5 ppm
Chromium three (Cr(III)) 1.0–2.0 Heptachlor Less than 0.5 ppm
Cobalt (Co) 1.0–4.0 (epoxide)
Copper (Cu) 25.0–50.0 Lindane Less than 1 ppm
Lead (Pb) 0.2–1.0 Toxaphen Less than 0.5 ppm
Mercury (Hg) 0.02 Emission of volatile Very limited for
Nickel (Ni) 1.0–4.0 substances indoor polymers
Formaldehyde 20/75/300 Strange odor Limited

The OEKO-TEX Standard is an initiative developed to provide consumers with safety
and confidence in textile products by setting strict requirements for the ecology and human
use of textiles.

This certification covers several product classes, including raw polymer materials,
intermediate products, and finished products. Certification is based on extensive test-
ing to ensure that polymer products are free from harmful chemicals and meet specific
environmental standards.

5. Importance of Standardization Protocols and the Determination of Trace Impurities in
Polymers in Regulatory Compliance and Risk Assessment

The accurate determination of heavy metal concentrations, particularly in trace amounts,
is vital due to their potential hazards to human health and the environment. To achieve
reliable and consistent results, the development of and adherence to standardized methods
is crucial. The International Organization for Standardization (ISO) plays a pivotal role in
establishing these standards, ensuring uniformity, comparability, and quality across labo-
ratories worldwide. ISO standards provide guidelines and protocols for various analytical
techniques used in detecting and quantifying heavy metals. These standards cover aspects
such as sampling procedures, sample preparation, instrumental analysis, quality control
measures, and data reporting. Standardization ensures that analytical methods yield accurate
and precise measurements of heavy metal concentrations. These include the use of certified
reference materials (CRMs) for calibration, regular performance checks, proficiency testing,
and adherence to stringent data validation criteria.

The determination of elemental composition in polymer materials, in compliance with the
standardized protocols, involves the application of various spectroscopic methods [100–108].
The selection of a particular spectroscopic method is influenced by several factors. These
factors include the quantity of the sample and its characteristics. Regulatory agencies rely on
the standardized methods endorsed by the ISO to assess their compliance with permissible
limits of heavy metals polymers (Table 5). Furthermore, standardized analytical procedures
facilitate risk assessment studies, allowing policymakers to make informed decisions regarding
environmental protection and public health.
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Table 5. Metals in plastics with prescribed limits according to the following directives: the Toy Safety
Directive (for migration limits in hydrochloric acid), and in the directive for Packaging and Packaging
Waste, the combined limit for Cd + Cr + Hg + Pb metals is 100 mg kg−1 [100–109].

Limits Expressed in mg kg−1 TS

As Less than 50
Cd Less than 20
Cr(IV) Less than 0.3
Co Less than 150
Hg Less than 160
Pb Less than 25

However, there is a lack of standards, as is emphasized in ISO/TR 23891:2020(en).
Plastics—their recycling and recovery—have a necessity of standards. Those which are

relevant to the field (such as ISO/TC 61, Plastics, SC 14, Environmental aspects; CEN/TC
249, Plastics, ISO/TC 122/SC 3, Performance requirements and tests for means of packag-
ing, packages and unit loads, ISO/TC 122/SC 4, Packaging and environment and CEN/TC
261/SC 4, Packaging and the environment, ASTM Subcommittee D20.95 on Recycled Plas-
tics (USA), UNI (Italy), BIS (India), JISC (Japan); ISO/TR 22293:2021 Evaluation of methods
for assessing the release of nanomaterials from commercial, nanomaterial-containing poly-
mer composites; or ISO 15270:2008 Plastics—Guidelines for the recovery and recycling of
plastic waste; or ISO/TR 21960:2020 Plastics—Environmental aspects—State of knowledge
and methodologies) do not provide all necessary information to end users. For this reason,
this paper goes beyond the current state-of-the-art standards in the field.

Despite efforts to develop safer alternatives, the dispersion of hazardous metals in
modern consumer goods persists, particularly through material recycling practices.

The widespread presence of plastics in everyday life exacerbates the issue, leading to
poor management and disposal practices that contribute to environmental contamination.
Additionally, restricted additives have been observed in marine and industrial applications,
further exacerbating the contamination of plastics in natural environments.

Unfortunately, there has been limited attention given to the presence of hazardous
metals in environmental plastics. While there is a misconception that low concentrations of
the metals acquired from the surroundings pose minimal risks, studies have shown that the
concentrations of additive-bound metals in historical plastics can be significantly higher.
Under conditions simulating the digestive environment, these metals can be mobilized from
plastics at levels far exceeding the safety limits established for consumer products. Due to
the wide development of novel materials [110–114] (e.g., novel conducting polymers for
hydrogen storage), the risks of traces of impurities is highly underestimated. Addressing
topics of current state-of-the art aspects in hydrogen storage and green, biobased polymer
transition technologies, this paper goes beyond the state-of-the-art aspects in the field
proposing novel standards and novel insights.

To address this oversight, it is proposed that the risks associated with environmental
plastics be evaluated by comparing empirically derived mobilized metal concentrations
with established migration safety limits for hazardous metals in consumer products. By
adopting this approach, researchers and policymakers can better understand the poten-
tial threats to wildlife and ecosystems posed by hazardous metal contamination in plas-
tics. Moreover, it underscores the importance of comprehensive strategies to mitigate
the environmental impact of plastics and to ensure the safety of both human health and
the environment.

Transitioning towards sustainability in polymer science necessitates a shift from solely
relying on qualitative assessments to embracing a comprehensive array of metrics. Sustain-
able polymer production is a critical area of research and development, especially given
pressing environmental concerns and our reliance on finite resources. The utilization of
renewable resources in polymer production is on the rise.
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Biopolymers extracted from natural sources are materials of the future, and those
include waste or raw (i) polysaccharides: cellulose, chitin/chitosan, starch, and alginate;
(ii) proteins: gelatin, silk fibroin, keratin, and soy protein; (iii) polyhydroxyalkanoates
produced from the microbial fermentation of renewable feedstocks; and (iv) polylactide
derived from plant-based sugars. In addition, current state-of-the-art solutions in polymer
engineering enabled the synthesizing of traditional polymers (polyglycolide, poly (butylene
succinate), polyolefins, poly (ethylene terephthalate), poly (ethylene furanoate), polyamides,
polyurethanes, and polycarbonates) from different renewable sources. Beyond state-of-the-
art investigations that cover the application of novel enzymes and their cocktails in the
pretreatment or pre-processing of waste or novel polymers, researchers should strongly
enhance the development of this technology in the near future.

Notably, monomers like carbon dioxide, terpenes, vegetable oils, and carbohydrates
serve as feedstocks for manufacturing a diverse range of sustainable materials and prod-
ucts. These include elastomers, plastics, hydrogels, flexible electronics, resins, engineering
polymers, and composites. Efficient catalysis plays a crucial role in monomer production,
facilitating selective polymerizations, as well as enabling the recycling or upcycling of
waste materials. Such sustainable polymers present opportunities for applications in both
high-value sectors and basic applications such as packaging [115–124].

Encouragingly, there has been a notable rise in the adoption of such metrics and
tools within the field. These encompass various items, ranging from relatively simplistic
metrics like the E factor or the Toxicity Estimation Software Tool (T.E.S.T., US, EPA), which
offer limited insights but are easily incorporated into existing workflows, to more robust
methodologies like life cycle assessment (LCA). LCA, in particular, stands out for its
thoroughness, although it requires more effort to be implemented effectively.

The decision on which protocol to use, therefore, will depend on the properties of
the sample, the amount of the sample available for analysis, the costs, and all other vital
information that will dictate the steps in the chemical analysis, particularly the ability for
achieving very low limits of detection.

6. Conclusions

In conclusion, the challenges associated with transitioning to green practices in poly-
mer production are multifaceted but hold significant promise for advancing sustainability
in various industries. The development and application of innovative technologies, such as
zero-energy innovations and hydrogen storage, offers avenues for reducing environmental
impacts and promoting renewable energy sources. By leveraging renewable resources
and efficient catalysis, there is potential to produce polymers with improved properties
and reduced carbon footprints. However, addressing the challenges of scalability, cost-
effectiveness, and compatibility with existing infrastructures remains critical for widespread
adoption. Collaboration among researchers, industry stakeholders, and policymakers will
be essential in overcoming these challenges and realizing the full potential of green transi-
tions in polymer production. Through collective efforts and continued innovation, we can
pave the way for a more sustainable future in polymer science and beyond. The goal of
this paper was to pin out some topics that are often underestimated, but that may have a
pivotal role in the future. Zero-waste energy represents a paradigm shift towards a more
sustainable, circular economy where waste is viewed as a valuable resource rather than
a burden. By embracing the principles of waste reduction, reuse, recycling, and energy
recovery, societies can mitigate environmental pollution, reduce their reliance on finite
resources, and mitigate greenhouse gas emissions. However, realizing the full potential
of zero-waste energy requires concerted efforts from policymakers, industry stakeholders,
and civil society to overcome barriers and capitalize on opportunities for innovation and
collaboration. Ultimately, the journey towards a zero-waste energy future is not just a
technological imperative but a moral and ethical imperative to safeguard the planet for
future generations.
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Sustainable polymers offer a viable and environmentally friendly solution for hy-
drogen storage, addressing the critical need for efficient and safe energy carriers in the
transition towards a sustainable future. Despite the existing challenges, ongoing research
and technological advancements are driving progress towards the practical implementa-
tion of polymer-based hydrogen storage systems. By leveraging the tunable properties,
versatility, and sustainability of polymers, researchers can contribute to the development
of innovative storage solutions that enable the adoption of hydrogen as a powerful and
potential clean energy source.
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