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Abstract: This work describes the preparation of a molecularly imprinted polymer (MIP) platform
on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using
a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR)
techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and confocal microscopy.
The optimal pH and adsorption time conditions were determined. The adsorption capacity of
the MIP-PET plates with RAFT treatment (0.057 mg cm−2) was higher than that of the untreated
plates (0.028 mg cm−2). The kinetic study revealed a pseudo-first-order model with intraparticle
diffusion, while the isotherm study indicated a fit for the Freundlich model. Additionally, the MIP-
PET demonstrated durability by maintaining its adsorption capacity over five cycles of reuse without
significant loss. To quantify tartrazine, images were captured using a smartphone, and the RGB
values were obtained using the ImageJ® free program. A partial least squares regression (PLS) was
performed, obtaining a linear range of 0 to 7 mg L−1 of tartrazine. The accuracy of the method
was 99.4% (4.97 ± 0.74 mg L−1) for 10 samples of 5 mg L−1. The concentration of tartrazine was
determined in two local soft drinks (14.1 mg L−1 and 16.5 mg L−1), with results comparable to the
UV–visible spectrophotometric method.

Keywords: tartrazine; PET; RAFT polymerization; smartphone; digital image colorimetry (DIC)

1. Introduction

Tartrazine is a yellow dye used in beverages, juices, sweets, and various food products.
However, some studies suggest that its use may lead to health issues such as headaches,
neurotoxicity, genotoxicity, and carcinogenicity [1]. The daily intake of tartrazine in humans
ranges from 0 to 7.5 mg kg−1 of body weight (reported by the Joint FAO/WHO Expert
Committee on Food Additives). The mutagenic, carcinogenic, and toxic effects of azo dyes
like tartrazine may result from the direct effect of the dye on the reductive biotransformation
of the azo bond during its metabolism [2].

Multiple techniques have been developed for the determination of tartrazine, such as
spectrophotometry [3], thin-layer chromatography, voltammetry [4], and high-precision

Polymers 2024, 16, 1325. https://doi.org/10.3390/polym16101325 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym16101325
https://doi.org/10.3390/polym16101325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7491-3222
https://orcid.org/0000-0002-5553-5278
https://orcid.org/0000-0002-8420-497X
https://orcid.org/0000-0002-6173-7888
https://doi.org/10.3390/polym16101325
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym16101325?type=check_update&version=1


Polymers 2024, 16, 1325 2 of 29

liquid chromatography [5,6]. A summary of other techniques for the determination of
tartrazine in food can be found in Rovina’s work [7]. These techniques are effective but have
the drawback of being expensive, employing complicated sample preparation procedures,
as well as requiring extended analysis time and large amounts of toxic solvents.

Molecularly imprinted polymers (MIPs) are synthetic analogs of natural antibody
and antigen biological systems. As such, they operate as a “lock and key” mechanism to
selectively bind the analyte with which they were imprinted during synthesis. MIPs offer
the potential specificity and selectivity of biological receptors with the explicit advantages
of durability under environmental conditions and low cost [8]. To achieve high binding
capacity and efficiency, MIPs must possess a homogeneous distribution of recognition
cavities [9].

The selected polymerization method plays a crucial role in providing uniformity to
the MIP structure. Conventional free radical polymerization (FRP) methods result in a het-
erogeneous distribution of binding sites and low affinity and imprinting efficiency, as well
as irregular internal morphology and porosity in the MIP structure [10]. Instead, reversible
deactivation radical polymerization (RDRP) techniques increase structural uniformity
and enhance binding properties [11]. Among these techniques is reversible addition-
fragmentation chain transfer (RAFT) polymerization, which has been widely used for the
preparation of tailored MIPs under controlled conditions, resulting in polymeric structures
with more uniform cavities than conventional techniques [12].

Image analysis applied to chemical analysis is quite recent. Digital images of samples,
if processed correctly, can contain valuable information about their composition. Color
evaluation is highly beneficial in digital image analysis [13]. The use of smartphones
combined with digital image colorimetry (DIC) sensors or devices can be used as detectors
or quantifiers of colored substances, as the digital images from smartphone cameras,
combined with suitable image processing applications and software, can establish the
relationship between color intensity and the quantity of the colored substance. To establish
the correlation between the digital image signal and the analyte concentration, two steps
will be undertaken. Firstly, color quantification will be performed using image analysis
software such as Adobe Photoshop CC (v.21), Matlab 9.10, ImageJ (1.53k 6 July 2021),
and Color Pilot 4.51, customized by manufacturers. The second step involves studying
the correlation between the chromatic value or its function and the analyte concentration
through appropriate mathematical treatment. Within a specific concentration range, the
chromaticity of the colored substance is related linearly or nonlinearly to its concentration,
enabling the analysis of the sample after establishing a calibration curve with the original
color values [14] using chemometric methods [15] or machine learning techniques [16].
Overall, these applications using smartphones can simplify traditional analysis methods,
resulting in fast and user-friendly technologies [17]. This research introduces an innovative
material for conducting fast, cost-effective, and user-friendly analyses utilizing molecularly
imprinted polymers. The purpose of using the smartphone is not to replace the chemical
information provided by other instrumental techniques, such as spectroscopic techniques,
but rather to take advantage of the fact that a high-resolution photograph taken with a
smartphone camera is more economical and convenient. The wide availability of digital
images offers current opportunities for the development of rapid and low-cost digital image
analysis techniques on smartphones for both qualitative and quantitative analyses.

The aim of this study is to develop a platform based on MIP and mediated by RAFT
for digital image colorimetry (DIC) using smartphones, with the capability to quantify
tartrazine in carbonated beverages. An MIP-PET device mediated with RAFT reagent
will be obtained, representing an innovation in tartrazine adsorption. Additionally, a DIC
methodology using smartphones will be developed through a chemometric calibration
approach, thereby establishing the foundation for the application of analyzing other sub-
stances generating color in the MIP, besides applying other mathematical and/or artificial
intelligence methods.
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2. Experimental Section
2.1. Chemical and Solutions

All reagents used were of analytical grade. Solutions were prepared with ultrapure
water (18 MΩ at 25 ◦C). Tartrazine (TZ), N,N′-methylenebisacrylamide (NMBA), acrylamide
(AA), potassium persulfate (KPS), hydrogen peroxide, and benzophenone were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Cumyl dithiobenzoate was used as a RAFT
reagent and purchased from Sigma-Aldrich. 1,4-dioxane was purchased from Supelco, and
ammonia solution (23–28%) and hydrochloric acid (33%) were purchased from Merck. The
dyes used in the selectivity study, Basic Red 46, Methyl Green, Sunset Yellow, and Yellow
HE3G, were acquired from Sigma-Aldrich.

2.2. Preparation of the MIP-PET Platform
2.2.1. Activation of PET Plates

In the first step, PET plates were activated following the methodology of Kaymaz [18]
of PET plates were obtained and cut into 2 cm × 2 cm × 0.6 cm sheets. Subsequently, the
plates were washed with a methanol/water (50:50) mixture for 30 min and air-dried. In
the hydrolysis stage, the plates were immersed in 2 mol L−1 NaOH at 70 ◦C for 90 min,
then submerged in a solution of acetic acid 50% at 70 ◦C for 15 min. Following this, the
plates were washed with distilled water and dried in a vacuum. The PET plates underwent
an oxidation process being immersed in 0.6 mol L−1 H2O2 for 3 h under UV radiation
(LED 365 nm, 75 W) at 10 cm from the plates. The solution was adjusted to pH 3 with
0.1 mol L−1 HCl.

Next, the PET plates were submerged in a 10% benzophenone solution in dioxane,
subjected to ultrasound for 10 min, and then UV radiation for 60 min at 10 cm distance
from the PET plates. Afterward, the plates were removed, immersed in dioxane for 5 min,
and immediately transferred to the reaction flask for polymerization.

2.2.2. Polymerization of MIP on PET Plates (MIP-PET)

A procedure adapted from a previously documented MIP synthesis [15] was employed.
The polymerization process began by mixing 0.1 mmol of TZ with 0.2 mmol of AA in 40 mL
of water and stirring for 2 h. Subsequently, nitrogen bubbled for 10 min, followed by the
addition of 10 mmol of N,N′-methylenebisacrylamide, 1 mL of the RAFT reagent dissolved
in ethanol (2 mg mL−1), and 1 mL of potassium persulfate in water (1 mg mL−1). Nitrogen
bubbling was repeated for 10 min, the PET plates treated with benzophenone were added,
and the reaction flask sealed the nitrogen atmosphere. The mixture was stirred and heated
to 70 ◦C, allowing polymerization to proceed for 3 h.

In addition, the reaction flask was uncovered and allowed to cool to room temperature.
The MIP-PET was washed with distilled water and placed in a flask with a 20% ammonia
washing solution, subjected to ultrasound for 10 min at 15 ◦C. The solution was then
changed, and the washing process with 20% ammonia continued under agitation at 200 rpm
at room temperature for 24 h. Finally, the samples were washed with distilled water and
dried under vacuum. Finally, the control material, NIP-PET plates, was prepared following
the same procedure but without the addition of tartrazine.

2.2.3. Instrumentation

The absorbance measurements of tartrazine solutions were performed using a Shi-
madzu (Kyoto, Japan) UV-1800 UV–visible spectrophotometer. Spectra were obtained in
the range of 200 to 600 nm.

Infrared spectra were obtained in attenuated total reflectance (ATR) mode using a
Shimadzu® model IRPrestige 21 FTIR spectrophotometer in the range of 400 to 4000 cm−1.
Spectra were acquired through 20 scans with a resolution of 4 cm−1.

Chemical analysis of the surface of the PET samples was carried out using X-ray
photoelectron spectroscopy (XPS) with a conventional XPS spectrometer (ScientaOmi-
cron ESCA+) equipped with a high-performance hemispherical analyzer (EAC2000) with
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128 channels and monochromatic Al Kα radiation (hν = 1486.6 eV) as the excitation source.
The operating pressure in the ultra-high vacuum (UHV) chamber during the analysis was
10–9 Pa. High-resolution XPS spectra were recorded at a constant pass energy of 30 eV with
0.05 eV per step. An electron flood gun (CN10) was used as a charge neutralizer.

To evaluate the surface roughness during PET treatment and the thickness of the MIP
deposited on the PET, a confocal laser scanning microscope (LEXT OLS 4000) controlled
by Olympus 1.3.5 software was used. Scanning electron microscopy (SEM) images were
recorded using a Zeiss EVO MA 10 (Dublin, CA, USA).

The surface wettability of clean, oxidized, and benzophenone-immobilized PET sur-
faces was measured at room temperature using an optical contact angle apparatus (Data-
physics, Germany) with an attached camera and SCA20.2.0 software. Images between the
substrate and the distilled water droplet were obtained using 7 µL of water.

2.2.4. Adsorption Test

The MIP-PET plates, cut into 1 cm × 1 cm pieces, were placed in 10 mL of tartrazine
solution at pH 3.0 at the fixed concentration. The system was shaken for up to 2 h on an
orbital shaker at 200 rpm, and the absorbance of the final solution was measured at 427 nm.
The amount of adsorbed tartrazine was determined using a calibration curve. The removal
percentage was calculated according to Equation (1):

Removal (%) =
(Co − Ce)

Ce
× 100 (1)

The adsorption capacity Q was calculated using Equation (2):

Q
( mg

cm2

)
= (Co − Ce)V (2)

where Q (mg cm−2) is the experimental adsorption amount on the 1 cm × 1 cm plate, Co
(mg L−1) is the initial analyte concentration, Ce (mg L−1) is the analyte concentration at
equilibrium, and V is the volume of the solution in liters.

2.2.5. Image Capture with RadesPhone Device

RadesPhone was used, a device previously reported by our research group [15],
for image capture. Moreover, 1 cm2 MIP–PET or NIP–PET plates were submerged in a
tartrazine solution at pH 3.0 and agitated on an orbital shaker for 2 h. Subsequently, the
plates were washed and vacuum-dried. For image capture, the plates were placed on
the RadesPhone and a Samsung S20 FE smartphone model SM–G780F, with a 12 MP rear
camera, was positioned 15 cm from the plate and at a 90◦ angle to the surface normal.
Images were recorded in JPG format with a resolution of 1816 × 4032 pixels.

2.2.6. Digital Image Colorimetry

The color intensity measurement on the MIP-PET plates exposed to the tartrazine
solutions is performed by extracting the RGB color values from the images at a size of
16 × 16 pixels using ImageJ 1.53k software. These colors were then converted into other
color channels, such as HSV and CMYK, using Equations (3) and (4) [19], which have been
reported for use in other studies [13,15].

C = 1 − R
255

M = 1 − G
255

Y = 1 − B
255

K = min(C, M, Y)

 (3)
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V = MAX(R, G, B)

S =

{
0 i f V = 0

1 − MIN
V otherwise

}
unde f ined, i f MAX = MIN

H =


60◦ × G−B

MAX−MIN + 0◦, i f MAX − R and G ≥ B
60◦ × G−B

MAX−MIN + 360◦, i f MAX − R and G < B
60◦ × B−R

MAX−MIN + 120◦, i f MAX = G
60◦ × R−G

MAX−MIN + 240◦, i f MAX = B


(4)

The data matrix of RGB, CMYK, and HSV color channels were correlated with the
concentrations of tartrazine exposed to the MIP-PET plates. The color values were standard-
ized, and a multivariate PLS calibration was performed, evaluating the range of working
tartrazine concentrations, the limit of quantification, and the limit of detection.

3. Results and Discussion
3.1. Synthesis of MIP-PET and NIP-PET

The process of obtaining MIP-PET involved adapting the procedure developed by
Kaymaz et al. [18] to obtain tartrazine MIP films on PET plates. This process consists of
four stages: hydrolysis, oxidation, benzophenone immobilization, and polymerization.

The polymer grafting process onto PET occurs when the latter is treated with ben-
zophenone [20]. Korolkov reported that oxidized surfaces of PET containing carboxyl
groups adsorb a higher amount of benzophenone compared to non-oxidized surfaces. The
proposed reaction for hydrolysis and oxidation is shown in Figure 1 [21].
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Figure 1. Hydrolysis procedure and oxidation of PET.

The benzophenone adsorbed by the carboxyl groups of the oxidized PET plate and
exposed to UV radiation reaches a triplet state, removing a hydrogen atom from the C–H
groups of PET, forming radicals on the surface (Figure 2) [22,23].
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The semi-pinacol radicals formed after the scission of the benzophenone attached to
the PET surface are not prone to initiate polymerization [22]; thus, KPS is crucial for the
polymerization initiation, along with the CDB for the RAFT process. The graft polymeriza-
tion process occurs with the radicals of PET (Figure 3).
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3.2. Optimization of the Synthesis

In this study, an investigation and optimization of various parameters involved in the
synthesis of MIP-PET were conducted with the aim of maximizing the amount of adsorbed
tartrazine. The quantity of adsorbed tartrazine was quantified by measuring the absorbance
of solutions at a wavelength of 427 nm. The parameters evaluated in the preparation of
MIP-PET included the molar ratio between the monomers and the RAFT reagent, the ratio
between the potassium persulfate as initiator and the cumyl dithiobenzoate RAFT reagent,
and the conditions for washing the MIP.

The initial MIP-PET plates were prepared with a TZ:AA:NMBA molar ratio of 1:2:100.
This selection was made with the aim of obtaining an MIP with low residual coloration after
washing, a prerequisite for subsequent color analysis tests with the smartphone. Initial
adsorption tests of MIP-PET were carried out with tartrazine solutions at pH 3 and a contact
time of 1 h. The quantity of adsorbed tartrazine was determined spectrophotometrically at
427 nm, using the equation to calculate Q.

Different solvents and conditions for the removal of tartrazine from MIP-PET were
investigated. The use of water at room temperature and at 70 ◦C, as reported by Arabzadeh
et al. [23], was not suitable for our work, as the MIP retained a yellow color and showed
low adsorption capacity. Tartrazine extraction with 20% ammonia has been employed in
previous research [15,24]. This method was selected as the most suitable, using a washing
protocol consisting of 15 min of treatment with 20% ammonia solution under ultrasound
and then an additional 24 h of agitation.

3.2.1. Effect of the Oxidation Time

The PET plates undergo three preliminary steps before the MIP grafting process. One
of these steps is the oxidation of PET with hydrogen peroxide (H2O2) and ultraviolet
light. This step is crucial for the subsequent immobilization of benzophenone, as reported
by Korolkov et al. [21]. An analysis of the oxidation time was conducted to adapt the
procedure to the UV lamp equipment available in our laboratory. Figure 4 illustrates the
results of the influence of oxidation time on the adsorption capacity of MIP-PET.

Kaymaz [18] mentions a 5 h oxidation time in their study. In this work, we also
evaluated an oxidation time of 3 h. As observed in Figure 4, the MIP-PET plates prepared
with a 3 h oxidation time exhibit a higher adsorption capacity (Q) than the plates oxidized
for 5 h. The discrepancy with Kaymaz’s findings could be attributed to the difference in
the intensity of the UV light source used in each study. Kaymaz does not specify the type
of lamp used, whereas in our case, we used an LED lamp with 365 nm and 75 W. Higher
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UV light intensity may degrade the surface of the PET, which could affect the efficiency of
polymer fixation on the plate in the long term.

Polymers 2024, 16, x FOR PEER REVIEW 7 of 32 
 

 

adsorbed tartrazine. The quantity of adsorbed tartrazine was quantified by measuring the 
absorbance of solutions at a wavelength of 427 nm. The parameters evaluated in the 
preparation of MIP-PET included the molar ratio between the monomers and the RAFT 
reagent, the ratio between the potassium persulfate as initiator and the cumyl 
dithiobenzoate RAFT reagent, and the conditions for washing the MIP. 

The initial MIP-PET plates were prepared with a TZ:AA:NMBA molar ratio of 
1:2:100. This selection was made with the aim of obtaining an MIP with low residual 
coloration after washing, a prerequisite for subsequent color analysis tests with the 
smartphone. Initial adsorption tests of MIP-PET were carried out with tartrazine solutions 
at pH 3 and a contact time of 1 h. The quantity of adsorbed tartrazine was determined 
spectrophotometrically at 427 nm, using the equation to calculate Q. 

Different solvents and conditions for the removal of tartrazine from MIP-PET were 
investigated. The use of water at room temperature and at 70 °C, as reported by 
Arabzadeh et al. [23], was not suitable for our work, as the MIP retained a yellow color 
and showed low adsorption capacity. Tartrazine extraction with 20% ammonia has been 
employed in previous research [15,24]. This method was selected as the most suitable, 
using a washing protocol consisting of 15 min of treatment with 20% ammonia solution 
under ultrasound and then an additional 24 h of agitation. 

3.2.1. Effect of the Oxidation Time 
The PET plates undergo three preliminary steps before the MIP grafting process. One 

of these steps is the oxidation of PET with hydrogen peroxide (H2O2) and ultraviolet light. 
This step is crucial for the subsequent immobilization of benzophenone, as reported by 
Korolkov et al. [21]. An analysis of the oxidation time was conducted to adapt the 
procedure to the UV lamp equipment available in our laboratory. Figure 4 illustrates the 
results of the influence of oxidation time on the adsorption capacity of MIP-PET. 

NIP 3H MIP 3H NIP 5H MIP 5H
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Q
 (m

g 
cm

-2
)

Time (h)
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Figure 4 also shows that the NIP-PET absorbs more than the MIP-PET. This is because
the RAFT reagent is not used in the preparation of NIP-PET.

3.2.2. Molar Ratio of Monomers

As mentioned earlier, the TZ:AC:NMBA molar ratio of 1:2:100 was used because it
presented a less intense tartrazine hue after washing, possibly due to the higher amount of
NMBA in the formulation. The ratio between the sum of monomers (AA + NMBA) and the
RAFT reagent influenced the degree of polymerization. Table 1 shows the Q values for the
various proportions of monomers and RAFT reagents.

Table 1. Values of Q obtained according to the ratio of MF + ME/RAFT. MIP-PET plate of 1 cm × 1 cm;
10 mL of 10 mg L−1 tartrazine at pH 3 (n = 3).

MIP-PET Ratio
(MF + ME)/RAFT

Q
(mg cm−2)

MIP1 1330 0.029 ± 0.002
MIP2 560 0.025 ± 0.001
MIP3 280 0.023 ± 0.003

Table 1 shows that the MIP–PET–1 ratio exhibits the highest adsorption capacity,
and in subsequent syntheses, this proportion was used. In the synthesis process of MIP
mediated by the RAFT reagent, there are equilibrium stages that reveal the influence of
the initial quantities of monomers (acrylamide and N,N′-methylene–bis-acrylamide), the
radical initiator (KPS), and the RAFT reagent itself on obtaining a more homogeneous
surface of the MIP. According to Abdollahi et al. [25], the monomer conversion rate is
subject to the initiator concentration, the resulting polymerization degree from the sum
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of the monomers and the RAFT reagent, as well as the dispersion of the polymerization
reaction rate.

3.2.3. Molar Ratio of RAFT/KPS

The RAFT/KPS ratio influences the degree of polymerization, which, in turn, deter-
mines the homogeneity of the MIP surface. Three RAFT/KPS ratios were evaluated: 2/1,
5/1, and 10/1 while maintaining the quantity of RAFT determined in the previous step. As
observed in Figure 5, the MIP-PET prepared with a 2/1 molar ratio of RAFT/KPS = 2 exhib-
ited the highest adsorption capacity. Furthermore, this sample of MIP-PET also shows the
greatest difference in adsorption between the MIP and the NIP. Therefore, the RAFT/KPS
ratio of 2/1 was used in all subsequent syntheses.
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The molar ratio of RAFT to KPS is crucial for optimal control over the growth of
polymer chains and, thus, the homogeneity of the MIP surface [26]. The initiator initiates
polymerization of the monomers, while the RAFT agent controls the growth of the polymer
chain through the reversibility of the reactions it participates in.

3.2.4. Effect of the RAFT Treatment

In this study, the impact of treatment with the RAFT agent on the adsorption capacity
of an MIP-PET for tartrazine was evaluated. MIP-PET plates were prepared with and
without RAFT during the polymerization stage.

Adsorption tests with 10 mg cm−2 tartrazine at pH 3 showed a higher adsorption ca-
pacity (Q) in the plates with RAFT (Q = 0.057 ± 0.004 mg cm−2) compared to those without
RAFT (Q = 0.028 ± 0.003 mg cm−2). This result is attributed to the control provided by
RAFT-mediated polymerization over the polymer architecture, which facilitates tartrazine
access to binding sites [27].

3.3. Characterization of PET and MIP-PET

The instrumental techniques employed in this study will provide information regard-
ing the modification of PET during hydrolysis and oxidation treatments. To achieve this,
measurements of contact angle and XPS spectroscopy will be utilized. To confirm the
formation of MIP on the PET surface, techniques such as FTIR spectroscopy, confocal mi-
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croscopy, SEM, and XPS spectroscopy will be employed. By employing these instrumental
techniques for the characterization of MIP-PET plates, the adsorption of tartrazine onto this
device can be elucidated, which, in turn, will be related to the amount of color captured by
the smartphone camera, enabling digital image colorimetry analysis (DIC).

The ATR-FTIR spectra of clean PET and MIP grafted onto the PET surface are presented
in Figure 6. In the graph, the formation of both MIP and NIP on the PET surface can be
observed due to the presence of two characteristic peaks of the MIP. At 3300 cm−1, the
vibration peak corresponding to the NH2 group is observed, while at 1652 cm−1, the
vibration peak related to the C=O bond is highlighted, both corresponding to the functional
groups of the crosslinker N,N′-methylenebisacrylamide. Additionally, in all three spectra,
the peak at 1725 cm−1 corresponding to the C=O bond present in the PET ester is identified.
Infrared radiation can penetrate a few micrometers in the case of polymers, allowing for
the detection of this peak in the MIP.
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Figure 7 shows the ATR–FTIR spectrum of the MIP grafted onto the PET plate with and
without RAFT mediation (MIP–PET C/RAFT and MIP–PET S/RAFT), along with the MIP
obtained by precipitation in powder form (MIP–POWDER) [15]. All three spectra exhibit a
peak at 3300 cm−1 attributed to the N–H stretching vibration, confirming the formation of
the MIP. At 1725 cm−1, the C=O peak of PET is observed in the MIP–PET samples but not
in MIP–POWDER, indicating the formation of MIP on PET. The PET peaks are attributed to
the penetration of IR radiation into the MIP surface. Several peaks with different intensities
are observed between MIP–PET C/RAFT and MIP–PET S/RAFT, suggesting differences in
the thickness of the MIP formed on PET [14]. MIP–PET C/RAFT exhibits peaks with lower
intensities, such as the band at 3300 cm−1 corresponding to the N–H peak, as well as peaks
at 1652 cm−1 and 1546 cm−1 corresponding to C=O and N–H, respectively.

The measurement of the contact angle on the PET surface at each treatment stage
provides information about the surface changes induced by chemical treatment. These
changes affect the wettability properties and the interaction between the PET surface and
the liquids with which it comes into contact. Figure 8 shows the variation of the contact
angles of the PET plates at different treatment stages. Figure 8A shows a contact angle of
92◦ for the clean PET plate, indicating low hydrophilicity. The oxidation process of PET
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transforms the ester bonds of the main chain into new free hydroxyl and carboxyl groups
on the polymer surface (see Figure 1). This increases the hydrophilicity of the PET substrate
and reduces the contact angle to 66◦ (Figure 8B). The immobilization of benzophenone
slightly decreases the angle to 64◦ (Figure 8C), indicating a slight modification of the
surface hydrophilicity.
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The measurement of the contact angle in the pretreatment of PET plates is crucial, as
benzophenone will be immobilized on the PET to initiate graft polymerization. The greater
the number of carboxyl groups present on the surface of PET, the higher the adsorption
capacity of benzophenone and, therefore, the capacity to graft MIP onto PET [28]. The
hydrophilicity of the PET surface is inversely related to the contact angle. A lower contact
angle indicates higher hydrophilicity, meaning that the liquid tends to wet the surface of
the PET more easily [29].

Confocal scanning microscopy is a non–invasive and non–destructive technique used
to obtain 3D topographic images of PET during its treatment, as well as the obtained
MIP–PET and NIP–PET. Initially, an objective lens with a 5× magnification was selected,
and for the analyses, a resolution magnification of 100× was used. Images were collected
from six different points of each sample, and from these, the roughness and mean thickness
parameters of our materials were calculated.

Morphological changes on the surface of PET due to oxidation and MIP formation
are of particular interest, as they demonstrate surface functionalization occurrence. One
of the parameters obtained from the confocal scanning microscope is the roughness value
(Ra), which is a fundamental measure to quantify surface texture [29]. This value provides
information about the height and frequency of irregularities present on the sample surface,
allowing us to accurately characterize its topography.

Figure 9 displays 3D images of PET plates during treatment before MIP grafting onto
them. The image of the clean PET plate (Figure 9A), without treatment, shows a roughness
value Ra of 0.017 µm (±0.004); after treatment with NaOH and H2O2, the oxidized PET
plate (Figure 9B) shows a roughness value Ra of 0.258 µm (±0.050). This increase in
roughness is due to PET etching in the UV/H2O2 medium. According to Korolkov [21],
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PET oxidation with H2O2/UV produces less surface damage and, therefore, a smoother
surface than treatment with other oxidants. Treatment with benzophenone (Figure 9C)
increases surface roughness with Ra = 1.594 µm (±0.30), which impacts the roughness of
the obtained MIP–PET.
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Figure 8. Images of water droplets and measurement of contact angles on (A) clean PET, (B) oxidized
PET, and (C) PET with benzophenone.

Figure 10 depicts 3D images of the surface of MIP supported on PET. The effect
of the RAFT/KPS ratio on the surface characteristics of MIP has been evaluated. MIP–
PET 2/1 (Figure 10B) and MIP–PET 5/1 (Figure 10C) have RAFT/KPS ratios of 2/1 and
5/1, respectively. It is observed that the MIP–PET with a higher RAFT proportion (MIP–
PET 5/1) exhibits greater surface roughness (Ra = 1.052 µm) compared to MIP–PET 2/1
(Ra = 0.852 µm). This could generate greater heterogeneity and lower availability of active
sites on the MIP surface. Additionally, the thickness of the MIP–PET 5/1 layer is greater
(7.0 mm) than that of MIP–PET 2/1 (6.32 µm). Figure 10D shows the MIP–PET with
adsorbed tartrazine. It is observed that both roughness (Ra = 2.15 µm) and thickness
(14.1 µm) increase considerably. This increase is attributed to the presence of adsorbed
tartrazine in the MIP.
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Figure 10. Images in 3D, obtained from a confocal scanning microscope of (A) NIP–PET (NIP),
(B) MIP–PET 2/1 (MIP 2/1), (C) MIP–PET 5/1 (MIP 5/1), and (D) MIP–PET with tartrazine (MIP–T).
Scale units in µm.

MIP-PET 2/1 was selected for further adsorption studies and analysis not only for its
lower roughness and greater availability of active sites but also for its higher adsorption
capacity, as will be seen later.

The SEM microscopy of the MIP–PET and NIP-PET treated with RAFT, along with the
MIP–PET without RAFT and the MIP-PET with tartrazine, is shown in Figure 11A–D. It can
be observed that the MIP-PET C/RAFT exhibits a surface with less roughness compared to
the NIP–PET C/RAFT, while the MIP–PET S/RAFT also presents greater roughness. This
demonstrates the effect of the RAFT process on obtaining an MIP with a more homogeneous
and uniform surface.

X-ray photoelectron spectroscopy (XPS) is a surface analytical technique that can be
used to determine the elemental composition and chemical state of elements present on the
surface of the MIP. The overall XPS scans and their elemental compositions for clean PET,
oxidized PET, MIP–PET, and MIP–PET with tartrazine are shown in Figure 12.

The spectra of clean PET and oxidized PET showed only carbon (C) and oxygen (O) in
their composition. The oxygen content slightly increases in oxidized PET (from 37.95% to
38.15%) due to the conversion of C=O groups to carboxylates (–COOH). In the MIP–PET
spectrum, a nitrogen peak appears (11.98%) due to the polymer’s structure, formed by
amino units (–NH–) from N,N′–methylenebisacrylamide. In the case of MIP-PET with
tartrazine, the proportion of N increases even further (17.89%) due to the presence of
tartrazine inserted into the structure of MIP–PET.

Figure 13 shows the high-resolution XPS spectrum for C 1s of PET with the deconvo-
luted peaks and the chemical structure of PET. PET presents carbon with three different
chemical environments, as shown in the expanded XPS spectrum for C 1s. The peak of the
aromatic ring’s CC is located at 285.5 eV (carbon type 2). The carbon of the carbonyl (C=O)
is shown at approximately 289.5 eV (carbon type 1), and the carbon of the C–O is found at
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286.4 eV (carbon type 3). This spectrum will serve as a reference for comparing changes in
the carbon’s chemical environment during PET treatment [18,30].
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Figure 11. The SEM images of (A) MIP–PET con RAFT, (B) NIP–PET con RAFT, (C) MIP–PET sin
RAFT, and (D) MIP–PET with tartrazine (MIP–T).

Figure 12. Wide XPS spectrum for clean PET, oxidized PET, MIP–PET, and MIP–PET with tar-
trazine (MIP–PET–T).
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Figure 14 shows the deconvolution of the XPS C 1s spectrum, revealing the carbon
components for CC (aromatic), C=O, and O=C–O. The peak of the CC from the aromatic
ring remains at 284.8 eV in both the PET plate and the oxidized PET. In the case of MIP-PET,
this peak decreases from 67.1% (from oxidized PET) to 59.5% due to the formation of
the MIP on the PET. The X-ray photoelectron radiation incident on this material partly
penetrates the MIP to reach the PET. In the MIP–PET with tartrazine, the peak of the
aromatic CC further decreases to 45.2%, with this percentage mainly corresponding to the
aromatic ring of tartrazine.

The peak of O=C–O of the clean PET, located at 286.44 eV, shifts to 286.88 eV in the
oxidized PET. This shift is attributed to the conversion of ester groups to carboxylic groups
(–COOH), as shown in the reaction in Figure 1. In the case of MIP–PET with tartrazine, the
peak shifts to 286.50 eV, and its percentage decreases to 20.3%. This change confirms that
the peak corresponds to the carboxylate (–COO–) of tartrazine. Additionally, in this peak,
the C–N peak of the crosslinking functional group overlaps [31].

The peak of C=O of the oxidized PET, with an area of 9.5% and a binding energy of
289.64 eV, increases to 24.9% and shifts to 288.83 eV in the MIP–PET. This change is because
this last peak corresponds to the C=O of the crosslinker of the MIP. In the case of MIP–PET
with tartrazine, the C=O peak shifts even further to 288.31 eV, and its area increases to
34.6%. This change is attributed to the carbonyl group (C=O) of tartrazine, confirming the
incorporation of tartrazine into the MIP.

Figure 15 displays the deconvolution of the XPS O 1s spectrum, revealing the oxygen
components for C=O and C–O (from –COOH) in the different analyzed samples. The
intensity of the C–O component peak in clean PET increases from 34.7% to 53.8% in
oxidized PET. This increase is due to the oxidation process that occurs through the ester
group, as shown in Figure 1. In the case of MIP–PET and MIP–PET with tartrazine, changes
in the binding energy and composition of the C–O peak are attributed to the MIP and
tartrazine, respectively. Similar explanations can be provided for the changes in the C=O
peak for these samples.
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Figure 15 displays the deconvolution of the XPS O 1s spectrum, revealing the oxygen 
components for C=O and C−O (from −COOH) in the different analyzed samples. The 
intensity of the C−O component peak in clean PET increases from 34.7% to 53.8% in 
oxidized PET. This increase is due to the oxidation process that occurs through the ester 
group, as shown in Figure 1. In the case of MIP−PET and MIP−PET with tartrazine, 
changes in the binding energy and composition of the C−O peak are attributed to the MIP 
and tartrazine, respectively. Similar explanations can be provided for the changes in the 
C=O peak for these samples. 

Figure 14. High-resolution spectrum for the C 1s for the different samples: (A) clean PET; (B) oxidized
PET; (C) MIP–PET; and (D) MIP–PET with tartrazine (MIP–PET–T). The black line corresponds to the
original XPS spectrum.

In the total spectrum, the S peaks are not clearly visible; however, the expanded
spectrum in Figure 16 reveals the components of S 2p for MIP–PET and MIP–PET with
tartrazine (Figure 16). The S 2p spectrum of MIP–PET shows two components: one at
164.03 eV, corresponding to R–SH, and another at 168.56 eV, corresponding to sulfonate.
The presence of the R-SH peak confirms that the formation of MIP is carried out using the
RAFT reagent, which contains a thiol group. The sulfonate peak is attributed to traces of
tartrazine that persist after washing.
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Figure 15. High-resolution spectrum for the O 1s in different samples: (A) clean PET; (B) oxidized
PET; (C) MIP–PET; and (D) MIP–PET with tartrazine (MIP–PET–T). The black line corresponds to the
original XPS spectrum.

In MIP–PET with tartrazine, a peak at 168.21 eV corresponding to the sulfonate of
tartrazine is observed. The R–SH peak from the RAFT reagent is not present in MIP–PET
with tartrazine due to various treatments that the material undergoes, such as washing.
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3.4. Adsorption Study

The tests for tartrazine adsorption on the MIP–PET plates were conducted by measur-
ing the remaining amount of tartrazine in the solution using UV–visible spectrophotometry
at 427 nm. For this purpose, the MIP–PET plate with the best tartrazine adsorption capacity
obtained during the optimization stage was used. This plate was synthesized with a molar
ratio of the polymers TZ:AC:NMBA of 1:2:100, a molar ratio of monomers to RAFT reagent
of 1330, and a molar ratio of RAFT/KPS of 2:1.

3.4.1. Effect of the pH

The effect of the initial pH of the tartrazine solution on the adsorption capacity of
MIP–PET plates is shown in Figure 17.

The tartrazine molecule possesses ionizable sulfonate groups (T − SO3Na), and the
polymeric matrix is formed by amino groups (–NH2, pKa = 2.22). At pH 3.0, the amino
groups of the polymeric matrix (from the crosslinking monomer) become protonated:

P − NH2 + H+ ↔ P − NH3
+

T − SO3Na → T − SO3
− + Na+

Therefore, the adsorption process at pH 3.0 occurs through electrostatic interaction
between the sulfonate and protonated amino groups.
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tartrazine with agitation time of 60 min.

3.4.2. Kinetic Study

The kinetics of adsorption are important because they can explain the adsorption
behavior and establish the contact time for future adsorption tests. The variation of
adsorption capacity Q from a 10 mg L−1 tartrazine solution at pH 3 as a function of
time is shown in Figure 18.
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plate, [tartrazine] = 10 mg L−1, pH 3.

The kinetic curve shows that the adsorption of tartrazine on MIP–PET is a slow process,
and equilibrium is reached only after 120 min. This may be due to the limited mobility of
tartrazine through the pores.

The pseudo-first-order kinetic model provides information about the rate of occupation
of adsorption sites, which is proportional to the unoccupied sites. It was represented by
Equation (5) [32]:

log(Qe − Qt) = logQe − k1
t

2.303
(5)

where Qe and Qt are the amounts of adsorbed tartrazine on the plate (mg cm−2) at equi-
librium and at time t (min), respectively, and k1 (min−1) is the pseudo-first-order rate
constant.



Polymers 2024, 16, 1325 20 of 29

The adsorption process can also be described by the pseudo-second-order kinetics,
which involves a chemical interaction between the adsorbate molecules and the adsorption
sites. It is described by Equation (6) [33]:

t
Qt

=
1

k2Q2
e
+

t
Qe

(6)

where k2 (mg cm2 min−1) is the pseudo-second order kinetic rate constant.
Additionally, kinetic data were evaluated with the intraparticle diffusion model of

Morris and Weber by Equation (7) [34]:

Qt = kidt1/2 + C (7)

where C is the intercept indicating the thickness of the boundary layer, and kid is the
intraparticle diffusion constant. According to this model, the adsorption process is divided
into two stages. The first stage involves the external adsorption of adsorbate molecules on
the surface of adsorbent particles. The second stage involves the diffusion of adsorbate
molecules within the adsorbent particles.

The corresponding kinetic parameters and the correlation coefficients R2 of three
kinetic models are summarized in Table 2. The high R2 values and the similarities between
Qexp and Qcal of the pseudo-first-order model indicate that in the overall process, it fits
quite well with the experimental data for the adsorption of tartrazine on MIP–PET.

Table 2. Parameters of the different kinetic models for the adsorption of tartrazine on the MIP–PET plates.

Kinetic Model Parameters
Pseudo-first order k1 = 0.023 Qcal = 0.059 Qexp = 0.064 R2 = 0.9977
Pseudo-second order k2 = 0.013 Qcal = 0.00373 Qexp = 0.064 R2 = 0.9759
Intraparticle Diffusion k1 = 5.046 R2 = 0.9593

For a solid–liquid adsorption process, the adsorption kinetics were controlled by three
consecutive mass transport steps related to the adsorption of the solute from a solution
onto the adsorbent [34]. The steps were (1) film diffusion, (2) intraparticle or pore diffusion,
and (3) sorption at interior sites. The third step was rapid and considered insignificant, so
the first two steps were the most important. In the range of 10 to 60 min, the adsorption
process is controlled by the intraparticle adsorption process without reaching the maximum
adsorption capacity because the adsorption process is slow. Above 60 min, the adsorption
process involves additional surface phenomena [16] (Figure 19).

Figure 19. Intraparticle diffusion model of tartrazine in MIP–PET, in the range of 10–60 min.
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3.4.3. Isotherm Study

The effect of the initial concentration on the adsorption capacity of tartrazine on MIP–
PET and NIP–PET are shown in Figure 20. In the initial concentration range of tartrazine
from 0 to 60 mg L−1, there were no significant differences in the adsorption capacities of
MIP–PET and NIP–PET. However, at higher concentrations, MIP–PET showed a higher
adsorption capacity compared to NIP–PET.
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Figure 20. Adsorption isotherm of tartrazine on MIP–PET and NIP–PET. Tartrazine solution at pH = 3
and volume of 10 mL.

The adsorption isotherm provides information about the mechanism of the adsorption
process. The simplest and yet most useful isotherm, both for physical and chemical
adsorption, is the Langmuir isotherm. This model assumes that adsorption is limited to a
monolayer, the surface of the adsorbent is homogeneous, the adsorption energy is uniform
for all sites, and there is no transmigration of the adsorbate on the surface plane. The
Langmuir isotherm is expressed by Equation (8) [35]:

Ce

Qe
=

Ce

Qm
+

1
bQm

(8)

where Qe is the adsorption capacity at equilibrium (mg L−1), Qm is the maximum adsorption
capacity (mg L−1), b is the equilibrium constant (L mg−1), which is a measure of the
adsorbate’s tendency to be adsorbed on the active sites of the adsorbent surface. A high
value of b represents higher adsorption energy. Although the Langmuir isotherm is the most
used binding model for adsorption studies, it cannot be applied to imprinted polymers due
to the logarithmic distribution of binding sites in multilayers [36].

The Freundlich isotherm model is an empirical equation and another form of Langmuir
that can be applied to multilayer adsorption. This model assumes that the adsorbent surface
is heterogeneous and the active sites and their energies are exponentially distributed. The
Freundlich isotherm is expressed by Equation (9) [36]:

logQe =
1
n

logCe + log K f (9)

where Kf (mg g−1) is the adsorption coefficient and represents the adhesion ability of the
adsorbate to the adsorbent. The term 1/n indicates the adsorption intensity of the adsorbate
to the adsorbent or heterogeneous surface. If the slope 1/n lies between 0 and 1, it indicates
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a favorable adsorption isotherm. When this value is closer to zero, the adsorbent surface is
more heterogeneous.

The constants and correlation coefficients of the Langmuir and Freundlich models are
shown in Table 3.

Table 3. Constants and correlation coefficients of the adsorption isotherm models for tartrazine on MIP–PET.

Adsorption Model Parameters

Langmuir Qm = 0.1532 b = 0.0785 R2 = 0.9006
Freundlich n = 3.66 Kf = 0.0375 R2 = 0.9354

The isotherms fit a Freundlich model in the range of 0 to 100 mg L−1. The Freundlich
isotherm allows for a better analysis of the different binding sites existing in the MIP
compared to the Langmuir model.

The obtained value of n (3.66) indicated that the adsorption of tartrazine is favorable,
but being greater than 1, it also indicates that the system is heterogeneous. This value of n
can be an indicative parameter of the effect of RAFT polymerization on the homogeneity of
the MIP [36]. Specifically, with RAFT polymerization, a smaller value of n, close to 1, would
be expected compared to the MIP formed without the RAFT effect. This would indicate
greater homogeneity of the MIP with RAFT.

3.4.4. Selectivity Study

Selectivity is an important property for assessing the ability of the MIP as a preferential
adsorbent for the analyte. To evaluate the selectivity of the MIP and NIP, the molecular
imprinting factor (MIF) and Selectivity Factor (SF) were determined, which are calculated
according to Equations (10) and (11) [37]:

Imprinting Factor (α) =
% Removal (MIP)
% Removal (NIP)

(10)

Selectivity Factor (β) =
α (tartrazine)

α (inter f erent)
(11)

The molecular imprinting factor of tartrazine according to the initial concentration
is shown in Figure 21. It can be observed that up to 50 mg L−1, the MIF is not favorable
and is less than 1, while from 70 mg L−1 onwards, it is greater than 1. A concentration of
100 mg L−1 was chosen for the selectivity tests.

The effects of 4 dyes were studied: Basic Red 46, Methyl Green, Sunset Yellow, and
Yellow HE3G. The amount of dye adsorbed by the MIP–PET and NIP–PET was measured
using their UV–visible spectrum at the maximum wavelength of each dye. The values of
the imprinting factor (IF) and selectivity factor (α) are shown in Table 4.

Table 4. Selectivity parameters of the MIP compared to the NIP for different dyes (100 mg L−1, pH 3.0).

Dye Imprinting Factor (IF) Selectivity Factor (β)

Basic red 46 0.88 3.08
Methyl green 0.80 3.39
Sunset yellow 1.20 2.26
Yellow HE3G 0.40 6.78

Tartrazine 2.70 ---

The selectivity of the MIP is related to the affinity of the functional groups, as well as
the size and shape of the templates and recognition cavities. Since tartrazine is a relatively
large molecule, it does not form cavities with a high degree of molecular recognition,
explaining the low imprinting factor at low concentrations. However, at higher concentra-
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tions and considering the greater heterogeneity of the MIP, adsorption by the MIP becomes
predominant compared to the NIP.
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as they both have a similar structure. Both compounds are yellow in aqueous solutions 
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tivity of MIP synthesized by the precipitation method (without RAFT agent), sunset 

Figure 21. Imprinting factor (IF) of MIP–PET according to the initial concentration of tartrazine.
Adsorption with 1 cm2 plate, 2-h agitation, 10 mL of tartrazine solution, and pH 3.

One of the most common dyes found alongside tartrazine in foods is sunset yellow,
as they both have a similar structure. Both compounds are yellow in aqueous solutions
and contain azo and sulfonate groups. Due to these characteristics, sunset yellow exhibits a
lower selectivity factor compared to the studied dyes. In previous studies on the selectivity
of MIP synthesized by the precipitation method (without RAFT agent), sunset yellow
presented a selectivity factor of 1.02. In the present work, this factor increases to 2.26,
indicating an improvement in MIP synthesis due to the RAFT polymerization effect.

3.4.5. Reusability Study

The reusability of MIP–PET is an important parameter for its use in multiple applica-
tions. The potential for reusability of MIP–PET over 10 identical uses is shown in Figure 22.
As observed in the figure, there is no significant decrease until the fifth use. After this point,
the removal percentage decreases significantly. These results indicate that MIP–PET can be
used up to five times without significantly losing its tartrazine removal capacity.
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3.5. Digital Image Colorimetry Protocol
3.5.1. Smartphone Image Capture

The adsorption tests were conducted using MIP–PET plates with tartrazine solutions
ranging from 0 to 20 mg L−1 and with a reduced volume compared to previous tests
(3 mL). This volume reduction was performed to ensure that the MIP–PET adsorbed all the
tartrazine, allowing the color of the plate to be proportional to the amount of tartrazine
present in the solution (Figure 23A). The pH was maintained at 3.0, with an adsorption
time of 2 h and a plate size of 1 cm2.

Polymers 2024, 16, x FOR PEER REVIEW 27 of 32 
 

 

 
0 1 3 5 7 10 15 20 

 

Figure 23. MIP−PET plates exposed to tartrazine solutions for digital image colorimetry with a 
smartphone. (A) Plates exposed to different concentrations of tartrazine (mg L−1) on the MIP−PET 
and (B) image of MIP-PET plate with a selected area of 16 × 16 pixels. Adsorption conditions: 1 cm2 
plate, 3 mL of tartrazine at pH 3, agitation time 2 h. 

Once the image of the plates was captured, using ImageJ (1.53k 6 July 2021) software, 
two regions of 16 × 16 pixels were selected from each image, and the RGB values were 
recorded (Figure 23B). These values, along with the equations mentioned earlier (Equa-
tions (3) and (4)), were converted to CMYK and HSV. RGB values represent the intensity 
of the primary colors: red, green, and blue. To relate them to other colors, CMYK channels 
(cyan, magenta, yellow, and black) are used, representing the amount of each of these 
colors in an image. On the other hand, HSV values represent the hue (color), saturation 
(color intensity), and value (color brightness) in a different color system. 

Partial least squares regression (PLS) was performed on the RGB, CMYK, and HSV 
color values using The Unscrambler X software. This multivariate calibration involves a 
variable reduction to principal components (or factors) and subsequent multiple linear 
regression with the selected principal components. To evaluate the working range of the 
PLS regression, cross-validation, the R2 value between the measured and predicted values, 
and the root mean square error (RMSE) were used. Reduction to four principal compo-
nents (PCs) extracted the following regression in the tartrazine concentration range from 
0 to 20 mg L−1 (Figure 24). 

A 

B 

Figure 23. MIP–PET plates exposed to tartrazine solutions for digital image colorimetry with a
smartphone. (A) Plates exposed to different concentrations of tartrazine (mg L−1) on the MIP–PET
and (B) image of MIP-PET plate with a selected area of 16 × 16 pixels. Adsorption conditions: 1 cm2

plate, 3 mL of tartrazine at pH 3, agitation time 2 h.

Once the image of the plates was captured, using ImageJ (1.53k 6 July 2021) soft-
ware, two regions of 16 × 16 pixels were selected from each image, and the RGB values
were recorded (Figure 23B). These values, along with the equations mentioned earlier
(Equations (3) and (4)), were converted to CMYK and HSV. RGB values represent the in-
tensity of the primary colors: red, green, and blue. To relate them to other colors, CMYK
channels (cyan, magenta, yellow, and black) are used, representing the amount of each
of these colors in an image. On the other hand, HSV values represent the hue (color),
saturation (color intensity), and value (color brightness) in a different color system.

Partial least squares regression (PLS) was performed on the RGB, CMYK, and HSV
color values using The Unscrambler X 10.1 software. This multivariate calibration involves
a variable reduction to principal components (or factors) and subsequent multiple linear
regression with the selected principal components. To evaluate the working range of the
PLS regression, cross-validation, the R2 value between the measured and predicted values,
and the root mean square error (RMSE) were used. Reduction to four principal components
(PCs) extracted the following regression in the tartrazine concentration range from 0 to
20 mg L−1 (Figure 24).

Since the R2 and m values were not optimal (close to 1), the range of 0 to 7 mg L−1

was selected to assess the working range (Figure 25). In this range, an increase in the R2

values and slope was observed, while the RMSE decreased, indicating an improvement in
the PLS model for the tartrazine concentration range of 1.0 to 7.0 mg L−1.
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Figure 25. Results of the PLS calibration in the concentration range of 0–7 mg L−1.

Considering this working range from 1.0 to 7.0 mg L−1, LOQ was 1.0 mg L−1, and the
LOD was 0.3 mg L−1. Upon closer examination of the principal component analysis (PCA)
performed in the PLS calibration, a biplot graph (Figure 26) allows for visualization of the
relationship between the original variables and the measured tartrazine concentration.



Polymers 2024, 16, 1325 26 of 29Polymers 2024, 16, x FOR PEER REVIEW 29 of 32 
 

 

 
Figure 26. Biplot graph showing the correlation between the RGB, CMYK, and HSV color variables 
with the predicted concentration of tartrazine in the range of 0−7 mg L−1 using 4 principal compo-
nents. 

The biplot reveals that the concentration of tartrazine positively correlates with the 
H (hue), S (saturation), and Y (yellow) channels, which define the type of yellow color, its 
intensity, and the yellow color itself, respectively. The concentration is inversely propor-
tional to the V (brightness) value, indicating that higher yellow intensity corresponds to 
lower brightness. There is also an inverse correlation with the R (red) and G (green) values, 
the primary colors whose mixture yields yellow. 

The optimized regression model was used to evaluate the model with repeatability 
tests of 10 samples of 5 mg L−1, and the results obtained are shown in Table 5: 

Table 5. Values of repeatability for 10 independent samples. 

Sample Measured Value 
(mg L−1) 

M1 4.14 
M2 4.51 
M3 6.56 
M4 4.44 
M5 5.62 
M6 5.01 
M7 4.15 
M8 5.36 
M9 5.02 
M10 Deleted4.89 

Average 4.97 
Stand. Desv. 0.74 

The repeatability of the method at the 5 mg L−1 level was found to be +0.74 mg L−1 
with a relative standard deviation of 14.9%. This was a relatively high value, but it should 
be considered that it is a practical method that uses no expensive equipment and is easy 
to use. On the other hand, the accuracy of the proposed method was 99.4%. 

3.5.2. Analysis of Carbonated Beverages 
The application for determining tartrazine using MIP−PET was carried out on sam-

ples of local carbonated beverages. Two degassed carbonated beverages were analyzed to 

Figure 26. Biplot graph showing the correlation between the RGB, CMYK, and HSV color variables
with the predicted concentration of tartrazine in the range of 0–7 mg L−1 using 4 principal components.

The biplot reveals that the concentration of tartrazine positively correlates with the H
(hue), S (saturation), and Y (yellow) channels, which define the type of yellow color, its in-
tensity, and the yellow color itself, respectively. The concentration is inversely proportional
to the V (brightness) value, indicating that higher yellow intensity corresponds to lower
brightness. There is also an inverse correlation with the R (red) and G (green) values, the
primary colors whose mixture yields yellow.

The optimized regression model was used to evaluate the model with repeatability
tests of 10 samples of 5 mg L−1, and the results obtained are shown in Table 5:

Table 5. Values of repeatability for 10 independent samples.

Sample Measured Value
(mg L−1)

M1 4.14
M2 4.51
M3 6.56
M4 4.44
M5 5.62
M6 5.01
M7 4.15
M8 5.36
M9 5.02
M10 4.89

Average 4.97
Stand. Desv. 0.74

The repeatability of the method at the 5 mg L−1 level was found to be +0.74 mg L−1

with a relative standard deviation of 14.9%. This was a relatively high value, but it should
be considered that it is a practical method that uses no expensive equipment and is easy to
use. On the other hand, the accuracy of the proposed method was 99.4%.

3.5.2. Analysis of Carbonated Beverages

The application for determining tartrazine using MIP–PET was carried out on samples
of local carbonated beverages. Two degassed carbonated beverages were analyzed to
determine the concentration of tartrazine and compared with the results obtained by
spectrophotometric analysis—standard addition. The results obtained are shown in Table 6,



Polymers 2024, 16, 1325 27 of 29

and no significant differences were observed between the proposed method and the UV–
visible reference method.

Table 6. Comparative results of tartrazine in two samples of carbonated beverages.

Sample UV–Vis Method Proposed Method
(Smartphone)

M1 13.6 ± 0.1 (n = 3) 14.1 ± 0.3 (n = 3)

M2 16.8 ± 0.2 (n = 3) 16.5 ± 0.2 (n = 3)

This evidences that the proposed method is a suitable alternative for determining
tartrazine in carbonated beverages rapidly, accurately, and simply.

4. Conclusions

This study successfully developed a molecularly imprinted polymer (MIP) platform
on polyethylene terephthalate (PET) for the determination of tartrazine in carbonated bever-
ages using a smartphone. The MIP–PET platform was prepared via RAFT polymerization,
yielding a material with high adsorption capacity (0.057 mg cm−2) and enhanced selectivity.

Optimal conditions for MIP–PET preparation were determined, including the molar
ratio between tartrazine, monomers, and the RAFT agent. The MIP-PET was characterized
by FTIR, Raman spectroscopy, XPS, and confocal microscopy, confirming the formation of
the MIP layer on PET (film thickness of 7.0 µm).

Kinetic and isotherm studies revealed that the adsorption process of tartrazine on MIP-
PET follows a pseudo-first-order model and conforms to a Freundlich model. A method
for quantifying tartrazine in carbonated beverages using MIP–PET and a smartphone
was developed.

The method developed for quantifying tartrazine in carbonated beverages using
multivariate PLS regression showed a working range from 1.0 to 7.0 mg L−1, with a
detection limit of 0.3 mg L−1. The method’s repeatability was 4.97 mg L−1 (+0.74) for
10 independent repetitions of 5 mg L−1. The concentration of tartrazine in two local
carbonated beverages (14.1 and 16.5 mg L−1) was determined, yielding results comparable
to the UV–visible spectrophotometric method.

The results of this study suggest that the developed MIP–PET is a promising tool
for the detection and quantification of tartrazine in carbonated beverages and other food
matrices. It is easy to use, cost-effective, accurate, precise, and efficient. Furthermore, it
sets a precedent for enhancing analysis with digital images using artificial intelligence and
machine learning tools.
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