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Abstract: This study aims to investigate the effects of different hydroxy-terminated silicones on the
properties of polycarbonate-silicone copolymers (ICS-PC) by introducing flexible and hydrophobic
silicone into isosorbide-based polycarbonate through melt transesterification- polycondensation
method. Through compatibility and transesterification experiments, it is confirmed that the alcohol-
hydroxyl polydimethylsiloxane (a-PDMS) has higher reactivity and silicone conversion than the
phenol-hydroxyl polydimethylsiloxane (p-PDMS), but the conversion does not exceed 81%. Polyether-
modified silicone (PEMS) exhibits better compatibility and higher reactivity, thus resulting in higher
conversion that can reach 86%. Effects of the type and content of silicone on the glass transition
temperature (Tg), optical transparency, saturated water absorption, and mechanical strength of ICS-
PCs were also discussed. It is found that p-PDMS has higher Tg, hydrophobicity, and mechanical
strength with similar silicone content, but the total transmittance does not exceed 60%. In contrast,
the PEMS system exhibits better optical transparency due to its improved compatibility with the PC
matrix, with a total transmittance of up to 73%, Tg exceeding 150 ◦C while maintaining excellent
flexibility and hydrophobicity. These results are helpful to further improve the comprehensive
properties of bio-based polycarbonates.

Keywords: isosorbide; polycarbonate; silicone; conversion; compatibility

1. Introduction

The traditional bisphenol A polycarbonate (BPA-PC) is widely applied in various
fields such as electronics, the automotive industry, protective equipment, and aerospace
due to its excellent comprehensive properties, including impact toughness, heat resis-
tance, and optical transparency [1–3]. However, BPA-PC has been banned from food
packaging, medical equipment, and other fields because its monomer, BPA, derives from
non-renewable fossil resources and may endanger human health [4–6]. Isosorbide (ISB)
is a bio-based material derived from glucose. It can be obtained by enzymatic hydrolysis
of biomass sources such as starch and cellulose into glucose, followed by hydrogenation
and dehydration reactions [7]. ISB is considered a promising bio-based material due to its
rigidity, chirality, and non-toxic, and it is widely used to synthesize bio-based polycarbon-
ate, polyurethane, polyamide, and other functional polymer materials [8–11]. Biobased
polycarbonate can be used to manufacture car body parts, interiors, and other plastic com-
ponents such as door panels, dashboards, and seats. Its lightweight properties contribute to
improving fuel efficiency in cars while reducing dependence on fossil resources. However,
the performance stability and cost-effectiveness of biobased polycarbonate still need to be
further improved [12]. Moreover, the homopolymer of ISB is rigid, highly viscous, and
difficult to process. Therefore, it is generally copolymerized with the flexible monomer
1,4-cyclohexanedimethanol (CHDM) to prepare bio-based polycarbonate (IcC-PC). IcC-PC
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exhibits superior optical transparency, UV resistance, low birefringence, and higher surface
hardness than BPA-PC due to the absence of benzene rings in the main chain [13–17].

However, ISB is prone to absorbing water, and the glass transition temperature (Tg) of
the polymer decreases significantly after copolymerization with flexible monomer CHDM.
Consequently, the IcC-PC system suffers from insufficient heat resistance, water sensitivity,
and poor notch impact toughness, which limits its widespread application [18,19]. Thus,
IcC-PC still requires further modification. Silicone (PDMS) is safe and non-toxic, with low
surface tension and excellent thermal stability. Its flexible silicone main chain is arranged
in a helical structure with hydrophobic methyl groups attached to the side chains, which
can improve the melt flowability and hydrophobicity of the polymer. Importantly, it is
possible to significantly increase Tg while maintaining the great toughness of the polymer
by increasing the content of ISB, reducing the amount of CHDM, and introducing a certain
amount of PDMS [20–23].

Silicone-modified polycarbonates are mainly modified by blending and copolymer-
ization. Zhang et al. [24] directly blended PDMS with BPA-PC, resulting in physically
blended PC/PDMS with island structures whose phase size was uncontrolled. This not
only compromised the mechanical properties and optical transparency of the blend but
also led to surface enrichment of low-surface-energy siloxane. Zhou et al. [25] studied
PDMS modification of BPA-PC through reactive blending, and the size of PDMS phases
decreased significantly from 15~20 µm in physical blends to 0.2~0.9 µm, but still an order
of magnitude larger than copolymer systems (15~25 nm). Therefore, preparing PC-PDMS
copolymers by chemically copolymerizing PDMS with other reactive monomers can ef-
fectively improve the compatibility between PC and PDMS. PC-PDMS copolymers are
typically synthesized by the interfacial polycondensation method [26], but ISB is solu-
ble in water, making it impossible to use the interfacial polycondensation method with
dichloromethane and water as solvents. Accordingly, this study proposes a green, solvent-
free melt transesterification-polycondensation method to synthesize PC-PDMS copolymers.

The key to preparing PC-PDMS copolymers through the melt transesterification-
poly-condensation method is to increase the conversion rate of PDMS. There are three
possible reasons for the low conversion rate of PDMS. Firstly, the differing reactivity of
individual monomers is compounded by the high molecular weight and poor diffusion
ability of PDMS. Secondly, significant differences in solubility parameters between indi-
vidual monomers (δPC = 9.5 cal1/2cm−3/2 vs. δPDMS = 7.3 cal1/2cm−3/2) [27], rendering
them thermodynamically incompatible. Thirdly, PDMS can undergo chain scission un-
der high temperature, vacuum, or strong alkaline catalysis, resulting in the shortening of
siloxane chain length and the residue of cyclic siloxanes [28,29]. Jiyunia et al. [30] used
phenoxy-terminated PDMS, while Annett et al. [31] used BPA-terminated PDMS to balance
the reactivity of each monomer yet observed no significant improvement in conversion
rates. Koenig et al. [32] conducted transesterification reactions using BPA-PC oligomers
and phenol-hydroxyl silicone. They found that the resulting product exhibited a distinct
two-phase system when dissolved in chloroform, indicating that the conversion rate of
PDMS had not increased. Zhou et al. [33] investigated the process of PDMS with different
chain lengths participating in transesterification. They found that as PDMS chain length
increased, the difficulty of miscibility between PDMS and DPC increased. Compared to
PDMS with shorter chains, longer-chain PDMS required a higher critical level of transester-
ification for dissolution in DPC. Thus, screening appropriate silicones and increasing the
compatibility of the reaction system are required to improve the conversion rate of silicones
and enhance the comprehensive performance of copolymers.

To enhance the compatibility of monomers and prepare high-performance polycarbonate-
silicone copolymers (ICS-PC), this study synthesized a polyether-modified silicone (PEMS)
and synthesized copolymers by melt transesterification-polycondensation method. The
compatibility of phenol-hydroxyl polydimethylsiloxane (p-PDMS), alcohol-hydroxyl poly-
dimethylsiloxane (a-PDMS), and PEMS in the polymerization system and their effects on the
transesterification reaction rate and conversion were discussed. Additionally, the thermal
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resistance, optical transmittance, hydrophobicity, and mechanical properties of copolymers
were also examined to provide insights for preparing high-quality polycarbonates.

2. Materials and Methods
2.1. Materials

Isosorbide (ISB; 99.0%), 1,4-cyclohexanedimethanol (CHDM; 99.0%), and diphenyl
carbonate (DPC; 99.0%) were provided by Ningbo Dafeng Jiangning New Materials Co.,
Ltd. (Ningbo, China). Phenol-hydroxyl silicone (p-PDMS; Mn = 2500 g/mol) and alcohol-
hydroxyl silicone (a-PDMS; Mn = 2570 g/mol) were purchased from Anhui Ayota Co.,
Ltd. (Bengbu, China). Polyether silicone (PEMS; Mn = 3500 g/mol) was self-made by the
laboratory. Sodium hydroxide (NaOH, 99%) was purchased from Shanghai Aladdin Bio-
chemical Technology Co., Ltd. (Shanghai, China). Deuterated chloroform (CDCl3; 99.8%)
was purchased from Beijing Brilliant Reagent Co., Ltd. (Beijing, China). Dichloromethane
(CH2Cl2; 99.5%), chloroform (CHCl3; 99.0%), acetonitrile (C2H3N) and absolute ethanol
(CH3CH2OH; 99.7%) were purchased from Shanghai Titan Technology Co., Ltd. (Shang-
hai, China).

2.2. Synthesis of PEMS

PEMS was synthesized by the polymerization of hydrogen-terminated silicone oil
(PHMS) and allyl polyether glycol (APEG) through the hydrosilylation method without the
use of solvents. APEG and PHMS were added to a three-necked flask in a molar ratio of 2.2,
along with a catalyst of H2PtCl6·6H2O with a relative PHMS of 5 ppm. The reaction was
maintained at a stirring speed of 200 to 250 rpm/min and reacted for 5 h at 110 ◦C under
the nitrogen atmosphere. As the hydrosilylation reaction proceeded, the solution gradually
changed from milky white to transparent, finally obtaining colorless and transparent PEMS.

2.3. Experiments on the Kinetics of Transesterification Reactions

Firstly, ISB and CHDM (ISB/CHDM = 90/10), DPC (DPC/Diols = 1.0), and 15 wt%
silicone were added to a 100 mL four-necked flask. The flask was evacuated and refilled
with dry nitrogen gas three times to remove air. Then, heat the oil bath to 180 ◦C, take the
mixed sample as the starting sample, add 2 ppm NaOH catalyst immediately, and start
timing. A small amount of sample was extracted from the reactor at set intervals. Each
sample was sealed and stored in a refrigerator for analysis by SPD-20A high-performance
liquid chromatography (HPLC). The melt transesterification reaction is a second-order
reaction, and initially, only the forward ester exchange reaction between the diol monomer
and DPC occurs. The transesterification reaction rate constant k′ can be represented by

k′t = 1/[A] − 1/[A]0 = [P]/([A]0
2 − [A]0[P]) (1)

2.4. Synthesis of ICS-PC

The molecular structure of the monomers and the polymerization process are illus-
trated in Scheme 1. Initially, DPC, ISB, CHDM, silicone, and NaOH of 2 ppm to diols were
added to a 100 mL three-necked flask. The molar ratio of DPC/diols was set at 1.01, and
the ISB/CHDM molar ratio was set at 90/10. Under the N2 atmosphere, the mixture was
heated to 160 ◦C and then started stirring. After 30 min, the temperature was increased
to 180 ◦C and maintained for 1 h to make the transesterification reach equilibrium. After
completing transesterification, the temperature was increased to 210 ◦C, and the pressure
was reduced to 20 kPa for 30 min. Subsequently, the temperature was further increased to
230 ◦C, and the pressure was reduced to 12 kPa, holding for 20 min. Finally, the temperature
was increased to 250 ◦C, and the pressure was reduced to 4 kPa, maintained for 10 min, then
evacuated to 80 Pa for 10 min. N2 was then introduced into the reaction vessel to maintain
atmospheric pressure for 30 min. The resulting 6~7 g product was dissolved in 100 mL of
CHCl3 and precipitated using 500 mL of anhydrous ethanol. This dissolution-precipitation
process is repeated thrice to remove unreacted silicone oil, other monomers, and oligomeric
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by-products. The precipitated product is concentrated by filtration, then vacuum dried at
80 ◦C for 24 h for structural and performance testing.
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2.5. Preparation of Copolymer Films

Polycarbonate films were prepared by the solvent casting method. Initially, the sam-
ples were dried in an 80 ◦C oven for 12 h to remove moisture and dissolved in CHCl3
to make a solution with a mass fraction of about 5%. After using ultrasonic agitation for
10 min at 20 ◦C to remove bubbles from the solution, they were poured onto a flat dish
and left at room temperature for 24 h to allow most of the solvent to evaporate. Finally, the
samples were placed in a vacuum oven and gradually heated to 50 ◦C, 70 ◦C, and 90 ◦C,
holding each temperature for 12 h to expel any residual solvent. The samples were then
heated above Tg to remove thermal history, yielding PC films with a thickness of about
80 µm, suitable for subsequent performance testing.

2.6. Characterizations
1H-NMR spectroscopic measurements were conducted using an AVANCE 400 NMR

spectrometer (Bruker Corporation, Karlsruhe, Germany). CDCl3 with TMS served as
deuterium solvents.

To determine the viscosity-average molecular weight (Mη) at 25 ± 0.5 ◦C using
a Ubbelohde viscometer, the product was dissolved in CHCl3 to prepare a solution
with a concentration of 0.01 g/mL. The intrinsic viscosity [η] was calculated by the
following formula:

ηsp =
t
t0

− 1 (2)

ηr = t /t0 (3)

[η] =
√

2
(
ηsp − ln ηr

)
/ C (4)

where C is the concentration of the solution, t0 and t are the times when the pure solvent
and the sample solution flow through two scales of the Ubbelohde viscometer, respectively.
ηr is the relative viscosity, and ηsp is the specific viscosity. Mη of the polymer was calculated
using the Mark–Houwink equation:

[η] = KMα
η (5)

where K is 0.0111 mL/g, and α is 0.82 [34].
Color difference (∆C) was measured with an ultraviolet spectrophotometer (UV;

UV1900, Youke Instrument, Shanghai, China). A CHCl3 solution with a concentration of
0.01 g/mL was used, and ∆C was calculated by the following formula:

∆C =

( ∣∣∣∣1
3
− T445

T

∣∣∣∣+ ∣∣∣∣1
3
− T555

T

∣∣∣∣+ ∣∣∣∣1
3
− T600

T

∣∣∣∣ )× 100% (6)

where T600, T555, and T445 represent the transmittance of the solution relative to the pure solvent
at wavelengths of 600, 555, and 445 nm, respectively. Furthermore, T = T600 + T555 + T445.
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With air as the blank reference, test the light transmittance of the copolymer film in
the visible light area (380~780 nm) and calculate the total transmittance Ttotal (%) by the
following formula:

Ttotal (λ) =

∣∣∣∫ 780
380 T(λ) |

780 − 380
(7)

The glass transition temperature (Tg) was measured by DSC (Discovery 25, TA In-
struments, New Castle, DE, USA). The sample was first heated to 220 ◦C at the rate of
30 ◦C/min, stabilized for 2 min to eliminate the thermal history, and then dropped to 20 ◦C
at the same rate. Finally, the temperature is raised to 250 ◦C at the rate of 10 ◦C/min. Tg
was determined as the inflection point of the second heating curve.

The morphological changes of silicone dispersed in the system were characterized by
an MDS-30 optical microscope (Olympus Corporation, Tokyo, Japan). Specifically, 5 wt% of
silicone was added to the reaction system and uniformly dispersed by melting and stirring
at 160 ◦C. We took a drop on the glass slide, gently pressed the sample to flow naturally,
and observed the changes in two-phase morphology using a lens of 40 × 10.

The hydrophobicity of the copolymer films was measured using a contact angle
measuring instrument (JC2000D20, Zhongchen Digital Technology Equipment Co., Ltd.,
Shanghai, China). A 0.2 µL droplet of pure water was dropped onto the surface of the
sample using a micro syringe, and three measurements were taken at different positions on
the same sample to obtain the average value.

The initial weight of the copolymer film was recorded after vacuum drying at 50 ◦C
for 12 h. It was then soaked in water at 80 ◦C, and the surface moisture was wiped off and
weighed at regular intervals. The water absorption rate was calculated based on the change
in mass before and after water absorption.

The mechanical properties of the samples were tested using a universal testing machine
(Instron 3365, Instron Corporation, Boston, MA, USA). The films were cut into strips
with dimensions of 80 × 8 × 0.08 mm3 and tested at room temperature with a tensile
rate of 10 mm/min. Five tests were performed for each sample, and the average value
was calculated.

3. Results and Discussions
3.1. Compatibility Analysis of Silicone with Other Monomers

Scheme 1 shows the molecular structures of all monomers in the reaction system.
Among them, the three silicone lengths are 31 ± 1. Compared with a-PDMS, the number
of oxyethylene units at both ends of PEMS has increased from 1 to 12, aiming to improve
the compatibility of PEMS with ISB and CHDM. The set reaction system is as follows: the
molar ratio of ISB/CHDM was set at 90/10, the molar ratio of DPC to diols was set at
1.01, and p-PDMS, a-PDMS, and PEMS of 5 wt% loading was added respectively. After
melting at 160 ◦C, the reaction system was stirred by magnetic force for 5 min to ensure
uniform mixing. Figure 1a–c shows photos of the appearance of the reaction systems. It
is observed that the p-PDMS, a-PDMS, and PEMS systems exhibit light yellow turbidity,
milky turbidity, and semi-transparency, respectively, indicating that the p-PDMS system
has the worst compatibility and the PEMS system has the best compatibility.

Figure 1d–f shows the dispersion states of the silicones in the molten system at 160 ◦C
observed under a microscope. The dispersed phase size of the p-PDMS system is 10 ± 5 µm,
which is quite uneven; the phase size of a-PDMS is 5 ± 4 µm, and PEMS is more easily
dispersed in the reaction system with a phase size reduced to 2 ± 2 µm. The microscopic
dispersion states are consistent with the appearance results, indicating that the smaller
and more uniform the dispersed phase size of silicone, the better the compatibility of
the reaction system. This could be explained by the fact that PEMS contains polar and
highly surface-active polyether segments, which makes PEMS contact more hydrophilic
monomers such as ISB and CHDM, thus improving the compatibility of the system [35].
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However, PEMS and the system still can not achieve molecular-level miscibility, retaining a
certain phase size because of the lack of catalyst and no transesterification reaction occurred.
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3.2. Effect of Silicones on Transesterification Reaction Rates

Figure 2 shows the concentration change of PhOH and DPC during transesterification
at 180 ◦C in the system with 15 wt% silicone loading when the molar ratio of ISB/CHDM
was set at 90/10 and the molar ratio of DPC/diols was set at 1.0. It can be observed that
the concentration of DPC gradually decreases with the extension of reaction time while
the concentration of PhOH increases and tends to balance. Among them, after 120 min of
transesterification reaction, in the p-PDMS system, the residual amount of unreacted DPC
is more, and the transesterification equilibrium time exceeds 80 min. The a-PDMS system
reaches transesterification equilibrium at about 60 min. In contrast, the transesterification
reaction speed of the PEMS system is significantly accelerated, reaching transesterification
equilibrium at around 40 min, and the residual amount of unreacted DPC is minimal.
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According to Formula (1), the transesterification reaction rate constant k′ can be
obtained from the slope of the straight line in Figure 3. Table 1 lists the relevant data
showing that the k′ of the PEMS system is the largest, indicating that the reactivity of
PEMS is greater than that of a-PDMS and the reactivity of p-PDMS is the poorest. Because
PEMS disperses better in the reaction system in the molten state, making more complete
transesterification reactions at the silicone interface. The reactivity of a-PDMS is higher
than that of p-PDMS, in addition to the slight difference in the size of the dispersed phase;
the larger reason may be that the phenolic hydroxyl group exhibits steric hindrance due
to the benzene ring, inhibiting the nucleophilic substitution reaction of oxygen anions
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with electrophilic groups, thus making the alcohol hydroxyl group more reactive than the
phenolic hydroxyl group [36].
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Table 1. Effect of silicone types on transesterification reaction.

Silicone [PhOH] 1 (×10−6 mol/mL) [DPC] 1 (×10−6 mol/mL) k′

PEMS 2.18 0.08 13.33
a-PDMS 2.05 0.15 10.24
p-PDMS 1.90 0.21 8.00

1 Equilibrium concentration of PhOH and DPC.

3.3. Analysis of Silicone Conversion

In the system where the molar ratio of ISB/CHDM was set at 90/10 and the molar
ratio of DPC/diols was set at 1.01, different mass fractions of silicone were added to
prepare various ICS-PC. Their basic properties are listed in Table 2. Additionally, IcC-PC is
a commercial product with an ISB/CHDM molar ratio of 70/30.

Table 2. Basic properties of ICS-PC.

Sample 1 ISB/CHDM Silicone Feed Ratio 2 (wt%) Mη (kg/mol) Tg (◦C) ∆C (%) W3 (wt%) Conversion 3 (%)

IcC-PC 70/30 / 0 35.1 130 0.10 / /

ICS-PC-0 90/10 / 0 32.8 164 0.11 / /

ICS-PC-1
90/10 p-PDMS

5 31.2 160 0.26 3.8 76.9
ICS-PC-2 10 30.4 158 0.30 7.4 74.0
ICS-PC-3 15 30.0 155 0.35 10.3 68.4

ICS-PC-4
90/10 a-PDMS

5 31.4 158 0.24 4.1 81.0
ICS-PC-5 10 31.3 155 0.27 7.8 78.0
ICS-PC-6 15 30.1 152 0.32 11.4 76.2

ICS-PC-7
90/10 PEMS

5 31.2 151 0.19 4.3 86.4
ICS-PC-8 10 30.1 145 0.22 8.3 83.0
ICS-PC-9 15 29.5 135 0.25 12.2 81.4

1 All samples were prepared by melt polycondensation using a catalyst of 2 ppm NaOH and a DPC/Diols ratio of
1.01; 2 Feeding ratio of silicone; 3 The actual content of silicone and its conversion calculated by Equation (8) and
Equation (9), respectively.

The unreacted silicone monomers and oligomers can be effectively removed through
repeated precipitation and washing three times. The 1H-NMR spectra of ICS-PC containing
PEMS are shown in Figure 4, and the 1H-NMR spectra of copolymers containing p-PDMS
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and a-PDMS are shown in Figures S1 and S2. The block contents (W, wt%) and conversions
(%) of silicones can be calculated using 1H-NMR. They were measured by the following:

W =

74 × Ia+a′
6

74 × Ia+a′
6 + I4 × 172+ I7

4 × 170
× 100% (8)

Conversion =
W
W0

× 100% (9)

where Ix represents the integrated area of the corresponding proton peak in Figure 4. When
x is a+a′, the corresponding peak position is −0.02 to 0.30 ppm, which is the proton peak
of the Si-CH3 side chain in the silicone oxygen chain. Peak b corresponds to the proton
peak of the hydrogen atom on the first Si-CH2 group connected to the terminal silicon atom
observed at around 0.45 to 0.57 ppm. Peaks 7cis observed at 1.29 to 1.43 ppm and 7trans
observed at 0.87 to 1.08 ppm correspond to the two cis-OH and two trans-OH proton peaks
of CHDM, respectively. Peak 4 represents an H proton peak of ISB observed at 4.40 to
4.61 ppm. W0 refers to the initial feed mass ratio of silicone.
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The conversion rates of three types of silicones with different feed ratios, as shown in
Figure 5, indicate a gradual decrease as the amount of silicone feed increases. Moreover,
when the amount of silicone feed is the same, the conversion rate of PEMS can reach
86%, higher than that of a-PDMS, with p-PDMS having the lowest conversion rate. The
analysis of the reasons is as follows: Firstly, PEMS exhibits higher reactivity and stronger
diffusion ability compared to a-PDMS and p-PDMS, making it more easily dispersed in
the system to participate in reactions. Secondly, due to the polar polyether segments in
PEMS, it possesses good water solubility and surface activity, thus having better solubility
with hydrophilic ISB and CHDM, increasing system compatibility. Additionally, in the
final polycondensation stage, silicone undergoes chain scission under high temperature,
vacuum, or strong alkaline catalysis, resulting in the shortening of siloxane chain lengths
and the residue of cyclic siloxanes [28,29], which may be the reason why PEMS has trouble
reaching conversion rates above 90%.



Polymers 2024, 16, 1318 9 of 14

Polymers 2024, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. 1H-NMR spectra of PEMS and ICS-PC containing PEMS. 

The conversion rates of three types of silicones with different feed ratios, as shown in 
Figure 5, indicate a gradual decrease as the amount of silicone feed increases. Moreover, 
when the amount of silicone feed is the same, the conversion rate of PEMS can reach 86%, 
higher than that of a-PDMS, with p-PDMS having the lowest conversion rate. The analysis 
of the reasons is as follows: Firstly, PEMS exhibits higher reactivity and stronger diffusion 
ability compared to a-PDMS and p-PDMS, making it more easily dispersed in the system 
to participate in reactions. Secondly, due to the polar polyether segments in PEMS, it pos-
sesses good water solubility and surface activity, thus having better solubility with hydro-
philic ISB and CHDM, increasing system compatibility. Additionally, in the final polycon-
densation stage, silicone undergoes chain scission under high temperature, vacuum, or 
strong alkaline catalysis, resulting in the shortening of siloxane chain lengths and the res-
idue of cyclic siloxanes [28,29], which may be the reason why PEMS has trouble reaching 
conversion rates above 90%. 

 
Figure 5. Feed ratio dependence of the silicone conversion. 

3.4. Physical Property Analysis of ICS-PC 
3.4.1. Glass Transition Temperature (Tg) 

Because of the excellent flexibility of the main chain structure of siloxane, it can en-
hance the segmental mobility of copolymers and reduce the Tg of copolymers. Figure 6 
shows the DSC spectra of ICS-PCs and the Tg variation curves. The Tg of ICS-PC is higher 
than that of IcC-PC with the ISB/CHDM molar ratio of 70/30 because the rigid ISB content 

Figure 5. Feed ratio dependence of the silicone conversion.

3.4. Physical Property Analysis of ICS-PC
3.4.1. Glass Transition Temperature (Tg)

Because of the excellent flexibility of the main chain structure of siloxane, it can
enhance the segmental mobility of copolymers and reduce the Tg of copolymers. Figure 6
shows the DSC spectra of ICS-PCs and the Tg variation curves. The Tg of ICS-PC is higher
than that of IcC-PC with the ISB/CHDM molar ratio of 70/30 because the rigid ISB content
increases to 90% in the ICS-PC system. And with the increase in flexible silicone content,
the Tg decreases. Furthermore, the Tg of the a-PDMS system is lower than that of the
p-PDMS system at the similar silicone content, which may be related to the existence of two
rigid phenolic hydroxyl groups in p-PDMS monomer, or it may stem from differences in
silicone phase size between the two systems. In particular, the Tg of PEMS system decreases
significantly with the increase of silicone content, which may be attributed not only to the
addition of low Tg polyether segments but also to the reduction of PEMS phase size due to
the compatibilization of polyether segments, leading to better flexibility. When the PEMS
content is 4.3 wt%, the Tg of copolymer is maintained at 151 ◦C.
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3.4.2. Optical Characterization

Polycarbonate is an optically transparent engineering plastic, but the copolymer
exhibits microphase separation after the addition of silicone, resulting in a decrease in light
transmittance. Figure 7 shows the photos of various ICS-PC and IcC-PC film samples with
thicknesses of 80 µm, indicating differences in optical transparency among these samples.
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Figure 7. Photos of IcC-PC and ICS-PC films with different silicones and contents. (Place the film on
a 1 cm platform and compare the transparency of different films based on the clarity of the icons on
the desktop.).

Figure 8 shows the transmittance curves of IcC-PC and ICS-PC films in the visible light
region. It is observed that the total transmittance of commercially available IcC-PC samples
is 92%, but the total transmittance of ICS-PC0 synthesized in this study with ISB/CHDM
of 90/10 is 87%, attributed to yellowing of the system due to the lack of antioxidants and
other additives during the pilot reaction process at high temperatures. The transmittance
of ICS-PC films with silicone is lower than that of ICS-PC0 and increases with the decrease
in silicone content. However, the total transmittance of both the a-PDMS and p-PDMS
systems does not exceed 63%. In contrast, the transmittance of the PEMS system is higher,
with a total transmittance of 72% for ICS-PC-7. The main reason is that the PEMS system
exhibits better compatibility during the reaction, with smaller and more uniform dispersed
phase sizes, resulting in smaller phase sizes of PEMS in the copolymer and, thus, higher
transparency. It is also possible that the refractive index (RI) of PEMS is relatively high,
closer to the refractive index of the PC matrix (RIPC = 1.586, RIp-PDMS = 1.398, RIa-PDMS
= 1.407, RIPEMS = 1.434) [37], thus having a smaller impact on the transparency of the
film. Therefore, the PEMS system with higher transmittance provides a new direction for
preparing copolymers with high transparency and excellent comprehensive properties.
Furthermore, the addition of silicone can hopefully decrease the surface wettability of the
copolymer, thus reducing contact with the external environment, prolonging its service life,
and enhancing durability.
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3.4.3. Hydrophobicity and Water Absorption

Introducing hydrophobic silicone into PC can reduce the surface energy of the polymer
film, thus decreasing its hydrophilicity. Figure 9 shows the water contact angle test results
of ICS-PC films with different silicone contents, indicating that as the silicone content
increases, the hydrophobic structural units increase, leading to an increase in the water
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contact angle of the copolymer films. The reason is that compared to the surface tension of
PC, which is 40~60 mN/m and water, which is 72 mN/m, the surface tension of silicone is
only 20~25 mN/m [38]. Therefore, siloxane segments are prone to aggregate on the film
surface due to their low surface tension, enhancing the hydrophobicity of films. Different
types of silicone have varying effects on the hydrophobic performance of copolymers. For
the a-PDMS system, p-PDMS, containing a steric hindrance phenyl ring structure, acts
as a shield, protecting the internal hydrophilic segments from the influence of external
humid environments, resulting in higher water contact angles for its copolymer films [39].
When the p-PDMS content is 3.8 wt%, the water contact angle is 104.6◦. At similar content,
influenced by the hydrophilic polyether segments in the molecular structure, the water
contact angle of the PEMS system is 102◦, lower than that of the a-PDMS and p-PDMS
systems. Even so, the hydrophobicity of the PEMS system is significantly higher than that
of IcC-PC. Figure 8 also provides the saturated water absorption of various samples. It is
found that the water absorption of ICS-PC is lower than that of IcC-PC due to the improved
hydrophobicity of copolymers. Although the water absorption of the PEMS system is
relatively higher compared to the a-PDMS and p-PDMS systems, the water absorption of
ICS-PC-7 is 1.44%, significantly lower than that of the IcC-PC, which is 2%.
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3.4.4. Mechanical Properties

Figure 10 shows the stress-strain curves of various ICS-PCs and their yield strength
and elongation at break. Compared to IcC-PC with the ISB/CHDM molar ratio of 70/30,
ICS-PC0 has the ISB/CHDM molar ratio of 90/10, where the increased rigid ISB content
significantly enhances mechanical strength but decreases elongation at break, making the
material brittle. As the silicone content increases, the yield strength of samples gradually
decreases while the elongation at break gradually increases. However, when the silicone
content exceeds 10 wt%, the elongation at break decreases instead. One reason is that when
the silicone content is excessive, partial enrichment of siloxanes leads to an increase in their
phase size, resulting in more pronounced microphase separation within the copolymer
system. This not only significantly reduces the transparency of the copolymer but also
compromises its mechanical properties [40]. Another reason is that the excessive amount
of silicone causes the accumulation of siloxane at the surface, disrupting the integrity
of the film formation from the solution. It can be seen from the appearance of the film
that it becomes turbid and whitish, leading to stress concentration, thereby reducing the
strength and toughness of the copolymer. Among the three systems, the p-PDMS system
exhibits higher mechanical strength, while the PEMS system can play a more flexible
role in the system due to the existence of its flexible polyether chain segments, resulting
in lower mechanical strength and higher elongation at break for the copolymer. For
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example, ICS-PC-7 has a yield strength of 74 MPa and an elongation at a break of 25% with
good toughness.
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4. Conclusions

This study investigates the effects of different hydroxy-terminated silicones on the
properties of polycarbonate-silicone copolymers (ICS-PC) by introducing flexible hy-
drophobic monomeric organosilicon into isosorbide-based polycarbonate through melt
transesterification-polycondensation. Through compatibility and transesterification experi-
ments, it is confirmed that compared to phenyl-hydroxy silicone (p-PDMS) and alcohol-
hydroxy silicone (a-PDMS), polyether-modified silicone (PEMS) exhibits the highest compat-
ibility and reactivity with other monomers due to the presence of polar polyether segments,
achieving a conversion rate of up to 86%. Furthermore, under similar silicone contents, the
p-PDMS system demonstrates higher Tg, hydrophobicity, and mechanical strength but with
a total transmittance of less than 60%, indicating poor optical transparency. In contrast, the
PEMS system shows higher optical transparency due to its excellent compatibility with
the PC matrix and higher refractive index, achieving a total transmittance of up to 73%,
Tg exceeding 150 ◦C, as well as excellent toughness and hydrophobicity. These results
can serve as a reference for the preparation of high-conversion and high-quality bio-based
polycarbonate-silicone copolymers through the melt polycondensation method.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym16101318/s1. Figure S1: 1H-NMR spectra of p-PDMS and
ICS-PC containing p-PDMS. Figure S2: 1H-NMR spectra of a-PDMS and ICS-PC containing a-PDMS.
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