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Abstract: Chitosan (CS) and two-dimensional nanomaterial (2D nanomaterials)-based scaffolds
have received widespread attention in recent times in biomedical applications due to their excellent
synergistic potential. CS has garnered much attention as a biomedical scaffold material either alone
or in combination with some other material due to its favorable physiochemical properties. The
emerging 2D nanomaterials, such as black phosphorus (BP), molybdenum disulfide (MoS2), etc., have
taken huge steps towards varying biomedical applications. However, the implementation of a CS-2D
nanomaterial-based scaffold for clinical applications remains challenging for different reasons such as
toxicity, stability, etc. Here, we reviewed different types of CS scaffold materials and discussed their
advantages in biomedical applications. In addition, a different CS nanostructure, instead of a scaffold,
has been described. After that, the importance of 2D nanomaterials has been elaborated on in terms
of physiochemical properties. In the next section, the biomedical applications of CS with different
2D nanomaterial scaffolds have been highlighted. Finally, we highlighted the existing challenges
and future perspectives of using CS-2D nanomaterial scaffolds for biomedical applications. We hope
that this review will encourage a more synergistic biomedical application of the CS-2D nanomaterial
scaffolds and their utilization clinical applications.
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1. Introduction

Chitosan (CS) is a cationic natural linear polysaccharide of β-(1→4)-linked D-glucosamine
and N-acetyl-D-glucosamine derived from the alkaline hydrolysis of chitin. CS is the
second most naturally abundant biopolymer after cellulose and is one of the most vastly
used natural materials in the medicine, agriculture, and food processing industries due its
biocompatibility, biodegradability, and physiochemical properties [1,2]. Therefore, CS has
been classified as a generally recognized as safe (GRAS) compound by the Food and Drug
Administration (FDA) [3]. This is why numerous researchers have extensively followed CS
or CS-based scaffolds for biomedical applications, which can be confirmed by the abundant
published work based on CS [4–6].

Because of the structural similarity of CS to glycosaminoglycans, as one of the compo-
nents in extracellular matrix (ECM) [7], CS scaffolds are used in biomedical research and
the development of therapeutics. Due to its structural advantages, CS scaffolds are also
utilized for various vascular regeneration applications [8,9]. Although CS preparation is
cost-effective, poor solubility and porosity are limiting factors for their usage in a wide
range of biomedical applications [10,11]. However, CS can combine with other polymers,
metal, metal oxide, and 2D nanomaterials to augment those properties and lead to scaffold
formation [12]. In this respect, 2D nanomaterials, such as graphene, black phosphorus, and
MoS2, when combined with CS scaffold have shown synergistic properties [13–15]. Further,
due to the large surface area of 2D nanomaterials, the chance of cell interaction with 2D
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materials is higher. However, the nanomaterials have their own toxicity issue which can be
overcome by CS capping [16]. Hence, not only can 2D nanomaterials be utilized with CS,
but it can be synergistically applied for nanomaterial applications.

Here, we discuss the advantages of CS biomaterial scaffolds and the functionalized
synergistic applications of the CS scaffolds in combination with 2D materials. Finally,
the prospects and challenges of CS-based 2D materials scaffold in clinical applications
are discussed.

2. Advantages of Chitosan for Biomedical Applications

The biomedical applications of a biomaterial are dependent on their favorable phys-
iochemical properties such as porosity, solubility, biodegradability, biocompatibility, etc.
In this section, we discuss the chitosan properties that make CS an excellent scaffold
biomaterial in biomedical applications.

2.1. Biocompatibility

The biocompatibility of a material can be determined by its compatibility with the
biological system with minimal or no adverse effects, including immunogenicity in vivo.
The CS materials are relatively non-toxic excellent biocompatible materials which are
derivatives of chitin. A highly conserved extracellular matrix appeared across the animals
from invertebrates to higher mammals. Moreover, upon degradation, CS releases its
constitutive ingredients, D-glucosamine and N-acetyl-D-glucosamine, which are natural
components that can be utilized for tissue regeneration and in the healing process. [10].
Although, CS has been extensively investigated as a nanobiomaterial due to its non-toxicity,
biodegradability, and biocompatibility and granted FDA Generally Recognized As Safe
(GRAS) status (GRN n◦ 73, 170, 397 and 443), some studies showed toxic effects after using
CS in the cell lines of zebrafish [17,18].

2.2. Porosity

Porosity is one of the important features for any scaffold to determine its biocompati-
bility. Cell adhesion to the scaffold material is dependent on the pore size of the scaffold,
which, if too small, results limited cell permeability, whereas too large pores result in a
limited surface area and reduced ligand density for the cell to bind. Therefore, it is im-
portant to maintain optimal pore size for cell adhesion and growth [19]. Further, different
pore size scaffolds are required for certain types of applications in biomedical research. For
example, a scaffold with greater than 20–100 µm is a good fit for cell infiltration [20], while
more than 100 µm is well recommended for neovascularization studies [21]. Similarly, a
scaffold up to 300 µm pore size is ideal for endochondral ossification, whereas pores above
300 µm in scaffolds showed in osteogenesis studies [22]. Therefore, it is necessary to select
the appropriate pore size for specific applications.

The pore size of the scaffold can be controlled by regulating the temperature and water
content in the scaffolds. For example, the lower the temperature, the greater the water
content and the smaller the pore size. Further, the thermal-induced phase separation (TIPS)
method is used to synthesize different structures with different pores [23].

Further, the pore size of the CS scaffold also depends on various parameters, such
as crosslinkers, freezing temperature, the concentration of polymer, and the addition of
other compounds such as drug, nanoparticles, etc. For example, Shavandi et al. [24]
demonstrated that the CS scaffold with hydroxyapatite and beta-tricalcium phosphate,
prepared at −80 ◦C and −20 ◦C vary in their pore size. The CS scaffolds that were prepared
at −80 ◦C, showed elongated pores with an irregularity in shape, whereas the scaffold
of −20 ◦C showed highly layered pores with more irregularities. Similarly, the addition
of hydroxyapatite nanoparticles to CS-silk fibroin (SF) scaffold has a reduced porosity
compared to the CS-silk fibroin (SF) scaffold [25].
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2.3. Molecular Weight

CS is a polysaccharide of D-glucosamine and N-acetyl-D-glucosamine units, and the
molecular weight varies with the number of D-glucosamine and N-acetyl-D-glucosamine
units. The physiochemical and biological properties, including solubility and the viscosity
of CS changes with increases in the molecular weight [26]. Depending on the source and
preparation process, the molecular weight of CS ranges from ~300 to 1000 kDa [27]. CS
with a higher molecular weight becomes more viscous, less soluble, and consequently less
permeable, which is not desirable for various biomedical applications. Hence, low molecu-
lar weight CS is commonly used in CS scaffold preparation for biomedical applications,
due to its excellent solubility and stability [28].

2.4. Water Retention Ability

The water retention ability of any scaffold material can be described as the ability
to swell and hold certain volumes of water after being placed in a liquid medium [29].
The scaffolds materials water absorption resulted in increased pore size and swelling.
The content of aminosugars in CS determine its swelling ability [30]. The cationic CS
materials have an electrostatic interaction with anionic polymers, resulting in polymeric
complexation and decreased swelling. In this context, the inclusion of silicon dioxide and
zirconia nano particles significantly reduced the swelling behavior of the CS scaffold [31].
The addition of bioactive glass ceramic nanoparticles (nBGC) to the CS–gelatin scaffold
have shown a significant reduction in the swelling ability of the CS scaffold [32]. Together,
these reports indicate that the swelling ability of CS scaffolds can be modified as needed.

2.5. Biodegradability

The process of degradation and he longevity of a scaffold material in the biologi-
cal system are key factors in selecting the biomaterial therapeutics [33]. The process of
degradation can be hydrolysis and or enzymatic, and the resulting degraded products
should be non-immunogenic and non-toxic and are incorporated into metabolic pathways
or excreted [34]. As previously mentioned, the CS materials are derived from the chitin one
of the extracellular components in the biological systems, which is highly conserved across
the species and, therefore, CS materials are non-toxic and minimal immunogenic. The CS
is hydrolyzed to acetylated and amino sugars which may be re-cycled or excreted [35].
The rate of CS degradation also depends on degree of deacetylation and hydrolysis by
lysozyme [36]. However, due to its high degradation rates, the usage of CS scaffolds in vivo
for long term application is limited. The addition of nanoparticles or other polymers into
the CS scaffold seemed to affect the degradation rate. For example, Saravanan et al. [37]
showed that the addition of nano-hydroxyapatite (nHAp) into the CS scaffold seemed
to accelerate the derogation rate, while the opposite result can be seen after the addition
of nano silver (nAg) in the CS matrix. Similarly, the addition of bioactive glass ceramic
nanoparticles (nBGC) to the CS–gelatin scaffold considerably reduced their degradation
rate [32].

3. Types of Chitosan Scaffold

CS materials, such as hydrogel, sponges nanofiber membrane, etc., have been used in
various biomedical applications, including wound healing and tissue engineering. In this
section, we discuss the different types of CS scaffold used in tissue engineering.

3.1. Hydrogel Scaffold

Hydrogels are cross-linked and a polymeric network of hydrophilic units and the
gelation can be initiated via physical and or chemical reactions [38]. Hydrogel-based scaf-
folds are supporting materials that have the potential to mimic the extracellular matrix,
which provides cell–cell communications with the sustained release of water and other
biomolecules for tissue regeneration and the healing process [39]. The hydrophilic structure
of the hydrogel scaffold gives it the capability to maintain considerable amounts of water
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or other biological fluids, which helps in nutrient diffusion. It is worthy to note that a
proper hydrogel should be able to regenerate specific tissues, while achieving the minimum
requirements for vascularization, cell growth, proliferation, and concurrent degradation
during the healing process, along with its biocompatible and non-toxic properties [40].
Superior physical and mechanical stability, high biodegradability, and high durability are
some of the other characteristics of a proper hydrogel scaffold. The advantages of a CS hy-
drogel scaffold are its excellent inherent biodegradability, biocompatibility, and hydrophilic
surface. However, its extreme viscosity, combined with its mechanical weakness, are some
of the limitations which are yet to be resolved [40].

In recent years, the urgency to develop smart injectable hydrogels has increased due to
its minimal invasive approach. Smart injectable hydrogels are liquid at room temperature
but form a gel when injected into a fractured location, which has the potential for scar
size reduction, less post-operative pain, the rapid recovery of patients, and obvious cost-
effectiveness [41]. Naturally occurring polysaccharides are especially relevant to hydrogel
preparation as they mimics many features of the extracellular matrix. Chitosan, a naturally
occurring polysaccharide and a pH-responsive polymer is significant in this scenario [42].
The anionic nature of most human tissues can perfectly adhere to the cationic character of
chitosan and the subsequent adherence of CS hydrogels to tissue sites [43]. Additionally, the
polycationic nature of chitosan enabled the preparation of cross-linked hydrogels without
any use of cross-linking agents, which might be toxic.

3.2. Sponges

The primary advantage of chitosan sponges is that its micro-porous structure enables
it to absorb high amounts of fluids. In some cases, this amount of absorbed fluid is 20 times
more than its dry weight, without compromising its flexibility and texture [44]. With
respect to wound healing applications, CS sponges prevent contamination in wound and
dehydration due to its porous structure [45]. For example, CS/tricalcium phosphate [46],
CS/collagen sponges [47] are used as scaffolds in bone regeneration. Du et al. [48] showed
the excellent wound healing potential of micro-channeled alkylated chitosan sponge, which
are able to guide in situ tissue regeneration for noncompressible hemorrhages. In another
example, Wu et al. [49] prepared ampicillin-grafted chitosan sponges as an antibacterial
material against Staphylococcus aureus, Candida albicans, and Escherichia coli and showed
its potential as a wound dressing material. In a similar experiment, Al-Mofty et al. [50]
showed the antibacterial and hemostatic activity of PVA/chitosan sponges loaded with
hydroxyapatite and ciprofloxacin. It is worthy to note that CS sponges also have some
disadvantages such as poor mechanical properties and rapid degradation prepared in
acidic conditions, which hindered its growth in application processes [51].

3.3. Fiber Scaffolds

Fiber scaffolds were generally utilized to disperse the bioactive agents within the
fibrous matrix. The bioactive agents either can also be adsorbed on the surface of the fibers
or blended into the electrospinning polymer solution to produce fiber scaffolds [52]. The
release of bioactive molecules from the fiber scaffold is straightforward where the fiber
scaffolds usually burst release due to the dissolution of bioactive agents [53]. However,
despite the simplicity of the process, the release rate of the bioactive agents directly depends
on the degradation rate of the polymer matrix. Moreover, the solvents in the electrospinning
solution utilized to disperse the bioactive agents can also hinder the activity of the molecules.
Fiber-based chitosan scaffolds were also utilized to resolve the high viscosity problem of
chitosan [54]. In this case, a nanofiber diameter of 140 nm can be achieved with chitosan
that is hydrolyzed for 48 h. Additionally, electrospinning conditions and the solvent
concentration also affected the fiber diameter.
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3.4. Microspheres Scaffolds

CS microsphere scaffolds have been used for controlled drug release and increased
bioavailability [55]. The preparation of the CS microsphere was enabled after reacting chi-
tosan with controlled amounts of multivalent anion, which, in turn, resulted in cross-linking
between the chitosan molecules [55]. Precipitation, cross-linking with anions, modified
emulsification, thermal cross-linking, etc., are some the techniques utilized to prepare the
CS microsphere [56]. The nature of drug molecule which needs to be incorporated into CS
microsphere decides the selection of preparation process.

Hu et al. [57] utilized a combination of biodegradable poly-(lactic acid-co-trimethylene
carbonate) and chitosan microspheres for bone tissue engineering. The porosity, pore size,
and mechanical properties of these CS microsphere scaffolds can be controlled through
the preparation methods and parameters. Moreover, this CS microsphere-based scaffolds
possessed shape-memory effects, i.e., it can recover to its initial shape when heated to
37 ◦C within 300 s. The scaffold has the potential for bone regeneration applications.
In another example, Budhiraja et al. [58] exploited the formulation of mupirocin-loaded
chitosan microspheres embedded in Piper betle extract containing a collagen scaffold for
the purpose of wound healing activity. Similarly, Fan et al. [59] showed the effectiveness of
covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan
microspheres as an injectable drug and cell delivery system in cartilage tissue engineering.
The porosity, pore size, and mechanical properties of these CS microsphere scaffolds can be
tuned through the preparation methods. Moreover, these CS microsphere scaffolds regain
their shape upon heating to 37 ◦C within 300 s. Such a shape memory effect is favorable for
spatial implantation applications.

4. Types of Chitosan Nanostructures

Chitosan is used as hydrogel scaffolding material [8]. However, the poor mechan-
ical properties of CS hydrogel or CS films have hindered their application in scaffolds,
despite their having excellent biomedical properties [60]. Hence, efforts have been made to
incorporate different forms of CS, such as CS nanoparticles, CS nanosphere, CS nanosheets.

4.1. Chitosan Nanoparticles (CS NPs)

Chitosan NPs have been successfully utilized because of their mucoadhesive capacity,
enhanced bioavailability, non-toxic, and biocompatibility, etc. [61]. Additionally, CS NPs
have a large surface-to-volume ratio which, in turn, enables it to provide a great binding ca-
pacity for biological macromolecules in various biomedical applications [62]. Moreover, the
growth factors and signaling molecules can be easily loaded into the scaffolding materials
through the incorporation of CS NPs [63].

Further, the addition of CS NPs to the scaffolding materials have showed an enhanced
biocompatibility and accelerated hydrolytic degradation for potential in tissue engineering
applications as listed in Table 1.

Table 1. Chitosan nanoparticle (CS NP)-based scaffolds and their applications.

Material Effect NP Size Ref.

CS NPs-BSA-bFGF Significantly affected the physical properties of chitosan-gelatin scaffold ∼266 nm [64]
CUR-CS NPs Improved stability and solubility for better tissue regeneration applications ∼197 nm [65]

GelMA/CS NPs-bFGF Provide a sustained release of growth factors ∼267 nm [66]
CS NPs-PCL-DEX Enhanced osteogenic differentiation of the mesenchymal stem cells ∼285 nm [67]

PVA NF with SIM/CS NPs Controlled drug delivery for bone regeneration application ∼110–140 nm [68]
GA-CSNPs Wound healing ∼96–357 nm [69]

CS NPs-PHB Cartilage tissue engineering ∼255 nm [70]
Abbreviations: CS NPs: Chitosan nanoparticles, BSA: bovine serum albumin, CUR: curcumin, GelMA: Gelatin
methacryloyl, PCL: poly-ε-caprolacton, DEX: dexamethasone, PVA NF: Polyvinyl alcohol nanofiber, SIM: Simvas-
tatin, GA: Gallic acid, PHB: polyhydroxy butyrate.
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4.2. Chitosan Nanospheres (CS NSs)

Chitosan nanospheres (CS NSs) is another nanomaterial which is used for drug deliv-
ery application mainly because of its high surface area, excellent porosity, effective chemical
stability, and stable geometric structure [71–73].

There are various examples of CS NSs as a nanocomposite material or as a scaffold
material in biomedical applications. For example, Yang et al. [71] synthesized an injectable
carboxymethyl chitosan/nanosphere-based hydrogel for drug release and lubrication in
ameliorating from arthritis. The average size of the NP utilized in this hydrogel was in
the range of 47.7 nm to 52.1 nm. Moreover, CS NSs are also used for the delivery of the
anticancer drug 5-fluorouracil [72]. The mean diameter of CS NSs was ~200 nm. However,
despite its potential for excellent biomedical applications, its particle size and morphology
are not fully controllable, which limits its potential in biomedical applications.

4.3. Chitosan Nanosheets (CS NTs)

Chitosan nanosheets are another nanostructure which have shown excellent potential
for biomedical applications. There are limited studies using CS NTs in wound healing activ-
ities with lower inflammatory cells infiltration, along with new epithelium thickness [74].

5. The Advantages of 2D Nanomaterials for Biomedical Applications

Two-dimensional nanomaterials such as graphene, black phosphorus, metal carbides,
and nitrides (MXenes), etc., have shown excellent potential as biomaterials in various
biomedical applications [75,76]. Recent studies on the utilization of 2D nanomaterials in
biomedical research can be attributed to their excellent physiochemical properties, [77,78]
which makes them attractive candidates for biosensing, bioimaging, drug delivery, and
regenerative medicine. Another advantage of various 2D nanomaterials is that they can be
utilized with CS or some other polymer material for synergistic biomedical applications,
i.e., the 2D material-based CS nanocomposite would show much improved biomedical
properties than individual samples. There are several advantages of 2D nano materials
such as:

• High surface-to-volume ratio and tunable interfacial chemistry are some of the most im-
portant characteristics of 2D nanomaterials, which are generally required for biomedi-
cal applications.

• 2D nanomaterials showed a rippling or wrinkling effect in the case of out-of-plane
bending or folding, which allows cells to strongly attach and spread freely over
the underlying substrate [79]. This process of nanocomposite formation helped in
biomedical applications as strong cell attachment to the substrate is one of the desired
criteria for biomedical applications.

• Mechanical strain gradients allow electrical polarization, which can regenerate electri-
cally active tissues such as bone, neurons, and cardiac tissue [80].

• Two-dimensional nanomaterials can interact with cellular membrane in penetration
mode as well as attachment mode [79,81]. Hydrophobic attraction drives the pene-
tration mode interaction between the lipid layer of cellular membrane and the 2D
nanomaterials, whereas the hydrophilic interaction works for the interaction in attach-
ment mode.

• The lateral size of the 2D nanomaterials also determine the interaction mode between
the cellular membrane and 2D nanomaterials [79,81]. For example, nanomaterials
with similar dimensions to plasma membrane implement attachment mode, whereas
larger dimension nanomaterials utilize penetration mode.

6. Chitosan-2D Nanomaterial Scaffolds for Biomedical Applications

In recent years, 2D nanomaterials such as graphene, black phosphorus (BP), MoS2,
were increasingly utilized for various biomedical applications. A combination of chitosan
with 2D nanomaterials used for synergistic biomedical applications are listed in Table 2.
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Table 2. Chitosan (CS)-2D nanomaterial-based scaffolds and their applications.

Material Effect Ref.

CS-GO-1 Bone tissue regeneration in critical-size mouse calvarial defects [82]
CS-GO-2 Ability to support stem cell differentiation processes for bone tissue engineering [83]
CS-GAP Antibacterial scaffolds for hemorrhage control and wound-healing application [13]

CS-GO-Au Improvement of the ventricular contractility and function into infarcted heart
in rat model. [84]

Agarose/CS/GO Potential application in bone and osteochondral tissue engineering [85]
GO-composited CS Functional recovery of injured spinal cord in rats [86]

CS-GO-3 Cartilage tissue engineering [87]
GO/CS Cardiac tissue engineering [88]

CS/HC/HA/BP Photothermal scaffold for bone tumor-related application [14]
BP/CS/PRP Photothermal treatment of rheumatoid arthritis [89]

BP/CS composite The biocompatible polyetheretherketone (PEEK) scaffold provided similar
mechanical properties and architecture compared to that of the natural bone. [90]

QCS-MoS2-PVA Photothermal antibacterial activity against S. aureus and E. coli. [15]
BC/MoS2-CS Photodynamic and photothermal antibacterial activities against E. coli and S. aureus [91]

MoS2 doped CS/OD hydrogels Photothermal colon cancer treatment [92]
MoS2-LA-COS Photothermal antibacterial activity against S. aureus and E. coli. [93]

PHA-CS/MoS2
Antibacterial activity against multi-drug-resistant E. coli K1 and methicillin-resistant

S. aureus (MRSA) [94]

MX-CS Synergistic photothermal antibacterial activity against MRSA [95]
MX-CS-hyaluronate Antibacterial activity against E. coli, S. aureus, and Bacillus sp. [11]

MXene@CS Highly stretchable and sensitive wearable skin [96]
Abbreviations: CS: Chitosan, GO: Graphene oxide, GAP: graphene-silver-polycationic peptide, HC: hydrox-
ypropyltrimethyl ammonium chloride chitosan, HA: hydroxyapatite, BP: black phosphorus, PRP: platelet-rich
plasma, QCS: quaternized chitosan, BC: Bacterial cellulose, OD: oxidized dextran, LA: α-lipoic acid, COS: chitosan
oligosaccharide, PHA: polyhydroxyalkanoate, MX: Ti3C2Tx MXene.

6.1. Chitosan-Graphene

Graphene is a derivative of graphite, a thin 2D nanomaterial with high tensile strength
and electrical conductivity. Although there are promising results, the biocompatibility of
graphene is under debate. The addition of graphene 2D material to CS scaffold has shown
synergistic effects, tissue regeneration, and cardiac repair [13,84]. Hermenean et al. [82]
exploited CS-graphene oxide (GO) 3D scaffolds for bone tissue regeneration in critical-size
mouse calvarial defects. When combined with GO, CS scaffolds showed the synergistic
increment of alkaline phosphatase activity both in vitro and in vivo experiments, along
with an increased expression of bone morphogenetic protein (BMP) and Runx-2, and
showed its bone tissue regeneration ability. In a similar approach, Dinescu et al. [83] used
the GO with a CS-based 3D scaffold, which showed the formation of ordered morphologies
and a higher total porosity, combined with a greater surface availability for cell attachment.

CS-based graphene nanocomposites were successfully experimented on as antibacte-
rial scaffolds in hemorrhage control and wound-healing applications [13]. The nanobio-
composite scaffolds were fabricated by the incorporation of graphene-silver-polycationic
peptide (GAP) nanocomposite into CS (Figure 1). One of the CS-GAP scaffolds showed
excellent antibacterial activity against E. coli and S. aureus, along with excellent porosity,
fluid absorption, and mechanical strength. Saravanan et al. [84] also showed the impor-
tance of GO and Au nanosheet-based CS scaffolds for the improvement of ventricular
contractility and function into Infarcted Heart. The particle size of Au NPs was ~8 nm
utilized in the nanocomposite. In another experiment, Sivashankari et al. [85] exploited
agarose/CS/graphene composite scaffolds for its potential application in bone and osteo-
chondral tissue engineering. The functional recovery of injured spinal cord in rats was
successfully achieved through using GO composite-based CS scaffolds [86]. The various
examples of cartilage tissue engineering [87] and cardiac tissue engineering [88] was also
achieved through using synergistic GO-based CS scaffolds.
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6.2. Chitosan-Black Phosphorus

Black phosphorus (BP) has risen up with huge potential due to its favorable physio-
chemical properties [97–99]. Unlike graphene, BP has its own biocompatible and biodegrad-
able properties. It showed excellent photo active properties, as well as photothermal anti-
cancer or antibacterial applications [99,100]. It is worthy to note that the degradation prod-
ucts of BP are safe PO4

3− and are capable of enhancing the osteogenesis process. However,
the instability of BP hindered its usage in biomedical applications [77,99]. Zhao et al. [14]
used chitosan/hydroxyapatite/black phosphorus (CS/HC/HA/BP) hybrid photothermal
scaffold (Figure 2) to solve bone tumor-related complications. CS not only stabilized the
BP-based scaffold but also synergistically act for simultaneous antitumor/antibacterial
properties under the photothermal stimulation of <50 ◦C. In another work, BP nanosheets
were combined with platelet-rich plasma (PRP)-chitosan thermo responsive hydrogel for
the preparation of a therapeutic platform for the phototherapy treatment of rheumatoid
arthritis [89]. This injectable CS thermo-responsive hydrogel was able to control the degra-
dation products of the BP nanosheets, which were simultaneously used as raw materials
for osteanagenesis. Moreover, this hydrogel could protect articular cartilage by reducing
the friction on the surrounding tissue. Similarly, He et al. [90] prepared layer-by-layer
assembled BP/CS composite coating for a multi-functional bone scaffold for osteosar-
coma management and bone repair. Th size of BP was ~200 nm. The biocompatible
polyetheretherketone (PEEK) scaffold provided similar mechanical properties and architec-
ture compared to that of the natural bone.
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6.3. Chitosan-MoS2

Among the 2D-layered transition metal dichalcogenides, molybdenum disulfide
(MoS2) in particular, has shown promising results for applications in environmental and
biomedical fields [101,102]. In this regard, Mutalik et al. [103] showed the potential of
the phase dependent. The MoS2-based hydrogels showed excellent mechanical prop-
erties, along with intrinsic NIR region absorption for useful photothermal conversion
efficiency [104]. However, the negative charge surface of MoS2 limits its interaction with
cells [91]. Therefore, coating of MoS2 with a cationic biocompatible agent such as CS seemed
to be an excellent strategy for more cellular interaction with synergistic nanocomposites.
Additionally, the poor hydrophilic property of MoS2 can be modified with CS coating.
Therefore, the combination of CS with MoS2 seems to have lots of synergistic potential for
various biomedical applications.

Yan et al. [15] used a quaternized chitosan (QCS)-coated MoS2/poly(vinyl alcohol)
hydrogel (Figure 3) for NIR-responsive photothermal antibacterial activity against S. aureus
and E. coli. The incorporation of QCS- MoS2 seemed to increase the mechanical properties of
the hydrogel. Similarly, Shen et al. [91], developed in situ grown bacterial cellulose/MoS2-
chitosan nanocomposite (BC/MoS2-CS) for excellent photodynamic and photothermal
antibacterial activities against E. coli and S. aureus under visible-light illumination. The
cationic CS coating enabled the nanocomposite for more bacteria interaction, which eventu-
ally led to bacteria cell killing. Moreover, CS also seemed to potentiate the antibacterial
activity of the nanocomposite by bacterial membrane disruption and/or permeability.

MoS2-based CS hydrogels were also utilized for colon cancer treatment [92]. In
this experiment, MoS2 nanoflower was doped into CS/oxidized dextran hydrogels and
then used for sequential delivery of methotrexate (MTX) and 5-Fluorouracil (5-FU). The
NIR irradiation onto the nanocomposite generated hyperthermia due to the presence of
MoS2, which led to the consequent release of 5-FU encapsulated. In other experiments,
Xu et al. [93] and Mukheem et al. [94] showed photothermal antibacterial activity of CS-
based MoS2 hydrogels.
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6.4. Chitosan-MXene

Transition metal carbide (MXene) is another 2D material which has shown excellent
photothermal properties and biocompatibility, which can be utilized for various biomedical
applications [105]. However, it also tends to aggregate in the physiological environment,
which limits its usage in biological applications. CS, in combination with MXene, has been
shown to be a stable nanocomposite [95,105]. Further, CS and MXene combination shows
higher porosity, which is an essential criterion for any functional hydrogel.

Dong et al. [95] prepared Ti3C2Tx MXene-loaded chitosan (MX-CS) hydrogel for
photothermal synergistic activity against methicillin-resistant S. aureus. The MX-CS hy-
drogel not only adsorb MRSA cells via CS-MRSA interactions, but it can also kill the
bacteria by NIR-irradiated photothermal hyperthermia. In another study, the porosity of
CS-hyaluronate matrix hydrogel nanocomposites was controlled by the addition of 2D
Ti3C2Tx MXene [11]. Due to the large porosity of the nanocomposite, a small amount of
MXene (1–5 wt.%) in CS-based hydrogel was effective against E. coli, S. aureus, and Bacillus
sp. bacteria. In a different application, Liu et al. [96] utilized a MXene@CS based conductive
polyacrylamide hydrogel for highly stretchable and sensitive wearable skin.

7. Conclusions and Future Perspectives

Chitosan-based materials were utilized for many biomedical applications, such as
antibacterial activity, wound healing, anticancer activity, and tissue engineering (bone,
cartilage, cardiac, dental, skin, etc.) applications, etc. However, there are certain limitations
of CS alone as a scaffolding material in biomedical applications which include: (1) lacking
sufficient mechanical strength, (2) porosity, and (3) solubility. However, the current re-
search shows that the combination of CS with other 2D nanomaterials not only overcomes
these limitations but also seems to complement and elicit synergistic effects, including the
mechanical strength and porosity. In short, it is valid to say that significant progress has
been made for CS-based scaffolds and their biomedical applications. Two-dimensional
nanomaterial-based CS scaffolds also showed great promise in clinical application. Addi-
tionally, CS-2D nanomaterials scaffolds can also be experimented for wrapping around the
vessels in vascular surgery procedures, as previously performed through CorMatrix in our
lab [106]. However, significant challenges, such as the ineffective delivery of growth and
large scale reproducibility, still need to be overcome as the translation from the lab scale
into clinical trials has been limited due to the industrial-scale production quantities and
quality. Hence, a different approach for large scale production, such as cross flow filtration
(CFF) [107], or some other process to enhance the large-scale production of CS should be
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executed. Overall, it is fair to conclude that, despite having some limitations to deal with,
CS is an excellent base material, whereas other nanomaterials, such as 2D nanomaterials,
can be utilized for more direction- and application-oriented research work.
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