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Abstract: Rubber (Hevea brasiliensis) plantations have high water consumption through evapotranspi-
ration, which can contribute to water scarcity. In addition, there is a lack of spatial observation data
and estimation methods for evapotranspiration (ET) for rubber plantations. To alleviate the water
stress of expanding rubber plantations caused by seasonal drought in Xishuangbanna, Southwest
China, an up to 7 days crop evapotranspiration (ETc) forecast method, “Kc-ET0” for rubber planta-
tions with limited meteorological data, was proposed by using rubber crop coefficient Kc and public
weather forecasts. The results showed that the average absolute error (MAE) of forecasted ETc was
0.68 mm d−1, the root mean square error (RMSE) was 0.85 mm d−1, and the average correlation
coefficient (R) was 0.69 during the rainy season, while during the dry season these metrics were
0.52 mm d−1, 0.68 mm d−1, and 0.85, respectively. The accuracy of ETc forecast in the dry season was
higher. Additionally, Kc was the main factor influencing the accuracy of rubber plantations ETc fore-
cast, while the accuracy of the temperature forecast and the chosen Hargreaves-Samani (HS) model
were also considerable. Our results suggested that the “Kc-ET0” short-term rubber plantation ETc

forecasting method shows good performance and acceptable accuracy, especially in the dry season.
The study provides an important basis for creating ET-based irrigation scheduling for improving
regional-scale water management in high water consumption rubber plantations.

Keywords: crop evapotranspiration; rubber plantations; public weather forecasts; crop coefficient;
Hargreaves-Samani (HS) model

1. Introduction

Evapotranspiration (ET) is considered a key process in biosphere-atmosphere ex-
change that is closely linked to biochemical cycles and hydrologic cycles [1–3]. Crop
evapotranspiration (ETc) is a fundamental component of agrohydrology that influences
interactions among soil–vegetation-atmosphere systems, as well as irrigation scheduling de-
sign related to agricultural practices [4]. ETc can be measured based on water balance [5,6],
micrometeorology [1,7], and remote sensing [8,9], which are usually difficult in terms of
being time-consuming and having high costs on a large scale. However, ETc forecasting is
the basis for irrigation scheduling design and is an effective way to mitigate disasters in
agricultural production from extreme weather events [10,11]. Researchers have proposed
an ETc forecasting method based on reference evapotranspiration (ET0) calculated using
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weather information and the corresponding crop coefficient (Kc), which has been named
the “Kc-ET0” method in the literature [4,12,13].

ET0 is the key to real-time ETc forecasting and an important indicator for revealing
global and regional agricultural climate change, drought disasters, and ecological envi-
ronment monitoring [14–17]. Although ET0 can be directly measured by lysimeters, it
is a high cost and complex technical device for long-term monitoring or at the spatial
scale. Alternatively, ET0 estimation models based on meteorological variables including
the Penman-Monteith model (PM) [18], Priestley-Taylor model [3], Hargreaves-Samani
model [19,20], and Irmark-Allen model [21] are widely used. The CROPWAT irrigation
model was developed using the Penman-Monteith model (PM) and the single crop coeffi-
cient method [22]. A fundamental obstacle to PM calculations is the frequent absence of
large amounts of meteorological data. While the Hargreaves-Samani (HS) model, based on
easily accessible air temperature and solar radiation data, has been recommended by the
FAO (Food and Agriculture Organization, Rome, Italy) as the alternative method to the PM
method when meteorological data are limited, which stated that “Hargreaves’ method has
shown reasonable ET0 results with a global validity” [18]. Many other studies [3,23–25]
have used the HS model to estimate ET0. The advantages and challenges of using the
HS-based “Kc-ET0” approach to forecast ETc have also been reported [4,13,26,27]. The
public weather forecast (PWF) contains air temperature, weather type, and wind scale,
which have been widely used as input parameters to forecast ET0 in China [1,28–31].

Rubber plantation areas have significantly increased in Xishuangbanna, Southwest
China, since the 1960s. The total area of rubber plantations reached 571,400 ha in 2018
with a growth rate of up to 76%. It has since been extended to “non-traditional” areas
(colder and drier) 10◦ N/S of the Equator and over 600 m a.m.s.l., and has replaced large
amounts of natural forest and agricultural land. Natural rubber is a commercial tree and
has an annual evapotranspiration 28–30% higher than that of tropical rainforests [6,32].
Rubber plantation expansion has raised concerns regarding its negative impacts on regional
hydrological processes, including water balance and water cycling [33–35]. Ling et al. [5] es-
timated that the evapotranspiration of rubber plantations was 1035.91 mm yr−1 higher than
natural forests at Xishuangbanna. Giambelluca et al. [7] reported that the average annual
evapotranspiration of rubber plantations in Thailand and Cambodia were 1211 mm and
1459 mm, respectively, higher than that of other tree-dominated land covers in the region,
including tropical seasonal forest (812–1140 mm yr−1) and savanna (538–1060 mm yr−1).
Compared with tropical rainforests or rubber plantations in other regions, the transpi-
ration water consumption of rubber plantations in Xishuangbanna is much higher. The
annual evapotranspiration of four different rubber plantations of different ages was about
34.95–83.34% of the total precipitation in Xishuangbanna [36]. Rubber-tree-induced water
stress during the dry season causes the tapping of water from deeper soil layers and has
caused a significant drop in groundwater table [37,38].

Additionally, Xishuangbanna is located in the south of the Longitudinal Range-Gorge
Region, which has complex water-air circulation processes and multiscale correlations
regarding “channel-barrier” effects on atmospheric circulation and heat distribution, and
which has experienced seasonal meteorological disasters of moderate and locally severe
drought in recent years [39,40]. Water shortages have threatened rubber plantations,
since high water consumption in the hot dry season (March–April) leads to seasonal
drought [6,41–44].

A literature survey reveals that although both experimental and numerical studies
have been carried out on the evapotranspiration of rubber trees, short-term forecasting
of the ETc of rubber plantations is of vital importance for improving regional-scale water
management in high-water-consuming rubber plantations, and studies on ETc forecasts in
regional expansion “water pumps” rubber plantations are rare due to lacking meteorologi-
cal data. Moreover, improving the process of understanding and the forecasting accuracy
of regional rubber plantations ETc to reduce negative consequences for seasonal water
resources shortage is an urgent need, especially in Xishuangbanna in Southwest China.
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The main objectives of our research are therefore to: (1) propose and apply an approach
for forecasting the ETc values of rubber plantations based on limited meteorological data,
public weather forecasting information, and the HS model; (2) evaluate the accuracy of
the ETc daily forecasts using the result of the Bowen ratio-energy method at the experi-
mental sample sites; and (3) identify the uncertainty sources and compare their impact on
forecasting ETc.

2. Materials and Methods
2.1. Study Area

The study site is located in Bubeng Village, Xishuangbanna, Southwest China (21◦34′10′′

N, 101◦35′24′′ E) (Figure 1). One of the meteorological observation stations sits up in Mengla
(21◦28′ N, 101◦35′ E) near the Yunnan Meteorological Service Bureau. The average annual
temperature is 21.5 ◦C. The average annual sunshine duration is 1853.4 h. The multi-year
average annual rainfall was 1599 mm from 1970 to 2017, while the dry season (from Novem-
ber to April) only receives about 15% of the annual precipitation [5]. The rubber plantation
of our study site was transformed from an original tropical monsoon forest with a slope
length of approximately 300 m. Rubber trees were planted at 300 ± 50 trees ha−1. A small
number of shrubs and weeds grow under the rubber forest. The characteristics of the
rubber plantation in the experimental site are presented in Table 1.
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Figure 1. The experimental site of a rubber plantation (indicated by a solid square; 21◦34′10′′ N,
101◦35′24′′ E) in Xishuangbanna, Yunnan Province, Southwest China. Mengla indicated by a yellow
circle (21◦28′ N, 101◦35′ E) (a) Location of area; (b) Observed sample rubber plantation; (c) Automatic
meteorological system stations (WS-BR06, Campbell, CA, USA) and Drain gauge G3 (METER,
Pullman, WA, USA).
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Table 1. Characteristics of the rubber plantation and the experimental site.

Planting Year Location Altitude (m) Slope (◦) Plot Area (m ×m)
Mean Stem
Diameter

(cm)
Tree Height (m)

Planting
Density

(Trees/ha)

2001 21◦34′10′′ N
101◦35′24′′ E 726 22 200 × 200 17 ± 2 11.58 ± 2.3 300 ± 50

2.2. Data
2.2.1. Meteorological Data

The daily meteorological data for the period of 2000–2015 were collected from the
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn, accessed on 23
November 2020) and Yunnan Meteorological Service Bureau. The trend of meteorological
variables in Mengla is shown in Figure 2. The public weather forecast data from 2016 were
acquired from Weather China (http://www.weather.com.cn, accessed on 12 December
2020). The framework of the rubber plantation ETc forecast is shown in Figure 3. The
weather forecast data include daily maximum air temperature (Tmax) and daily minimum
air temperature (Tmin) forecasts for 7-day forecasting horizons, and the observed daily
meteorological data include Tmax and Tmin, mean temperature (Tmean), relative humidity,
average wind speed, and sunshine duration. ET0 forecasts were calculated by the calibrated
HS model using the temperature forecast data from 2016 as input parameters. The observed
meteorological data were divided into three parts: the calibration period (2000–2012), the
validation period (2013–2015), and 2016 was the test period.
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Figure 3. Framework of the rubber plantation ETc forecast integrating public weather forecast data
with the “Kc-ET0” method using the HS model. (RH, relative humidity; SD, sunshine duration;
WS,wind speed; ET0, reference evapotranspiration; ETc, crop evapotranspiration; Kc, the crop coef-
ficient; Ks, soil water stress coefficient; MAE, the average absolute error; R, the average correlation
coefficient; RMSE, the root mean square error).

Furthermore, the accuracy of ET0 predictions was assessed by comparing the fore-
casted and calculated ET0 values using observed weather data into the FAO56-PM model.
Daily ETc forecasts were based on ET0 predictions using the temperature forecast and
multiplied by values of the rubber crop coefficient (Kc) and the soil water stress coefficient
(Ks). Finally, the proposed ETc forecast method in our research was verified by comparing
the ETc forecast values with the observed values of the experimental sample site in 2016.

2.2.2. The Observed ETc and Soil Water Content

The ETc of the rubber plantation based on the meteorological and energy data mea-
sured by the Bowen ratio system at Mengla in the experimental sample site in 2016 are
considered as observed ETc to validate the model forecasting results. The volumetric water
content (VWC, %) of soil moisture was automatically recorded at 10, 20, 30, and 40 cm
depths, respectively, via sensors (ECH2O 5TE, Pullman, WA, USA) sampled. The ETc was
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1035.91 mm and the average daily ETc was 2.83 mm d−1. The ETc was 630.19 mm in the
rainy season, 211.67 mm in the cool-dry season, and 194.05 mm in the hot-dry season. The
VWC values varied from 0.22 to 0.37 cm3/cm3 throughout the whole year.

2.3. Calculation of Reference Evapotranspiration
2.3.1. Hargreaves-Samani (HS) Model

The temperature and extraterrestrial-radiation-based Hargreaves-Samani (HS) model,
as expressed in Equation (1), is used in the study to forecast daily ET0 [29,45–47].

ET0,HS = C · Ra(Tmax − Tmin)
E · [(Tmax − Tmin)/2 + 17.8] (1)

where ET0,HS is the ET0 value calculated by the HS model, mm d−1; Ra is the extraterrestrial
radiation, MJ m−2 d−1; Tmax and Tmin are the maximum and minimum temperatures, ◦C;
C is an empirical coefficient, which is 0.0023, and E is an exponent, which is 0.5 [46,48–50].
Values of parameters E and C need to be locally determined by calibration. The HS method
has been recommended by the FAO as the alternative method to the PM method when
meteorological data are limited [18].

2.3.2. Penman-Monteith Model

The Penman-Monteith method is recommended by the Food and Agriculture Organi-
zation of the United Nations (FAO) and the World Meteorological Organization (WMO)
as the standard method by which to calculate ET0 and for the evaluation of other meth-
ods [51–54]. Therefore, in this study, the ET0 value calculated by the PM model was used
as a standard reference to calibrate the parameters C and E of the HS model.

The PM method is expressed as follows:

ET0 =
0.408∆ (Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(2)

where ET0 is the reference crop evapotranspiration, mm d−1; G is the soil heat flux,
MJ m−2 d−1; Rn is the net canopy surface radiation, MJ m−2 d−1; u2 is the mean wind
speed at 2 m (which is converted from the wind speed at 10 m), m s−1; T is the mean air
temperature, ◦C; ea is the actual water vapor pressure, kPa; es is the saturated water vapor
pressure, kPa; γ is the hygrometer constant, kPa/◦C; and ∆ is the saturated water vapor
pressure—temperature slope, kPa/◦C.

The PM equation is established on physical and aerodynamic parameters, and thus
produces reliable ET0 results in most climates without local calibration. Many studies have
also confirmed the superior performance of the PM method in various climates [51–54].
Thus, the PM method was used as a reference to calibrate the HS model based on the
nonlinear least squares method in this study. The observed meteorological data were
provided as an input into the PM equation and the output ET0 results were used to quantify
the accuracy of the forecasted ET0 computed using the HS models.

2.3.3. Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc)

In the study, the ETc of vegetation is calculated as follows:

ETc = Ks × Kc × ET0 (3)

where ETc is the crop evapotranspiration under nonstandard conditions, mm d−1, and Ks
is the soil water stress coefficient, and in rubber plantations it can be calculated using the
following equation [55]:

Ks =

{
1, θ ≥ θthr

θ−θwp
θthr−θwp

, θwp ≤ θ < θthr
(4)
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where θ is the soil volume water content, %; θwp is the soil volume water content at withering,
%; and θthr is the critical the soil volume water content, %; where θthr = (1− p)θ f c + pθwp,
θ f c is the field water holding capacity, %; p is the ratio of water available in the rhizosphere
to the total water, and, for the rubber plantation, is taken as 0.4 [18].

In our research, the observed ETc value (as ETc,obs) was measured by the Bowen ratio
system at rubber plantations at the study site. The meteorological parameters monitored
by automatic weather stations for the same time period were used for the calculation of
the ET0. The crop coefficient (Kc) in rubber plantations under nonstandard conditions was
calculated as follows [56]:

Kc =
ETc,obs

ET0 · Ks
(5)

All notations are as defined above.

2.4. Model Evaluation Criteria

To evaluate the accuracy of ET0 forecasts using the HS model and ETc forecasts of
the rubber plantation in our study site, three indices, i.e., mean absolute error, MAE,
root-mean-square error, RMSE, and correlation coefficient, R, were calculated as follows:

MAE =
n

∑
i=1
|xi − yi|/n (6)

RMSE =

√
n

∑
i=1

(xi − yi)
2/n (7)

R =

[
n

∑
i=1

(xi − x)(yi − y)

]
/

[√
n

∑
i=1

(xi − x)2

√
n

∑
i=1

(yi − y)2

]
(8)

where xi is the forecasted value of each meteorological factor or the ET0 value; yi is the
observed value of each meteorological factor or the ET0 value calculated by FAO56-PM; i is
the forecasted sample number (i = 1, 2 . . . ); x is the average value of xi; y is the average
value of yi; and n is the number of forecast values. The statistical indices MAE, RMSE, and
R for evaluating the accuracy of (i) forecast versus observed Tmax and Tmin, and ET0, (ii) HS
versus PM (ET0 in calibration and validation), (iii) ETc estimated versus ETc were observed.

2.5. Sensitivity Analysis

To investigate the impact of the errors in input variables, Tmax and Tmin, and model
parameter Kc on ETc, a sensitivity analysis was performed using the mean values of the
ETc in the dry and rainy seasons as base values. ETc was analyzed in terms of changes in
Tmax and Tmin, and Kc values within a range of ±20% in 5% steps. During the process, ETc
values were computed using the proposed method by changing one parameter at a time
while keeping the other parameters constant [57].

3. Results
3.1. Evaluation of Weather Forecast (Tmax, Tmin)

We compared the observed and forecasted temperature values at Mengla in Xishuang-
banna (Table 2). It was seen that the accuracy of temperature forecasting declined with
increasing lead time. The MAE, RMSE, and R of the Tmax forecast ranged from 1.74 to
2.10 ◦C, 2.37 to 3.16 ◦C, and 0.84 to 0.75, respectively, for the lead time from 1 to 7 days.
For the Tmin forecast, the MAE, RMSE, and R ranged from 1.39 ◦C to 1.91 ◦C, 1.87 ◦C to
2.44 ◦C, and 0.93 to 0.83. The observed and forecasted temperature variables had strong
linear relationships, as measured by the R values. All statistical indicators showed that the
air temperature forecasts had good accuracy for ETc forecasting.
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Table 2. The Tmax and Tmin forecasts statistical index.

Lead Time
(Day)

Tmax Tmin

MAE (◦C) RMSE (◦C) R MAE (◦C) RMSE (◦C) R

1 1.74 2.37 0.84 1.39 1.87 0.93
2 1.76 2.43 0.85 1.42 1.88 0.93
3 1.76 2.45 0.84 1.49 1.96 0.91
4 1.77 2.49 0.83 1.84 2.52 0.85
5 1.93 2.71 0.81 1.77 2.33 0.87
6 2.01 2.89 0.77 1.92 2.41 0.83
7 2.10 3.16 0.75 1.91 2.44 0.83

Average 1.86 2.64 0.81 1.68 2.20 0.88
MAE, the average absolute error; R, the average correlation coefficient; RMSE, the root mean square error.

3.2. Calibration and Validation of the HS Model

The HS model was calibrated against the PM model using observed data; the opti-
mized values for C and E were 0.002 and 0.43, respectively, which were different from the
default parameter values (C was 0.0023 and E was 0.5) [46] due to the different area and
climate conditions. However, the C and E values were close to the suggested values by
Hu et al. [48], who calibrated the HS model against PM model over 105 climate stations
in China.

The results showed that the calibrated HS model had great applicability in the study
region. As shown in Figure 4a, the scatter plot of original data points calculated using
default C and E values is biased with a slope of 1.35, and the ET0 values calculated by the
Hargreaves-Samani equation (as ET0,HS) are much greater than the ET0 values calculated
by the Penman-Monteith equation (as ET0,PM) (Figure 4b). After calibration, the slope of
the linear correlation is 0.98, which is very close to 1, and in the validation period it is 0.95,
indicating a very good performance (Figure 4a). In the calibration periods, the accuracy of
MAE improved from 1.20 to 0.36; the RMSE improved from 1.30 to 0.45. In the validation
periods, the accuracy of MAE improved from 1.20 to 0.35, the RMSE improved from 1.30
to 0.46 (Table 3). Figure 4b shows a time series comparison of ET0,HS and ET0,PM in the
calibration and validation periods. Overall, the accuracy of the calibrated HS model could
be used for forecasting ET0 values in the study site.
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Figure 4. (a,b) The ET0 calibration and validation of the HS model.

Table 3. Statistical indices of ET0 calculated by the HS model.

Original
(2000–2015)

Calibration Period
(2000–2012)

Validation Period
(2013–2015)

MAE
(mm)

RMSE
(mm d−1) R MAE

(mm)
RMSE

(mm d−1) R MAE
(mm)

RMSE
(mm d−1) R

HS 1.20 1.30 0.88 0.36 0.45 0.89 0.35 0.46 0.91

3.3. The Analysis of ET0 Forecasts

The daily ET0 forecast values (as ET0,for) for 1-, 4-, and 7-day horizon forecasts and
ET0,PM for rubber plantations are displayed in Figure 5. The ET0,for forecasts for rubber
plantations range from 0.76 to 5.86 mm d−1. Despite some over-predicted and under-
predicted values, 1-, 4-, and 7-day horizon ET0,for values follow the trend of ET0,PM values.
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Figure 5. The ET0 for 1-, 4-, and 7-day forecast periods and the daily variation of ET0,PM in 2016 (1
January 2016–31 December 2016).

The average values of the three statistical indicators of ET0 for the dry and rainy
seasons in the 1–7-d ahead forecasting period in Xishuangbanna are shown in Table 4. In
the dry season, the MAE was 0.43 to 0.52 mm, RMSE was 0.54 to 0.65 mm, and R was
0.91 to 0.85. While, in the rainy season, the MAE was 0.47 to 0.57 mm, RMSE was 0.58
to 0.72 mm, and R was 0.83 to 0.69 (Table 4). The deviation of daily ET0,for values during
the rainy season was relatively lower than that during the dry season. The accuracy of
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the three statistical indicators indicated that the performance of the ET0 forecast slightly
decreased with the increase in lead time regardless of the dry season or the rainy season.

Table 4. Statistical indices of the ET0 forecasts during 2016.

Lead Time
(Day)

Dry Season Rainy Season

MAE
(mm d−1)

RMSE
(mm d−1) R MAE

(mm d−1)
RMSE

(mm d−1) R

1 0.52 0.62 0.91 0.47 0.58 0.83
2 0.43 0.54 0.90 0.49 0.60 0.77
3 0.45 0.56 0.89 0.50 0.62 0.76
4 0.48 0.60 0.88 0.51 0.63 0.75
5 0.48 0.61 0.87 0.51 0.63 0.74
6 0.52 0.65 0.85 0.57 0.72 0.72
7 0.52 0.65 0.85 0.57 0.72 0.69

Average 0.49 0.60 0.88 0.52 0.64 0.75

3.4. Results of Calculated Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc)

The growing season of the rubber plantation was split into four standard stages, i.e.,
the initial period, the rapid-growth period, the mid period, and the late period [18]. The
length of the crop development stage at Xishuangbanna Tropical Botanical Garden follows
that determined by the Chinese Academy of Science.

The Soil Water Stress Coefficient (Ks) was deduced with the measured soil water
content of the rubber plantation sample site (Figure 6) that ranged from 0.55 to 1.00. The
average values of Ks in each growing period of rubber plantations are as follows. In the
initial-period, Ks is 0.75; in the rapid-growth period it is 0.89, in the mid period it is 1.00, and
in the late period it is 0.92. While the crop coefficient (Kc) of rubber plantations calculated
using Equation (5) (Figure 7) for the growing period ranges from 0.72 to 1.49. In the initial
period, it is 0.89, in the mid period it is 1.10, and in the late period it is 0.91. The calculated
Kc value in each growing period of the rubber plantations was taken as the basic parameter
by which to calculate the multiyear ETc of the rubber plantations in Xishuangbanna.
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3.5. Performance of ETc Forecasts

The forecast accuracy of the 7-day horizon forecast values compared with the ETc
values of the PM method in 2016 is presented in Table 5. The differences in the forecast
values were not significant. In the rainy season, the MAE was 0.57–0.65 mm d−1, RMSE
was 0.73–0.83 mm d−1, the R ranged from 0.70–0.65. While in the dry season, these values
were 0.61–0.65 mm d−1, 0.82–0.85 mm d−1, and 0.82–0.79, respectively.

Table 5. Forecast accuracy of ETc in rubber plantations in 2016.

Lead
Time

(d)

Dry Season Rainy Season

MAE
(mm d−1)

RMSE
(mm d−1) R MAE

(mm d−1)
RMSE

(mm d−1) R

1 0.64 0.85 0.82 0.57 0.73 0.70
2 0.61 0.82 0.80 0.59 0.75 0.69
3 0.62 0.83 0.80 0.60 0.77 0.68
4 0.62 0.84 0.81 0.63 0.81 0.65
5 0.61 0.82 0.81 0.64 0.82 0.65
6 0.63 0.84 0.80 0.65 0.83 0.65
7 0.65 0.85 0.79 0.65 0.83 0.65

Average 0.63 0.84 0.80 0.62 0.79 0.67

The variations of the 1-day, 4-day, and 7-day ETc forecast values (as ETc,for) and the
precipitation during the dry season and the rainy season in 2016 are shown in Figure 8.
The ETc,for values followed the same variation patterns as the ETc,obs values, and captured
most of the important daily fluctuations for rubber plantations, except for a small number
of predicted values. Precipitation in the rainy season (up to 1241.6 mm) is about four
times that in the dry season (324 mm). The ETc,for values have larger fluctuations than the
measured ETc,obs values in the rainy season.

3.6. The Results of the Sensitivity Analysis

The HS model has been commonly chosen in ETc calculations due to its good per-
formance and easy use. However, it is worth noting that the ETc forecast has uncertainty
associated with it.

The temperature forecast error directly affects the accuracy of ET0 forecasts, which in
turn leads to ETc forecast errors. This study shows that ETc forecasts are less influenced by
temperature forecast errors; only −0.38 to 0.14 mm day−1 in the rainy season for a 1-day
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forecast (Figure 9b). ETc forecasts are more influenced by temperature forecast errors in
the dry season when a ±20% temperature forest error results in a −1.47 to 0.94 mm day−1

error in ETc forecasts (Figure 9c).
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Meanwhile, the ETc errors also come from the mean values of Kc. For illustrative
purposes, the effect of Kc error on ETc forecast is shown in Figure 10, where it compares
the ETc,obs values and ETc,for values for the 1-day lead time temperature forecast in 2016
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(Figure 10a). In the dry season, the error between the forecasted ETc with original Kc and
with observed ETc value is 11.39%. The error between the estimated ETc with calibrated
Kc and observed ETc value is 3.91%. In the rainy season, the errors are −7.05% and
−0.99%, respectively.
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Figure 10. The influence of Kc on ETc,for (a) comparisons of original Kc values and calibrated Kc

values; (b) single factor method on Kc error on ETc forecast sensitivity analysis.

The sensitivity of the ETc forecast to Kc is shown in Figure 10b. The ETc forecast
error is −0.51 to 0.51 mm day−1 in the dry season and −1.24 to 1.24 mm d−1 in the rainy
season when the Kc error varies from −20% to 20%. The rainy season is the peak growing
period of rubber trees with higher ETc. The temperature forecast errors and the Kc value
error vary from −20% to 20%; the ETc forecast error is −0.38 to 0.14 mm d−1 and −1.24 to
1.24 mm d−1, respectively.

4. Discussion

In our research, a “Kc-ET0” method was proposed to forecast the short-term daily ETc
of rubber plantations using weather forecast information and the HS model. ET0 is the key
to real-time ETc forecasting. The quality of the weather forecasts is checked as it affects daily
ET0 forecasts. We analyzed the performance of temperature for a lead time of 1–7 days.
For both Tmax and Tmin, the average R values ranged from 0.81 and 0.88, respectively; i.e.,
the observed and forecasted temperature variables had strong linear relationships. The
Tmin forecasts had a relatively better performance than that of Tmax, and this result is in
accordance with most of the previous findings in China [30,58,59]. We concluded that the
accuracy of the minimum and maximum air temperature forecast was acceptable for ETc
forecasts in Xishuangbanna.

The HS model was calibrated using ET0,PM. Due to the different area and climate
conditions, the calibrated parameter C was 0.002, which agreed well with the original value
(0.0023). The parameter E was 0.43 which was slightly lower than the original value of
0.50 [41]. The calibrated values of C and E for HS were suitable for the ET0 modeling of
Xishuangbanna. The calibrated ET0 values calculated were closer to the line y = x compared
with the PM method than the uncalibrated models, and with R = 0.91. Regional calibration
increased the goodness-of-fit between all of the ET0 values calculated by the HS model and
ET0,PM [60,61].

The changes in ET0,for in the 1–7 day lead time strongly matched with ET0,PM through-
out the rubber plantation growing period. With the increase in lead time, the accuracy of
the ET0 forecast slightly decreased, which was caused by the decreasing accuracy of the
temperature forecast mentioned above. The accuracy of ET0 daily forecasts in the rainy
season was slightly lower than in the dry season, which may be attributed to the HS model
ignoring the effects of wind speed and relative humidity, which vary more in the rainy
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season [62]. However, the forecasted ET0 results using the HS model were considered
reliable for estimating ETc, as revealed from the accuracy metrics.

The length of the crop development stage was different from that recommended by
FAO-56, likely due to the differences in climate regions, elevation, crop varieties, and
cropping conditions [18]. In our study, we considered the soil water stress coefficient (Ks),
which is obtained through observed soil water content because rubber plantations are
suffered from water stress during their growth period [63]. Then, the calculated Kc of
different growth periods is closer to the actual local situation.

The initial Kc value (0.89) was slightly less than the value obtained by the procedure
proposed by Allen et al. [18] (0.95). The Kc value for the mid period (1.10) was slightly
larger than the value obtained by the process recommended by Allen et al. [18] (1.00). The
late season Kc value (0.91) was lower than the value proposed by Allen et al. [18] (1.00).
This deviation could be due to different rubber plantation varieties and climate regions,
among others [4,13]. It should be noted that the Kc value was estimated based on 1-year
experiment data in our research. Longer series of measured data is advisable to improve
the accuracy of Kc estimation and the forecasting performance for ETc [4].

The performance of ETc,for in the dry season (R = 0.85) was better than that in the rainy
season (R = 0.69). Precipitation can influence air temperature, which impacts the accuracy
of the ET0 forecasts, which, in turn, directly influences the accuracy of ETc through “Kc-ET0”
method. No matter whether in the dry season or the rainy season, the accuracy of ETc,for
is slightly lower than that of ET0,for, but fulfills the requirement of rubber plantations ETc
forecast. Compared with ETc,obs, the deviation of ETc,for values increased with the increase
in forecast lead time. The forecast error is lower in the dry season than in the rainy season.
Rubber plantations usually suffer from drought during the dry season, so accurate ETc,for
in the dry season could provide guidance pertaining to water allocation decisions.

The temperature forecast error, Kc, and the HS model are the main sources of uncer-
tainty associated with ETc forecasts. After sensitivity analysis, we found that the maximum
positive error occurs when the maximum temperature forecast fluctuates by 20% and the
minimum temperature forecast fluctuates by −20%, while the maximum negative error
occurs when the maximum temperature forecast fluctuates by −20% and the minimum
temperature forecast error fluctuates by 20%. The negative error is much larger than the
positive error [24].

Both Tmax and Tmin forecasts may lead to errors, but, in general, its influence is
relatively smaller than that caused by the Kc value error. Similar findings have been
reported in the study of Zhang et al. [13], although with different vegetation types. The
error is partly caused by the HS model. The HS model only considers temperature and
extraterrestrial radiation, and does not consider wind speed and relative humidity. It leads
to errors in ET0 estimation, which in turn affect the accuracy of ETc. This study shows that
using the locally calibrated values of parameters C and E in the HS model largely improved
the accuracy of ET0 forecasting, especially in a tropical and subtropical monsoon region
like Xishuangbanna [30,59]. Analysis of the overall results showed that the HS model was
suitable for forecasting ETc using the proposed approach.

The accuracy of rubber plantation ETc forecasts is expected to be further improved
when more meteorological variables are available and considered, or a more physical-based
model is used to estimate ET0.

5. Conclusions

Based on short-term weather forecasting and the HS model, the daily ETc forecasting of
a rubber plantation was conducted in the study. We evaluated the forecasting performance
of ETc by comparing observed data from actual rubber plantations at the experimental
sites, analyzed the differences between the forecasting performances of rubber plantations,
and also identified the ETc forecasts error sources and their sensitivity. The following
conclusions are drawn from the study.
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(1) The forecasting accuracy of ETc based on the “Kc-ET0” method in our research shows
good performance and acceptable accuracy. The accuracy of ETc forecasting in the
dry season is higher than that in the rainy season. The results indicate that the
proposed method is considered suitable for ETc forecasting of rubber plantations in
Xishuangbanna, Southwest China.

(2) ETc forecast errors come from temperature forecasts, the Kc value, and the HS model.
The HS model does not consider meteorological variables such as wind speed and
relative humidity. Using the locally optimized values of parameters, the results of HS
method are significantly improved. Compared to the temperature forecast, the error
in the Kc value has a larger impact on the error in the ETc forecast. The accuracy of
the Kc and forecasting performance for ETc can be improved if the observation time
of the actual data series is increased.

(3) Our study provides reference information for forecasting ETc using short-term weather
forecast data and a theoretical basis for rubber plantations in Xishuangbanna. It is
anticipated that the short-term forecasting approach of ETc for rubber plantations as
demonstrated in this study can be applied in larger regions for water management
and the water use efficiency of rubber plantations, allowing irrigation managers and
farmers to make ET-based irrigation schedules to increase the efficiency of water
applications based on the plant water requirements and soil processes.

It is worth noting that the value of Kc, a key parameter of the ETc forecast, in this study
was taken from the results of limited field observations. With the increasing availability
of Earth observation systems, the use of multispectral imagery such as LAI and albedo
is expected to improve the accuracy of crop parameter estimation. Advances in weather
forecasting and crop remote sensing will significantly contribute to the development of the
optimal management of water resources in precision agriculture.

Author Contributions: Conceptualization, Z.L., Z.S., S.G. and C.-Y.X.; methodology, Z.L.; investi-
gation, Z.L., T.X. and J.L.; validation, C.-Y.X.; resources, J.L.; data curation, Z.L.; writing—original
draft, Z.L.; writing—review and editing, Z.S., T.X., S.G., J.L. and C.-Y.X.; supervision, T.X.; project
administration, Z.S., S.G. and J.L.; funding acquisition, Z.S., T.X., S.G. and J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: The financial supported by the Special Basic Cooperative Research Programs of Yunnan
Provincial Undergraduate Universities Association (grant No. 202001BA070001-243). Major Program
for Basic Research Project of Yunnan Province (202101BC070002). Special Programs of Foreign
Expert Introduction of Yunnan Province (202205AO130029). National Key R&D Program for the
14th Five-Year Plan (No. 2021YFC3000205-06), demonstration project of comprehensive government
management and large-scale industrial application of the major special project of CHEOS (grant
number 89-Y50G31-9001-22/23-05), and the Scientific Research and Technical Innovation Team
Construction of Yunnan Province (No. 2018HC024). Project of Kunming University (No. XJ20210036).

Data Availability Statement: All spatial dataset files are available from Resource and Environment
Science and Data Center (URL: https://www.resdc.cn/, accessed on 10 October 2021). Map Audit
Number: GS(2019)1822.

Acknowledgments: The paper is base from parts of Zhen Ling’s Ph.D. thesis. which is about crop
evapotranspiration of rubber plantation research. We thank researchers in state key laboratory of
Water Resources and Hydropower Engineering Science, Wuhan University who provide suggestions
on revision for us.

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Liu, B.; Liu, M.; Cui, Y.; Shao, D.; Mao, Z.; Zhang, L.; Luo, Y. Assessing forecasting performance of daily reference evapotranspira-

tion using public weather forecast and numerical weather prediction. J. Hydrol. 2020, 590, 125547. [CrossRef]
2. Qiu, R.; Liu, C.; Cui, N.; Wu, Y.; Wang, Z.; Li, G. Evapotranspiration estimation using a modified Priestley-Taylor model in a

rice-wheat rotation system. Agric. Water Manag. 2019, 224, 105755. [CrossRef]

https://www.resdc.cn/
http://doi.org/10.1016/j.jhydrol.2020.125547
http://doi.org/10.1016/j.agwat.2019.105755


Agronomy 2023, 13, 1013 16 of 18

3. Kumagai, T.; Mudd, R.G.; Giambelluca, T.W.; Kobayashi, N.; Miyazawa, Y.; Lim, T.K.; Kasemsap, P. How do rubber (Hevea
brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia? Agric. For. Meteorol.
2015, 213, 10–22. [CrossRef]

4. Li, D.; Chen, J.; Luo, Y.; Liu, F.; Luo, H.; Xie, H.; Cui, Y. Short-term daily forecasting of crop evapotranspiration of rice using
public weather forecasts. Paddy Water Environ. 2018, 16, 397–410. [CrossRef]

5. Ling, Z. Spatial-Temporal Variation Characteristics and Prediction Model of Evapotranspiration of Rubber Plantation in Xishuang-
banna. Ph.D. Thesis, Yunnan Normal University, Kunming, China, 2021.

6. Tan, Z.; Zhang, Y.; Song, Q.; Liu, W.; Deng, X.; Tang, J.; Deng, Y.; Zhou, W.; Yang, L.; Yu, G.; et al. Rubber plantations act as water
pumps in tropical China. Geophys. Res. Lett. 2011, 38, L24406. [CrossRef]

7. Giambelluca, T.W.; Mudd, R.G.; Liu, W.; Ziegler, A.D.; Kobayashi, N.; Kumagai, T.; Miyazawa, Y.; Lim, T.K.; Huang, M.; Fox,
J.; et al. Evapotranspiration of rubber (Hevea brasiliensis) cultivated at two plantation sites in Southeast Asia. Water Resour. Res.
2016, 52, 660–679. [CrossRef]

8. Mohan, M.M.P.; Kanchirapuzha, R.; Varma, M.R.R. Review of approaches for the estimation of sensible heat flux in remote
sensing-based evapotranspiration models. J. Appl. Remote Sens. 2020, 14, 041501. [CrossRef]

9. Kalua, M.; Rallings, A.M.; Booth, L.; Medellín-Azuara, J.; Carpin, S.; Viers, J.H. sUAS Remote Sensing of Vineyard Evapotranspi-
ration Quantifies Spatiotemporal Uncertainty in Satellite-Borne ET Estimates. Remote Sens. 2020, 12, 3251. [CrossRef]

10. Niu, C.J.; Deng, W.; Gu, S.X.; Chen, G.; Liu, S.S. Real-time irrigation forecasting for ecological water in artificial wetlands in the
Dianchi Basin. J. Inf. Optim. Sci. 2017, 38, 1181–1196. [CrossRef]

11. Pelosi, A.; Villani, P.; Bolognesi, S.; Chirico, G.; D’Urso, G. Predicting Crop Evapotranspiration by Integrating Ground and Remote
Sensors with Air Temperature Forecasts. Sensors 2020, 20, 1740. [CrossRef]

12. Rochester, E.W.; Busch, C.D. An irrigation scheduling model which incorporates rainfall predictions. J. Am. Water Resour. Assoc.
1972, 8, 608–613. [CrossRef]

13. Zhang, L.; Cui, Y.; Xiang, Z.; Zheng, S.; Traore, S.; Luo, Y. Short-term forecasting of daily crop evapotranspiration using the
‘Kc-ET0’ approach and public weather forecasts. Arch. Agron. Soil Sci. 2018, 7, 903–915. [CrossRef]

14. Silva, D.; Meza, F.; Varas, E. Estimating reference evapotranspiration (ET0) using numerical weather forecast data in central Chile.
J. Hydrol. 2010, 382, 64–71. [CrossRef]

15. Gu, S.; Zhao, Z.; Chen, J.; Chen, J.; Zhang, L. Daily potential evapotranspiration and meteorological drought prediction based on
high-dimensional Copula function. Trans. CSAE 2020, 36, 151–159. [CrossRef]

16. Cunha, A.C.; Filho, L.R.A.G.; Tanaka, A.A.; Goes, B.C.; Putti, F.F. Influence of the estimated global solar radiation on the reference
evapotranspiration obtained through the Penman-monteith FAO-56 method. Agric. Water Manag. 2021, 243, 106491. [CrossRef]

17. Elbeltagi, A.; Nagy, A.; Mohammed, S.; Pande, C.B.; Kumar, M.; Bhat, S.A.; Zsembeli, J.; Huzsvai, L.; Tamás, J.; Kovács, E.; et al.
Combination of Limited Meteorological Data for Predicting Reference Crop Evapotranspiration Using Artificial Neural Network
Method. Agronomy 2022, 12, 516. [CrossRef]

18. Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation
& Drainage Paper No. 56; FAO: Rome, Italy, 1998.

19. Sarlak, N.; Bagcaci, S.C. The Assesment of Empirical Potential Evapotranspiration Methods: A Case Study of Konya Closed Basin.
Teknik Dergi. 2020, 31, 9755–9772.

20. Aydin, Y. An Evaluation of the Hargreaves-Samani Method for Estimating Evapotranspiration Under Semi-Arid Conditions.
Philipp. Agric. Sci. 2021, 104, 310–317.

21. Irmak, S.; Irmak, A.; Allen, R.; Jones, J. Solar and net radiation-based equations to estimate reference evapotranspiration in humid
climate. ASCE J. Irrig. Drain. Eng. 2003, 129, 336–347. [CrossRef]

22. Smith, M. CLIMWAT for CROPWAT: A Climatic Database for Irrigation Planning and Management; FAO Irrigation and Drainage
Paper No. 49; FAO: Rome, Italy, 1993; Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-
cropwat/en/ (accessed on 17 August 2019).

23. Kukal, M.; Irmak, S.; Walia, H.; Odhiambo, L. Spatio-temporal Calibration of Hargreaves-Samani Model to Estimate Reference
Evapotranspiration across U.S. High Plains. Agron. J. 2020, 112, 4232–4248. [CrossRef]

24. Qian, K.; Chen, M.; Shen, Y.; Hu, X.; Jin, L.; Liu, S.; Cui, Y.; Luo, Y. Comparison and Sensitivity Analysis of Reference Crop
Evapotranspiration Prediction Models in the Sanjiang Plain Based on Public Weather Forecasting. Water Sav. Irrig. 2021, 308,
62–67. (In Chinese) [CrossRef]

25. Ferreira, L.B.; Duarte, A.B.; Araujo, E.D.; Ferreira, T.D.; da Cunha, F.F. Reference evapotranspiration estimated from air
temperature using the mars regression technique. Biosci. J. 2018, 34, 674–682. [CrossRef]

26. Santos, J.E.O.; Cunha, F.F.; da Filgueiras, R.; Silva, G.H.; da Castro Teixeira, A.H.; de Santos Silva, F.C.; dos Sediyama, G.C.
Performance of SAFER evapotranspiration using missing meteorological data. Agric. Water Manag. 2020, 233, 106076. [CrossRef]

27. Ballesteros, R.; Ortega, J.F.; Moreno, M.Á. FORETo: New software for reference evapotranspiration forecasting. J. Arid. Environ.
2016, 124, 128–141. [CrossRef]

28. Qiu, R.; Luo, Y.; Wu, J.; Zhang, B.; Liu, Z.; Agathokleous, E.; Yang, X.; Hu, W.; Clothier, B. Short–term forecasting of daily
evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts. Agric. Water Manag. 2023,
277, 108123. [CrossRef]

http://doi.org/10.1016/j.agrformet.2015.06.011
http://doi.org/10.1007/s10333-018-0633-3
http://doi.org/10.1029/2011GL050006
http://doi.org/10.1002/2015WR017755
http://doi.org/10.1117/1.JRS.14.041501
http://doi.org/10.3390/rs12193251
http://doi.org/10.1080/02522667.2017.1367500
http://doi.org/10.3390/s20061740
http://doi.org/10.1111/j.1752-1688.1972.tb05183.x
http://doi.org/10.1080/03650340.2017.1387778
http://doi.org/10.1016/j.jhydrol.2009.12.018
http://doi.org/10.11975/j.issn.1002-6819.2020.09.016
http://doi.org/10.1016/j.agwat.2020.106491
http://doi.org/10.3390/agronomy12020516
http://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)
http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/
http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/
http://doi.org/10.1002/agj2.20325
http://doi.org/10.3969/j.issn.1007-4929.2021.04.011
http://doi.org/10.14393/BJ-v34n3a2018-39409
http://doi.org/10.1016/j.agwat.2020.106076
http://doi.org/10.1016/j.jaridenv.2015.08.006
http://doi.org/10.1016/j.agwat.2022.108123


Agronomy 2023, 13, 1013 17 of 18

29. Luo, Y.; Chang, X.; Peng, S.; Khan, S.; Wang, W.; Zheng, Q.; Cai, X. Short-term forecasting of daily reference evapotranspiration
using the hargreaves-samani model and temperatureforecasts. Agric. Water Manag. 2014, 136, 42–51. [CrossRef]

30. Yang, Y.; Cui, Y.; Bai, K.; Luo, T.; Dai, J.; Wang, W.; Luo, Y. Short-term forecasting of daily reference evapotranspiration using the
reduced-set PenmanMonteith model and public weather forecasts. Agric. Water Manag. 2019, 211, 70–80. [CrossRef]

31. Zhang, L.; Zhao, X.; Ge, J.; Zhang, J.; Traore, S.; Fipps, G.; Luo, Y. Evaluation of Five Equations for Short-Term Reference
Evapotranspiration Forecasting Using Public Temperature Forecasts for North China Plain. Water 2022, 14, 2888. [CrossRef]

32. Vijayakumar, K.; Dey, S.; Chandrasekhar, T.; Devakumar, A.; Sethuraj, M. Irrigation requirement of rubber trees (Hevea brasiliensis)
in the subhumid tropics. Agric. Water Manag. 1998, 35, 245–259. [CrossRef]

33. Ziegler, A.; Fox, J.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [CrossRef]
34. Huang, X.; Li, X.; Mu, X.; Yuan, H.; Liang, Q.; Yao, P.; Yu, F. Study on regional vegetation water suitability: Based on the review of

seasonal drought in Southwest China. Bull. Soil Water Conserv. 2014, 34, 301–307.
35. Chiarelli, D.D.; Passera, C.; Rulli, M.C.; Rosa, L.; Ciraolo, G.; D’Odorico, P. Hydrological consequences of natural rubber

plantations in Southeast Asia. Land Degrad. Dev. 2020, 31, 2060–2073. [CrossRef]
36. Lin, Y.X.; Zhang, Y.P.; Zhao, W.; Zhang, X.; Dong, Y.X.; Fei, X.H.; Li, J. Comparison of transpiration characteristics of rubber forests

with different stand ages. Chin. J. Ecol. 2016, 35, 855–863. [CrossRef]
37. Kobayashi, N.; Kumagai, T.; Miyazawa, Y.; Matsumoto, K.; Tateishi, M.; Lim, T.K.; Mudd, R.G.; Ziegler, A.D.; Giambelluca, T.W.;

Yin, S. Transpiration characteristics of a rubber plantation in central Cambodia. Tree Physiol. 2014, 34, 285–301. [CrossRef]
38. Gonkhamdee, S.; Maeght, J.-L.; Do, F.C.; Pierret, A. Growth dynamics of fine Hevea brasiliensis roots along a 4.5-m soil profile.

Khon Kaen Agric. J. 2009, 37, 265–276.
39. Gu, S.; He, D.; Cui, Y.; Xie, X.; Li, Y. Spatial variability of irrigation factors and their relationships with “corridor-barrier” functions

in the Longitudinal Range-Gorge Region. Chin. Sci. Bull. 2007, 52, 33–41. [CrossRef]
40. Mokhtar, A.; He, H.M.; Alsafadi, K.; Mohammed, S.; Ayantobo, O.O.; Elbeltagi, A.; Abdelwahab, O.M.M.; Zhao, H.F.; Quan, Y.;

Abdo, G.H.; et al. Assessment of the effects of spatiotemporal characteristics of drought on crop yields in southwest China. Int. J.
Climatol. 2021, 42, 3056–3075. [CrossRef]

41. Seneviratne, S.; Corti, T.; Davin, E.; Hirschi, M.; Jaeger, E.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture-climate
interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [CrossRef]

42. Zhou, W.; Wu, Z.; He, Q.; Lu, C.; Jie, M. Rubber planting and drinking water shortage: A case of Goniu village in Xishuangbanna.
Chin. J. Ecol. 2011, 30, 1570–1574. [CrossRef]

43. Chiarelli, D.D.; Rosa, L.; Rulli, M.C.; D’Odorico, P. The water-land-food nexus of natural rubber production. J. Clean. Prod. 2018,
172, 1739–1747. [CrossRef]

44. Mangmeechai, A. Effects of Rubber Plantation Policy on Water Resources and Landuse Change in the Northeastern Region of
Thailand. Geogr. Environ. Sustain. 2020, 13, 73–83. [CrossRef]

45. Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
46. Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 1985, 129,

53–63. [CrossRef]
47. Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization

of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric.
Water Manag. 2020, 240, 106210. [CrossRef]

48. Hu, Q.; Yang, D.; Wang, Y.; Yang, H. Global Calibration and Applicability Evaluation of Hargreaves Equation. Adv. Water Sci.
2011, 22, 160–167. [CrossRef]

49. Martí, P.; Zarzo, M.; Vanderlinden, K.; Girona, J. Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain.
J. Hydrol. 2015, 529, 1713–1724. [CrossRef]

50. Morales-Salinas, L.; Ortega-Farías, S.; Riveros-Burgos, C.; Neira-Román, J.; Carrasco-Benavides, M.; López-Olivari, R. Monthly
calibration of Hargreaves-Samani equation using remote sensing and topoclimatology in central-southern Chile. Int. J. Remote
Sens. 2017, 38, 7497–7513. [CrossRef]

51. Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; American Society of Civil Engineers:
Reston, VA, USA, 2016. [CrossRef]

52. Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the defnition of reference evapotranspiration. J. Environ. Sci. Health
1994, 43, 1–35.

53. Singh, P.K.; Patel, S.K.; Jayswal, P.; Chinchorkar, S.S. Usefulness of class A Pan coefcient models for computation of reference
evapotranspiration for a semi-arid region. Mausam 2014, 65, 521–528. [CrossRef]

54. Arellano, M.G.; Irmak, S. Reference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-
Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates. J. Irrig. Drain. Eng.
2016, 142, 04015065. [CrossRef]

55. Luo, Y.; Khan, S.; Cui, Y.; Peng, S. Application of system dynamics approach for time varying water balance in aerobic paddy
fields. Paddy Water Environ. 2009, 7, 1–9. [CrossRef]

56. Allen, R. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison
study. J. Hydrol. 2000, 229, 27–41. [CrossRef]

http://doi.org/10.1016/j.agwat.2014.01.006
http://doi.org/10.1016/j.agwat.2018.09.036
http://doi.org/10.3390/w14182888
http://doi.org/10.1016/S0378-3774(97)00019-X
http://doi.org/10.1126/science.1173833
http://doi.org/10.1002/ldr.3591
http://doi.org/10.13292/j.1000-4890.201604.006
http://doi.org/10.1093/treephys/tpu009
http://doi.org/10.1007/s11434-007-7004-6
http://doi.org/10.1002/joc.7407
http://doi.org/10.1016/j.earscirev.2010.02.004
http://doi.org/10.1016/S1671-2927(11)60313-1
http://doi.org/10.1016/j.jclepro.2017.12.021
http://doi.org/10.24057/2071-9388-2019-145
http://doi.org/10.13031/2013.26773
http://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
http://doi.org/10.1016/j.agwat.2020.106210
http://doi.org/10.14042/j.cnki.32.1309.2011.02.009
http://doi.org/10.1016/j.jhydrol.2015.07.054
http://doi.org/10.1080/01431161.2017.1323287
http://doi.org/10.1061/9780784414057
http://doi.org/10.54302/mausam.v65i4.1186
http://doi.org/10.1061/(ASCE)IR.1943-4774.0000978
http://doi.org/10.1007/s10333-008-0146-6
http://doi.org/10.1016/S0022-1694(99)00194-8


Agronomy 2023, 13, 1013 18 of 18

57. Singh, V.P.; Xu, C.-Y. Sensitivity of mass-transfer-based evaporation equations to errors in daily and monthly input data. Hydrol.
Process. 1997, 11, 1465–1473. [CrossRef]

58. Xiong, Y.; Luo, Y.; Wang, Y.; Traore, S.; Xu, J.; Jiao, X.; Fipps, G. Forecasting daily reference evapotranspiration using the
Blaney–Criddle model and temperature forecasts. Arch. Agron. Soil Sci. 2016, 62, 790–805. [CrossRef]

59. Zhang, L.; Traore, S.; Cui, Y.; Luo, Y.; Zhu, G.; Liu, B.; Fipps, G.; Karthikeyan, R.; Singh, V. Assessment of spatiotemporal
variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques.
Agric. Water Manag. 2019, 213, 499–511. [CrossRef]

60. Awal, R.; Habibi, H.; Fares, A.; Deb, S. Estimating Reference Crop Evapotranspiration under Limited Climate Data in West Texas.
J. Hydrol. Reg. Stud. 2020, 28, 100677. [CrossRef]

61. Rodrigues, G.C.; Braga, R.P. Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-
Based Methods in a Hot-Summer Mediterranean Climate. Agriculture 2021, 11, 124. [CrossRef]

62. Perera, K.; Western, A.; Nawarathna, B.; George, B. Forecasting daily reference evapotranspiration for Australia using numerical
weather prediction outputs. Agric. For. Meteorol. 1997, 194, 50–63. [CrossRef]

63. Ling, Z.; Shi, Z.; Gu, S.; He, G.; Liu, X.; Wang, T.; Zhu, W.; Gao, L. Estimation of Applicability of Soil Model for Rubber (Hevea
brasiliensis) Plantations in Xishuangbanna. Southwest China Water 2022, 14, 295. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/(SICI)1099-1085(199709)11:11&lt;1465::AID-HYP452&gt;3.0.CO;2-X
http://doi.org/10.1080/03650340.2015.1083983
http://doi.org/10.1016/j.agwat.2018.09.037
http://doi.org/10.1016/j.ejrh.2020.100677
http://doi.org/10.3390/agriculture11020124
http://doi.org/10.1016/j.agrformet.2014.03.014
http://doi.org/10.3390/w14030295

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Meteorological Data 
	The Observed ETc and Soil Water Content 

	Calculation of Reference Evapotranspiration 
	Hargreaves-Samani (HS) Model 
	Penman-Monteith Model 
	Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc) 

	Model Evaluation Criteria 
	Sensitivity Analysis 

	Results 
	Evaluation of Weather Forecast (Tmax, Tmin) 
	Calibration and Validation of the HS Model 
	The Analysis of ET0 Forecasts 
	Results of Calculated Soil Water Stress Coefficient (Ks) and Crop Coefficient (Kc) 
	Performance of ETc Forecasts 
	The Results of the Sensitivity Analysis 

	Discussion 
	Conclusions 
	References

