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Abstract: Since impurities produced during walnut processing can cause serious harm to human
health, strict quality control must be carried out during production. However, most detection equip-
ment still uses photoelectric detection technology to automatically sort heterochromatic particles,
which is unsuitable for detecting endogenous foreign bodies with similar colors. Therefore, this paper
proposes an improved YOLOv4 deep learning object detection algorithm, WT-YOLOM, for detecting
endogenous impurities in walnuts—namely, oily kernels, black spot kernels, withered kernels, and
ground nutshells. In the backbone of the model, a lightweight MobileNet module was used as the
encoder for the extraction of features. The spatial pyramid pooling (SPP) structure was improved to
spatial pyramid pooling—fast (SPPF), and the model size was further reduced. Loss function was
replaced in this model with a more comprehensive SIoU loss. In addition, efficient channel attention
(ECA) mechanisms were applied after the backbone feature map to improve the model’s recognition
accuracy. This paper compares the recognition speed and accuracy of the WT-YOLOM algorithm
with the Faster R-CNN, EfficientDet, CenterNet, and YOLOv4 algorithms. The results showed that
the average precision of this model for different kinds of endogenous impurities in walnuts reached
94.4%. Compared with the original model, the size was reduced by 88.6%, and the recognition speed
reached 60.1 FPS, which was an increase of 29.0%. The metrics of the WT-YOLOM model were
significantly better than those of comparative models and can significantly improve the detection
efficiency of endogenous foreign bodies in walnuts.

Keywords: walnuts; lightweight network; target detection; endogenous impurity; deep learning

1. Introduction

Food quality and safety issues have attracted widespread attention in recent years.
Sub-standard food poses the risk of causing illness, including immediate injury, an in-
creased risk of chronic diseases, and so on [1,2]. As the primary factor in food safety, food
foreign bodies account for two-thirds of all incident reports in fruits, vegetables, nuts, nut
products, candies, bakery products, and other products [3]. To improve the situation, it
is necessary to implement the automatic detection of exogenous and endogenous foreign
bodies. Exogenous bodies include paper scraps, crushed particles, metals, insects, etc.,
which are introduced into the production line [4], while endogenous bodies are the unnec-
essary parts produced by the product itself during processing, such as peels and inedible
kernels [5]. Belonging to the family Juglandaceae, walnuts, which mainly grow in the
Tianmu Mountain area at the boundary of Zhejiang and Anhui in China, is an essential nut
product. In addition to the traditional shelled fruit, the market share of retail food made
with walnut kernels is also growing. A significant focus of research into the automation
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of walnut processing concerns the question of how to quickly and accurately detect and
reject impurities.

In the past, the selection of agricultural products as food ingredients was undertaken
by manual labor, such as with on-site inspection, sorting, and picking. However, relying on
human vision for food screening is highly subjective and inefficient. With the development
of the industrial revolution, some relatively mature impurity detection methods were
proposed, such as the magnetic separation method, based on the materials’ different
magnetic conductance, and the winnowing method, which takes advantage of the various
aerodynamic characteristics of walnut shells and kernels [6]. In addition, there have been
some successful cases of using traditional machine vision technologies for food inspection.
Mollazade et al. [7] used four different data-mining-based techniques, including artificial
neural networks (ANNs), support vector machines (SVMs), decision trees (DTs), and
Bayesian networks (BNs), to classify raisins. However, traditional image techniques require
the manual selection of optimal feature parameters to describe the different qualities of
raisins and the choice of corresponding image recognition matching methods to complete
the classification of raisins based on finite feature parameters. According to the scene
surveyed, to screen the kernels, walnut factories mainly adopt an electro-optical color
sorter, which takes advantage of traditional computer vision technology, and a winnowing
device based on the winnowing method. The latter can achieve a high removal rate for
the ground nutshells, while the former has a low recognition rate for endogenous foreign
bodies in walnuts, such as black spot kernels, oily kernels, and withered kernels. These
inseparable impurities have similar properties to normal kernels, and enterprises still need
to invest significant manpower costs for manual screening.

Deep learning has recently become the mainstream technique in food foreign body
detection research. Convolutional neural networks have gradually replaced the traditional
manual feature extraction method due to their powerful high-dimensional feature extrac-
tion capability. Xie et al. [8] used Fast R-CNN models with three different backbone network
models (Alexnet, VGG16 and VGG19) to detect residual bones in Atlantic salmon. The
F1-score of the Faster-RCNN with the VGG16 model reached 0.87 and the AP reached 0.78.
This algorithm has high detection accuracy and speeds. However, the three models are
still prone to misdetection in practical industrial applications. The different qualities and
lighting conditions of images and photos may cause difficulties in target detection. Thus,
researchers believe that high-quality labeled samples are needed in industrial assembly
lines. Chen et al. [9] proposed a visual detection system based on a DeepLabV3+ model to
separate and segment impurities from wheat harvesting materials. The test results showed
that as the backbone model, ResNet-50 exhibited the best performance in recognition
and segmentation. Wang and Xiao [10] used three deep convolutional neural networks
(DCNNs) to detect potato surface defects, with the RFCN ResNet101 model achieving an
accuracy of 95.6% and performing better overall in terms of detection speed and accuracy.
However, only two types of defective potatoes were included in the dataset of this study,
and other defects were not considered. On the other hand, hyperspectral imaging (HSI)
and multispectral imaging (MSI) technologies have made great strides in food detection.
Saeidan et al. [11] investigated the feasibility of using hyperspectral imaging technology
to detect and discriminate between four categories of foreign materials (wood, plastic,
stone, and plant organs) that are relevant to the cocoa processing industry. The results
showed that SVM could reach over 89.10% accuracy when classifying cocoa beans and
foreign materials. Li et al. [12] studied the use of a multispectral imaging system to detect
foreign matter in pickled and dried mustard, with a classification accuracy of 98.07% and
an average prediction time of 0.04 s. In industrial applications, the maintenance and costs
of special inspection equipment have become the main factors restricting its development.

Some scholars have conducted in-depth studies of exogenous impurities and the
shells of walnuts. Rong et al. [13] proposed a two-stage convolutional networks to achieve
the image segmentation and detection of impurities in walnuts images in real time. The
proposed method could correctly segment 99.4% of the object regions in the test images and
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correctly classified 96.5% of the foreign objects in the validation images; it correctly detected
100.0% of the test images. In a separate study, walnut shell-breaking matter is processed
using machine vision to accurately sort kernels, shells, and unseparated bodies with an
overall recognition accuracy of 96% [14]. Overall, exogenous foreign bodies and ground
nutshells are easily identifiable, since their superficial characteristics differ significantly
from those of walnut kernels. At present, there are relatively few studies on defective
walnut kernels. However, due to their potential to cause significant harm to human health,
especially black-spotted kernels, research in this area is worth strengthening.

In summary, it is necessary to explore a simple and efficient method to detect endoge-
nous impurities in walnuts. The traditional manual method can achieve very high accuracy
even though it relies on human eyes to identify walnut materials, so we believe that it is
feasible to identify cracked walnut materials with ordinary RGB images only. Deep learning
technology has shown significant advantages in image processing. Modern target detection
technology can automatically complete feature extraction and classification according to
image contents and labels, which simulates human thinking to analyze images. At present,
the typical target detection algorithms are the two-stage model represented by Faster
R-CNN [15] and the single-stage model represented by YOLO [16]. Researchers should
explore the balance between recognition speed and accuracy in industrial applications.

This research aims to analyze the performance of different target detection methods
in detecting and classifying endogenous impurities in walnuts. The implementation of
these models in edge devices can help factories to detect and intervene in real time, thus
improving product quality and reducing economic losses. The main contributions of this
study are as follows:

(1) A dataset of walnut shell-breaking materials was constructed under different lighting
conditions and angles. It contains five types of images: black spot kernels (BKs),
withered kernels (WKs), oily kernels (OKs), ground nutshells (GNs), and normal
kernels (NKs). It provides rich scene data to promote research into technology for the
automatic processing of walnuts.

(2) An offline data enhancement method was proposed to enrich the diversity of the
datasets and reduce the workload of data collection.

(3) A lightweight target detection method, WT-YOLOM, was proposed to detect endoge-
nous foreign bodies. It achieves a balance between precision and speed.

The rest of this article is organized as follows. Section 2 details the collection and
processing of the image data. Section 3 explains the main ideas of the WT-YOLOM method.
In Section 4, we analyze the results of the experiment, and Section 5 contains the summary.

2. Experimental Data and Processing Methods
2.1. Image Acquisition and Annotation

The object of this research is Linan’s walnut, a specialty of Hangzhou, Zhejiang
Province, China, which has been cultivated for consumption for more than 500 years, since
the Ming Dynasty [17]. In this study, image data were collected in September 2022, the
harvesting season of the local walnut. The selected walnuts were obtained randomly. A
Canon EOS RP camera was used to capture images of walnut shell-breaking materials
placed on a white background panel at multiple angles, 25–30 cm from the target. We
designed semi-structured scenarios to enhance the variety of the datasets and ensure the
trained models’ robustness. In addition to sunlight, the computer vision platform provides
additional light sources for shooting, including two different auxiliary light sources (weak
and strong light). After data cleaning, a total of 6203 images of multi-scene and multi-scale
walnut shell-breaking materials were obtained with an image resolution of 4160 × 4160.
This dataset was uniformly adjusted to 640× 640 pixels for input into the model for training,
and it was named the raw walnut datasets (RWD). Figure 1 shows the quantity of images,
including the five categories of walnut shell-breaking materials photographed at different
light intensities. “LabelImg”, the image annotation tool, was used for manual annotations
in the original image data. For some endogenous impurities in walnuts, there are small
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black spots on the kernels instead of the whole kernel showing a black color, and all targets
of this type were labeled as black spot kernels instead of withered kernels or oily kernels
in our research. Figure 2 shows the images of the walnut shell-breaking materials and the
corresponding labels.
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2.2. Data Preprocessing

There should be multiple objects in one image in a multi-target detection task. How-
ever, there is little discrepancy between walnut shell-breaking materials, especially walnut
kernels. If there are multiple targets in one image, it is difficult to distinguish the categories
of shell-breaking materials in low quality photos using human vision alone due to the
influence of external factors, such as illumination and aperture. For example, there is a high
degree of similarity between the BKs and OKs under weak auxiliary light and sunlight in
the picture in Figure 2; this may generate a significant number of incorrect labels during
the labeling process. These noise disturbances will have some negative influence on the
training of the model.

In this paper, we propose that, in target detection tasks for similar scenes, a single
target can be captured and labeled with its own category, and then the original image
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and annotation file can be processed by the computer to generate an image with multiple
targets. Such an intervention not only reduces the workload of dataset production but
also enriches the diversity of the datasets. We designed an explosive enhancement dataset
(EED) data-processing method to expand the original single target dataset to include ten
different targets in one picture, generating a total of 1800 virtual mixture images. In order
to prevent data leakage during model training, these virtual mixture images are only based
on single target images of the training set. These virtual images were named the processed
walnut datasets (PWD).

The data-processing process of the EED pattern is as follows:
1© Select any ten images from the single target dataset, and paste the images onto a

gray background of 640 × 640 pixels as a temporary image. 2© Crop the bounding box
(BBox) area in the temporary image. 3© In this step, 10 paste coordinate points are randomly
generated on a 640 × 640 background image, and the spacing of these ten points is greater
than 1/2 of the diagonal length of the largest BBox. In this way, each target can be isolated
from the other, and there is a certain probability that the two targets will partially overlap,
which is similar to the effect of data enhancement by CutMix [18]. 4© Paste each of the
ten bounding box areas into the ten coordinate points and generate a new annotation file.
5© Save the image and the annotation file.

As shown in Figure 3, label 1 represents the largest BBox; label 2 represents the
situation where there is partial overlap; and label 3 represents the situation where there is
no overlap. If we want all targets to be free of overlap, we can let the distance be larger
than the diagonal length of all the candidate bounding boxes, i.e., the diagonal length of
the label 1 BBox. For the processing of the boundary part, we choose 1/2 of the diagonal
length of the smallest BBox in each iteration as the constraints so as not to generate paste
coordinate points too close to the background image boundary, so that most of the scope
of a target will overflow the background image range. In Figure 3, label 4 represents the
coordinates generated in the y-direction to reach the constraints, and it can be seen that the
pasted BBox stays mainly within the 640 × 640 image range. Some of the processed data
are shown in Figure 4.
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3. Methodologies
3.1. The Algorithmic Principle of YOLOv4

The YOLO (you only look once) target detection model, which has the advantage of
fast recognition, has been introduced in several series versions. This type of algorithm has
been widely applied in studies of agriculture and forestry, such as animal behavior analy-
sis [19], fruit detection [20], and plant disease detection [21]. The detection of endogenous
impurities in walnuts belongs to the field of agricultural product quality control, and there
are few studies on the application of target detection technology in this field. Bochkovskiy
et al. [22] proposed an end-to-end detection algorithm, YOLOv4, which consists of three
main parts: a backbone for extracting image features, a head for predicting target categories
and target bounding boxes, and a neck added in between for fusing information from
different feature layers [23]. In this study, the selected YOLOv4 model has a small size,
which is in line with our expectation of real-time detection targets.

The YOLOv4 model improves the Resblock-body structure in YOLOv3 [24], and the
cross-stage partial connections (CSP) [25] approach is applied to the backbone network. It
should be noted that the YOLOv4 algorithm adds an improved spatial pyramid pooling
module between the backbone network and the neck to enhance the receptive field, and it
uses the path aggregation network (PANet) [22] as the neck to fuse the feature layer. It is
suitable for the detection of targets of different sizes. For the loss function, some researchers
proposed IoU loss, which considers the coverage of the predicted BBox area and the ground
truth BBox area [22]. YOLOv4 uses CIoU loss [26] to consider the Euclidean distance
between the predicted BBox and ground truth BBox, the overlap rate, and the aspect ratio
factor, which can achieve faster convergence and better regression results. CIoU is defined
as follows:

R(CIoU) =
l2

m2 +
s2

(1− IoU) + s
(1)

s =
4
π2 (arctan

wgt

hgt − arctan
w
h
)

2

(2)

where l is the Euclidean distance between the center points of the predicted BBox and the
ground truth BBox, m is the diagonal length of the smallest enclosing box covering the
predicted BBox and ground truth BBox, and s measures the consistency of the aspect ratio
between the two bounding boxes; w, h represent the width and height of the predicted BBox,
respectively, wgt, hgt represent the width and height of the ground truth BBox, respectively;
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and IoU is the ratio of the area overlap and the area of union. Then, the loss function is
defined as follows:

L(CIoU) = 1− IoU + R(CIoU) (3)

3.2. Improvement Based on YOLOv4

In the task of automatically identifying endogenous impurities in walnuts, the selection
of a lightweight backbone network helps to improve the recognition speed of the model.
Therefore, the WT-YOLOM model is applied to the detection of walnut shell-breaking
materials in this study. The structure of the YOLOv4 model is adjusted in the backbone
and neck parts of the network. The YOLOv4 model was optimized using deep separable
convolution, reducing the number of parameters and its computational consumption.
We removed the original SPP module and its three convolution operations before and
after, while adding three additional attention modules between the backbone and neck.
Compared with the original structure, the SPPF module is used to enhance the receptive
field of the feature layer and further reduce the size of the model. The network structure of
the proposed WT-YOLOM walnut impurity detection model is shown in Figure 5.

Agronomy 2023, 13, x FOR PEER REVIEW 7 of 19 
 

 

𝐿(େ୍୭୙) = 1 − IoU + 𝑅(େ୍୭୙) (3) 

3.2. Improvement Based on YOLOv4 
In the task of automatically identifying endogenous impurities in walnuts, the selec-

tion of a lightweight backbone network helps to improve the recognition speed of the 
model. Therefore, the WT-YOLOM model is applied to the detection of walnut shell-
breaking materials in this study. The structure of the YOLOv4 model is adjusted in the 
backbone and neck parts of the network. The YOLOv4 model was optimized using deep 
separable convolution, reducing the number of parameters and its computational con-
sumption. We removed the original SPP module and its three convolution operations be-
fore and after, while adding three additional attention modules between the backbone and 
neck. Compared with the original structure, the SPPF module is used to enhance the re-
ceptive field of the feature layer and further reduce the size of the model. The network 
structure of the proposed WT-YOLOM walnut impurity detection model is shown in Fig-
ure 5. 

 
Figure 5. WT-YOLOM model. Convolution (Conv), batch normalization (BN), depthwise separable 
convolution (DCBA), spatial pyramid pooling—fast (SPPF). 

3.2.1. Removal and Detection of Endogenous Walnut Impurities Based on K-Means 
The size of the image target in the public dataset is more abundant, and the size of 

the targets is relatively apparent. In contrast, the target dimension in the self-built dataset 
is almost universal. The size of the target in the image is negatively correlated with the 
shooting distance with a constant focal length. In this study, the endogenous walnut im-
purities and normal kernels are primarily medium and small. The difference in the sizes 
of individual walnut shell-breaking materials is not apparent, unlike the initial predeter-
mined bounding box size. Therefore, it is necessary to use the K-means algorithm [27] to 
regain the anchor box size for the BOGWN dataset. K-means clustering is used to obtain 

Figure 5. WT-YOLOM model. Convolution (Conv), batch normalization (BN), depthwise separable
convolution (DCBA), spatial pyramid pooling—fast (SPPF).

3.2.1. Removal and Detection of Endogenous Walnut Impurities Based on K-Means

The size of the image target in the public dataset is more abundant, and the size
of the targets is relatively apparent. In contrast, the target dimension in the self-built
dataset is almost universal. The size of the target in the image is negatively correlated
with the shooting distance with a constant focal length. In this study, the endogenous
walnut impurities and normal kernels are primarily medium and small. The difference
in the sizes of individual walnut shell-breaking materials is not apparent, unlike the
initial predetermined bounding box size. Therefore, it is necessary to use the K-means
algorithm [27] to regain the anchor box size for the BOGWN dataset. K-means clustering is
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used to obtain the anchor box size: the 1-IoU value between the predetermined and the
ground truth bounding boxes is continuously calculated to achieve the clustering result.
The updated anchor box sizes are shown in Table 1.

Table 1. Anchors for different scale size targets.

Small Size (PX) Medium Size (PX) Large Size (PX)

50, 47, 49, 75, 74, 50 61, 63, 70, 75, 86, 64 61, 92, 81, 83, 94, 97

3.2.2. MobileNetV3 as the Backbone Network

YOLOv4′s original backbone network, CSPDarknet53, has strong feature extraction
capabilities, but the model’s vast size and complicated structure also lead to unnecessary
inference times. Selecting a more efficient feature extraction network in the task of detecting,
can significantly improve the detection speed. MobileNetV3 [28], proposed by Google, is a
lightweight neural network model for mobile devices. It adequately combines the advan-
tages of depthwise separable convolution of MobileNetV1 [29] and the linear bottleneck
and inverted residual structure of MobileNetV2 [30], and introduces a lightweight attention
model for adjusting channel weights. MobileNetV3′s activation function, H-swish, is more
suitable for the computational power of mobile devices. The mathematical equation for
h-swish is defined as follows:

H− swish(x) = x
ReLU6(x + 3)

6
(4)

Compared with traditional convolution, depthwise separable convolution has consid-
erable advantages in terms of the number of parameters, leading to faster model inference
or the deeper stacking of the network layers. Supposing that the input feature layer size is
R × R, input channel = M, output channel = N, kernel size = K, stride = 1, and appropriate
padding, a comparison of the number of parameters and the amount of computational
between depthwise separable convolution and traditional convolution is illustrated in
Table 2.

Table 2. Comparison of two convolution methods.

Item Parameters Calculation Amount

Depthwise separable
convolution K × K × 1 ×M + N × 1 × 1 ×M R × R × K × K × 1 ×M +

R × R × N × 1 × 1 ×M
Traditional convolution N × K × K ×M R × R × N × K × K ×M

Ratio 1
N + 1

K2

In our work, the backbone network CSPDarkNet53 is replaced by MobileNetV3, and
the image input size is 416 × 416. After a series of feature extraction processes, the sizes of
the three selected output layers are 52 × 52, 26 × 26, and 13 × 13.

3.2.3. Importing the Spatial Pyramid Pooling—Fast Model and Improving the
Neck Structure

The SPP module in YOLOv4 borrows the concept of SPP [31]. First, Conv is a basic
convolution unit, which sequentially performs convolution, regularization, and activation
operations on the input [32]. It is stacked three times to extract features from the input
feature map as the input layer. Then, three maxpooling kernels of different scales are
parallelized. Finally, three pooling branches are concatenated with the input layer, and
three Convs are performed as an output. The SPPF [33] is an optimization of the SPP
structure, and its goal is to speed up the inference of the module. After SPPF performs
one Conv on the input feature map, unlike the side-by-side structure of SPP, SPPF uses
three maxpooling kernels with parameter 5 in a series for pooling. The structure reduces
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the number of model parameters to some extent. Figure 6 shows the SPP module and the
improved SPPF structure.

Agronomy 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

model parameters to some extent. Figure 6 shows the SPP module and the improved SPPF 
structure. 

 
Figure 6. Comparative analysis of SPP (a) and SPPF (b). 

Considering that the highest feature layer of MobileNetV3 has only 160 output chan-
nels, we modified the SPPF model’s hidden layer. The original number of channels was 
reduced to half the input channels; now, it was modified to expand to twice the number 
of input channels. Finally, the number of output channels at the end of this structure is 
512 after Conv operation. We did not make significant adjustments to the neck of the 
model. Some of the traditional convolutions in PANet are replaced by depthwise separa-
ble convolutions, and details are shown in Figure 5. 

3.2.4. Loss Analysis and Improvement 
In the task of image classification, the quality of the model is measured by calculating 

the ratio of the correct number of samples to the total number of samples. Meanwhile, in 
the target detection tasks, it is necessary to determine not only the target class but also the 
target’s position in the image, so the concept of bounding box position regression was 
introduced. IoU can be used to compare the degree of overlap between the predicted BBox 
and the ground truth BBox and to further consider whether the predicted BBox position 
needs to be adjusted. However, when there is no overlap between two bounding boxes, 
the IoU is 0 and cannot perform gradient backpropagation, thus causing the model to be 
unable to continue training. Therefore, IoU is only used as a part of the loss function, while 
the complete loss function consists of three parts: location loss, confidence loss, and cate-
gory loss [34]. The CIoU loss is the loss function in YOLOv4, which considers the center 
distance and the aspect ratio of the ground truth BBox and the predicted BBox [35] but 
ignores the angle factor between the two boxes. Although CIoU calculates faster and has 
lower costs than SIoU, in this study, impurity detection accuracy is a more important in-
dicator than the model’s training speed. A lower impurity content in walnut products 
helps to reduce the risk of enterprise losses and the costs of manual screening. The im-
proved WT-YOLOM location loss for the above problem adopts SIoU loss. SIoU [36] in-
creases the angle as the influence factor of two boxes, making the model achieve faster 
convergence where the SIoU loss function consists of four cost functions: the angle cost, 
distance cost, shape cost, and IoU cost. Figure 7 shows the scheme for calculating SIoU 
loss. 

Figure 6. Comparative analysis of SPP (a) and SPPF (b).

Considering that the highest feature layer of MobileNetV3 has only 160 output chan-
nels, we modified the SPPF model’s hidden layer. The original number of channels was
reduced to half the input channels; now, it was modified to expand to twice the number
of input channels. Finally, the number of output channels at the end of this structure is
512 after Conv operation. We did not make significant adjustments to the neck of the
model. Some of the traditional convolutions in PANet are replaced by depthwise separable
convolutions, and details are shown in Figure 5.

3.2.4. Loss Analysis and Improvement

In the task of image classification, the quality of the model is measured by calculating
the ratio of the correct number of samples to the total number of samples. Meanwhile, in
the target detection tasks, it is necessary to determine not only the target class but also
the target’s position in the image, so the concept of bounding box position regression was
introduced. IoU can be used to compare the degree of overlap between the predicted BBox
and the ground truth BBox and to further consider whether the predicted BBox position
needs to be adjusted. However, when there is no overlap between two bounding boxes, the
IoU is 0 and cannot perform gradient backpropagation, thus causing the model to be unable
to continue training. Therefore, IoU is only used as a part of the loss function, while the
complete loss function consists of three parts: location loss, confidence loss, and category
loss [34]. The CIoU loss is the loss function in YOLOv4, which considers the center distance
and the aspect ratio of the ground truth BBox and the predicted BBox [35] but ignores the
angle factor between the two boxes. Although CIoU calculates faster and has lower costs
than SIoU, in this study, impurity detection accuracy is a more important indicator than
the model’s training speed. A lower impurity content in walnut products helps to reduce
the risk of enterprise losses and the costs of manual screening. The improved WT-YOLOM
location loss for the above problem adopts SIoU loss. SIoU [36] increases the angle as the
influence factor of two boxes, making the model achieve faster convergence where the SIoU
loss function consists of four cost functions: the angle cost, distance cost, shape cost, and
IoU cost. Figure 7 shows the scheme for calculating SIoU loss.

The loss function component was introduced and defined as follows:

Λ = 1− 2× sin2
(

arcsin(x)− π

4

)
(5)

x =
ch
σ

= sin(α) (6)

σ =

√
(bgt

cx − bcx )
2
+ (bgt

cy − bcy)
2

(7)
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ch = max(bgt
cy , bcy)−min(bgt

cy , bcy) (8)

where bgt
cx , bgt

cy are the center coordinates of the ground truth BBox, and bcx , bcy are the
center coordinates of the predicted BBox. σ is the distance of the center point between
the ground truth box and the prediction box. This process of convergence will first try to
minimize α if α ≤ π

4 ; otherwise, it will minimize β = π
2 − α.
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The angle cost is used for the distance cost calculation of two bounding boxes, and the
distance cost is defined as follows:

∆ = ∑
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy (9)

ρx = (
bgt

cx − bcx

W
)

2

, ρy = (
bgt

cy − bcy

H
)

2

, γ = 2−Λ (10)

where W and H are the width and height of the smallest enclosing box covering the
predicted BBox and ground truth BBox, respectively.

The shape cost is defined as follows:

Ω = ∑
t=w,h

(1− e−ωt)
θ
= (1− e−ωw)

θ
+ (1− e−ωh)

θ (11)

ωw =

∣∣w− wgt
∣∣

max(w, wgt)
, ωh =

∣∣h− hgt
∣∣

max(h, hgt)
(12)

where w, h, wgt, hgt represent the width and height of the predicted BBox and ground truth
BBox, respectively. θ controls how much attention should be paid to the cost of the shape,
while the value of θ is 4 in this paper.

Finally, the loss function is defined as follows:

L = 1− IoU +
∆ + Ω

2
(13)

IoU =

∣∣B ∩ BGT
∣∣

|B ∪ BGT |
(14)

3.2.5. Analysis of Feature Fusion and Improvement of the Attention Mechanism

After the above improvements were made, the model achieved excellent detection
results for the walnut endogenous impurities datasets. The MobileNetV3 of the model is
used as the backbone network, and the squeeze-and-excitation network (SE) module is fully
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integrated. Because the information extracted from the backbone network contains both
valid feature information and invalid redundant features, the feature layer needs to conduct
further processing before inputting PANet. The feature fusion process cannot effectively
reduce the impact of redundant information on the model’s detection ability, while the
attention mechanism can assign greater weight to important features and reduce the weight
of redundant information, thereby reducing the impact of redundant features [37,38].

Attention mechanisms can, generally speaking, be divided into channel-wise attention,
pointwise attention, and a combination of the two. The SE attention mechanism acquires
the importance of each channel of the feature map through automatic learning. The
importance index assigns a weight value to each channel so the neural network can focus
on channels of interest. Efficient channel attention (ECA) [39] is a variant of channel-
wise attention. It considers that the mapping information of all channels is unnecessary;
therefore, 1DCNN is used to replace the fully connected layers (FC). This design benefits
from the ability of the convolution operation to effectively extract information across
channels. The specific implementation of ECA is shown in Figure 8. The convolutional
block attention module (CBAM) [40] emphasizes the importance of both spatial and channel
dimensions. Additionally, it proves that the simultaneous application of global average
pooling and global max pooling is a more powerful means of extracting features. Coordinate
attention (CA) [41] takes into account not only the spatial information and importance of
channels, but also long-range dependencies.
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In this study, three different attention mechanisms are used to replace the SE model in
MobileNetV3. In order to solve the problem of information redundancy in deep network
transmission, it is necessary to further focus the model on the areas of interest before
inputting the three feature layers into the PANet network. Therefore, additional attention
modules are added after the three output feature layers of the backbone network. They
are used to enhance the extraction of key information from the feature layers at different
depths, enabling PANet to better achieve feature fusion.

4. Experimental Design and Analysis of Results
4.1. Experimental Environment and Parameter Setting

In this study, all of the algorithms discussed are run on the same device, and the
hardware and software configurations in the experiments are shown in Table 3. To provide
different auxiliary light environments, computer vision motion platforms are applied;
Canon EOS RP is used as the sensor with a focal length of 105 mm. The model’s hyper-
parameter configuration includes: an Adam optimizer, a step learning rate decreasing
strategy, an initial learning rate that is set to 1 × 10−3 and gradually reduced to 1 × 10−5

during iteration, 100 epochs all together, and the batch size is 16.
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Table 3. Hardware and software environment.

Item Configure

Operating system Windows10 × 64
CPU R9-5950X
GPU RTX 3090 (24 G)

Deep learning frame PyTorch 1.7.1
Programming language Python 3.9

Integrated development environment Pycharm 2023.1.1

4.2. Experimental Datasets

In the RWD, 80% are training sets, 10% are validation sets, and 10% are test sets. Then,
the PWD are added to the training sets. In this way, we obtain the final walnut shell-
breaking materials image dataset, named BOGWN. All algorithms were evaluated on the
collected BOGWN, which includes five kinds of common walnut shell-breaking materials.

4.3. Evaluation Metrics

To verify the performance of the models in detecting endogenous impurities in walnuts,
metrics including the mean average precision (mAP@0.5 and mAP@0.5: 0.95), parameters,
model size, floating point operations (FLOPs), frames per second (FPS), precision, recall rate,
and F1-score were used for evaluation. The mAP and FPS represent the evaluation index
for walnut shell-breaking material detection accuracy and the real-time processing speed of
the model, respectively; the higher the value, the better the detection. The precision, recall
rate, and mAP are calculated as follows:

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

AP =
∫ 1

0
P(R)dR (17)

mAP =
1
n

n

∑
i=1

APi (18)

where TP, FP, and FN are the numbers of true positive cases, false positive cases, and false
negative cases, respectively [42]; n represents the types of walnut shell-breaking materials,
and n = 5 in this study.

4.4. Results and Analysis
4.4.1. Benchmark Model Performance Comparison

Our key aim is to study the balance between the lightweight improvement of the
model and the higher detection accuracy of the model, and to determine the optimal model.
We proposed an improved YOLOv4 model by replacing the CSPDarknet53 backbone
with MobileNetV3. The improved model was tested against classical target detection
models, including the original model YOLOv4, EfficientDet-D0 [43], Faster R-CNN [44],
and CenterNet [45]. On the validation sets, the loss values of the five models converge and
the model can be considered successfully trained. The model weights with the lowest loss
values were used for the test sets.

Considering all indicators, the YOLOv4-MobileNetV3 model outperforms the other
four models, as CenterNet shows poor accuracy, the Faster R-CNN and YOLOv4 models
are too large to be deployed on Edge device, and the detection speed of EfficientDet-D0 is
quite slow at only 27.9 FPS. Compared with YOLOv4, the improved YOLOv4-MobileNetV3
exhibits a certain degree of decline in mAP, but the size of the model is reduced to 17% of the
original size. In addition, the detection speed of the model reaches 57.0 FPS. Compared with
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the other models, it has obvious advantages in terms of its lightweight nature, complexity
and speed, and real-time detection effect, and it is more suitable for mobile terminal
deployment. The experimental results are shown in Table 4.

Table 4. Detection results on BOGWN.

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Parameters Size (MB) FLOPs (G) FPS

YOLOv4 92.4 82.2 63,959,226 244 60.0 46.6
Faster R-CNN 93.4 72.2 136,770,964 522 369.8 26.0

EfficientDet-D0 90.0 80.7 3,830,342 14 4.8 27.9
CenterNet 71.8 65.8 32,665,432 125 70.2 75.2

YOLOv4-MobileNetV3 88.9 77.6 11,325,194 43 7.2 57.0

Table 5 shows the evaluation results of the YOLOv4-MobileNetV3 compared with
the other common models in terms of the F1-score, recall rate, and precision for the
five categories. The CenterNet model performed poorly in all metrics. Although it is
a lightweight model, the three metrics of EfficientDet-D0 are significantly lower than
those of YOLOv4, Faster R-CNN, and YOLOv4-MobileNetV3. In most metrics, YOLOv4
outperformed Faster R-CNN, showing advantages in different types of detection results.
For the YOLOv4-MobileNetV3 model, the recognition accuracy is reduced due to the
replacement of the backbone network, so further improvements should be considered.
Therefore, the YOLOv4-MobileNetV3 model with a small number of parameters was
chosen as the baseline model for the follow-up study.

Table 5. Detection results for the five categories on BOGWN.

Model F1-Score Recall (%) Precision (%)

YOLOv4

Black spot kernels 0.88 87.1 88.5
Ground nutshell 0.98 98.4 97.4
Normal kernels 0.97 99.5 93.8

Oily kernels 0.90 90.5 89.1
Withered kernels 0.82 78.3 86.0

Faster R-CNN

Black spot kernels 0.88 88.2 87.2
Ground nutshell 0.96 97.4 93.9
Normal kernels 0.93 98.5 87.5

Oily kernels 0.88 89.3 87.3
Withered kernels 0.79 85.4 74.0

EfficientDet-D0

Black spot kernels 0.84 76.3 94.0
Ground nutshell 0.94 97.4 90.6
Normal kernels 0.93 97.5 89.0

Oily kernels 0.83 79.5 87.8
Withered kernels 0.60 49.7 76.5

CenterNet

Black spot kernels 0.65 51.1 90.5
Ground nutshell 0.84 85.2 82.1
Normal kernels 0.89 86.9 91.5

Oily kernels 0.67 56.1 84.0
Withered kernels 0.18 10.2 72.7

YOLOv4
-MobileNetV3

Black spot kernels 0.86 86.6 86.1
Ground nutshell 0.97 97.4 95.8
Normal kernels 0.96 99.5 92.5

Oily kernels 0.87 87.0 87.3
Withered kernels 0.72 68.8 74.5

4.4.2. Ablation Study

In order to explore the effectiveness of the SPPF module, SIoU loss, and K-means
clustering algorithm for improving the model’s performance, ablation experiments are
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conducted on the BOGWN dataset. Three amendments are gradually applied to the
YOLOv4-MobileNetV3, and the experimental hyperparameter settings and training en-
vironment are the same as above. Figure 9 shows the loss curves of the model training
process on the validation sets. The figure shows that all model loss curves converge after
60 epochs, and the model training can be considered finished.
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The results shown in Table 6 clearly show that applying either SPPF, SIoU, or K-means
alone causes an inevitable increase in mAP@0.5. In contrast, the simultaneous application
of SPPF and SIoU further improves mAP, indicating that the two components should
have some complementarity. Comparing Model 8© with Model 5©, although SPPF exerts a
negative impact on the recognition accuracy of the model, the application of the module
further reduces the size by 22% compared to the baseline model, and the recognition speed
exhibits a specific improvement. In comparison, the decline in the recognition accuracy can
be ignored. In the ablation experiment, all the models using K-means clustering showed a
significant improvement in recognition accuracy. Finally, the WT-YOLO model ( 8©) reached
94.1% mAP@0.5 on the BOGWN dataset.

Table 6. Ablation experiments on the proposed algorithm. Model here refers to the YOLOv4 model.
‘
√

’ represents an improvement loaded in the model.

Model MobileNet v3 SIoU K-means SPPF Size (MB) mAP@0.5
(%)

mAP@0.5:
0.95 (%)

1©
√

43.2 88.9 77.6
2©

√ √
43.2 91.5 80.4

3©
√ √

43.2 93.4 82.7
4©

√ √
33.5 91.7 81.0

5©
√ √ √

43.2 94.2 83.3
6©

√ √ √
33.5 93.1 82.4

7©
√ √ √

33.5 93.3 81.8
8©

√ √ √ √
33.5 94.1 82.5

4.4.3. Comparison of the Added Attention Models’ Performance

In Table 7, we further analyze the effect of four different attention mechanisms on
Model 8© above. Judging from the numbers in Table 7, the ECA method can achieve better
performance. The CBAM and CA models necessitate additional calculations and reduce
the inference speed of the models; therefore, they are not applicable to this study. The
WT-YOLO model with an added ECA mechanism is used as the final algorithm, and it is
referred to as WT-YOLOM.
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Table 7. Comparison of different attention models’ performance.

Baseline
Model

Attention
Model

mAP@0.5
(%)

mAP@0.5:
0.95 (%) Parameters Size (MB) FLOPs (G) FPS

WT-
YOLO

ECA 94.4 82.8 7,274,079 27.8 6.3 60.1
CBAM 93.7 82.0 8,800,360 33.6 6.3 49.2

SE 94.0 82.9 8,807,962 33.6 6.3 57.3
CA 93.1 82.4 7,577,313 28.9 6.3 50.0

4.4.4. Visualization and Discussion

Figure 10 shows the detection results of our model and the common models. Com-
paring each model, we find that the overall detection effect of CenterNet is poor, with
significant numbers of detection errors. On the other hand, YOLOv4, Faster R-CNN, and
EfficientDet-D0 present only some detection errors, while the WT-YOLOM model’s overall
performance is better, accurately identifying all the targets in the images. In addition to im-
proving the accuracy rate by advancing the model, we believe that the detailed recognition
of small black-spotted kernels, withered kernels, and oily kernels may also depend on the
image’s sharpness. In practice, pictures with less light noise and sufficient auxiliary light
sources enable the model to accurately identify walnut kernels.
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The results shown in Figure 11 prove comprehensively that the proposed method has
the best speed-accuracy trade-off. Our model can be conceptualized as a pentagonal warrior.
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5. Conclusions

The common models all showed different degrees of misdetection when used to
identify endogenous impurities in walnuts, while our proposed model, WT-YOLOM,
correctly solves this problem. In this model, the original backbone network is replaced with
the MobileNetV3 model; this is followed by depthwise separable convolution popularizing
at the neck layer, thus achieving the purpose of reducing the model size. The addition
of the ECA module between the backbone network and the neck network, together with
the replacement of the attention module in the backbone, further reduces model’s size
and improves its recognition accuracy. In addition, the SPPF structure is employed to
enrich the output layer features in the backbone. Additionally, SIoU loss and the K-means
algorithm were explored as means of improving the precision of the model. The improved
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WT-YOLOM model is more robust, with a smaller size and lower computational complexity,
and it achieves higher detection efficiency without reducing the recognition rate.

On the other hand, for single target objects in the original dataset, we designed an
EED data enhancement method to expand the target objects in the dataset. This approach
reduces the effort required for data acquisition, and the negative effects of large amounts of
incorrect data labeling on model training are reduced. Under different lighting conditions,
the results show that the proposed algorithm can effectively extract features and detect
endogenous impurities in walnuts with high accuracy and speeds, with a mAP@0.5 of
94.4% and an FPS of 60.1. The model size is only 27.8 MB.

The fast and accurate detection of walnut impurities can reduce the economic losses
caused by food safety incidents, improve the quality of processed foods, and promote the
sustainable development of the walnut industry. In future, the dataset will be expanded
with a wider range of lighting conditions and backgrounds, and an existing algorithm will
be applied to edge equipment to achieve a range of technological improvements for quality
control in the walnut processing and production chain.
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