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Abstract: Leaf nitrogen concentration (LNC) is a primary indicator of crop nitrogen status, closely
related to the growth and development dynamics of crops. Accurate and efficient monitoring of
LNC is significant for precision field crop management and enhancing crop productivity. However,
the biochemical properties and canopy structure of wheat change across different growth stages,
leading to variations in spectral responses that significantly impact the estimation of wheat LNC.
This study aims to investigate the construction of feature combination indices (FCIs) sensitive to LNC
across multiple wheat growth stages, using remote sensing data to develop an LNC estimation model
that is suitable for multiple growth stages. The research employs UAV multispectral remote sensing
technology to acquire canopy imagery of wheat during the early (Jointing stage and Booting stage)
and late (Early filling and Late filling stages) in 2021 and 2022, extracting spectral band reflectance
and texture metrics. Initially, twelve sensitive spectral feature combination indices (SFCIs) were
constructed using spectral band information. Subsequently, sensitive texture feature combination
indices (TFCIs) were created using texture metrics as an alternative to spectral bands. Machine
learning algorithms, including partial least squares regression (PLSR), random forest regression (RFR),
support vector regression (SVR), and Gaussian process regression (GPR), were used to integrate
spectral and texture information, enhancing the estimation performance of wheat LNC across growth
stages. Results show that the combination of Red, Red edge, and Near-infrared bands, along with
texture metrics such as Mean, Correlation, Contrast, and Dissimilarity, has significant potential
for LNC estimation. The constructed SFCIs and TFCIs both enhanced the responsiveness to LNC
across multiple growth stages. Additionally, a sensitive index, the Modified Vegetation Index (MVI),
demonstrated significant improvement over NDVI, correcting the over-saturation concerns of NDVI
in time-series analysis and displaying outstanding potential for LNC estimation. Spectral information
outperforms texture information in estimation capability, and their integration, particularly with
SVR, achieves the highest precision (coefficient of determination (R2) = 0.786, root mean square
error (RMSE) = 0.589%, and relative prediction deviation (RPD) = 2.162). In conclusion, the sensitive
FCIs developed in this study improve LNC estimation performance across multiple growth stages,
enabling precise monitoring of wheat LNC. This research provides insights and technical support for the
construction of sensitive indices and the precise management of nitrogen nutrition status in field crops.

Keywords: leaf nitrogen concentration (LNC); wheat; UAV; multiple growth stages; feature combination
indices (FCIs)
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1. Introduction

Wheat, one of the world’s most important cereal crops, significantly impacts global
grain markets. Its production levels directly affect the dynamics of food security, which are
crucial for human populations to survive and grow [1,2]. Leaf nitrogen concentration (LNC)
is a vital parameter for assessing the nitrogen nutritional status of crops, serving as a critical
indicator for nitrogen fertilization management in wheat during the early growth stages [3].
LNC directly affects grain quality development and yield in later growth stages [4,5].
Consequently, the rapid, precise, and dynamic acquisition of LNC information is essential
to making informed nitrogen fertilization decisions and enhancing crop production.

Traditional methods for measuring LNC in crops often rely on destructive field
sampling and chemical analysis in the laboratory. These procedures are not only time-
consuming and labor-intensive but also expensive [6], and they present certain safety
risks, making them unsuitable for general use. Remote sensing technology has emerged
as an effective tool for monitoring crop growth conditions in precision agriculture due
to its accuracy and speed [7], providing critical technical support for the efficient and
non-destructive acquisition of LNC information [8]. Nowadays, crop development is moni-
tored using a variety of remote sensing platforms, such as satellites [9], unmanned aerial
vehicles (UAVs) [8], and ground-based hyperspectral sensors [10]. Satellite platforms can
undertake large-scale LNC monitoring [11,12], but their low revisit frequency and spatial–
temporal resolution restrict real-time high-precision monitoring. Although ground-based
hyperspectral platforms may collect high-precision remote sensing data [13], their limited
sampling points and high costs make them unsuitable for large area applications. UAVs
are commonly used for crop LNC monitoring due to their flexibility, convenience, and low
cost compared to satellite or ground-based hyperspectral systems [6,14].

A range of sensors, including RGB [15], multispectral [16], hyperspectral [17], and
LiDAR [18], can be mounted on UAV platforms to collect data from field remote sensing.
While hyperspectral sensors and LiDAR are expensive and unsuitable for practical field-
scale applications, RGB sensors cannot capture the Red edge and Near-infrared bands,
which are sensitive to vegetation features [19]. With their superior performance and low
cost, multispectral sensors may acquire high-spatial–temporal-resolution images across
multiple crop growth stages, which makes them more suitable for rapid, non-destructive
crop growth monitoring [7].

Vegetation indices (VIs) derived from UAV remote sensing spectral band data are
closely related to agronomic parameters and are commonly used for crop growth moni-
toring [20] and yield estimation [16]. Crop canopy structure and biochemical properties
change according to growth stage [13], with particularly significant variations between
vegetative and reproductive development stages [21]. The heterogeneity of canopies across
growth stages can lead to variations in spectral responses, affecting the accuracy of LNC
estimates using VIs. Compared to the early growth stage, increased canopy cover in the
later stage might cause spectral saturation effects [22], reducing the sensitivity of VIs to
crop biochemical properties. These factors indicate that there are still limitations in using
existing VIs for precise monitoring of LNC across multiple growth stages of crops.

High-resolution images acquired by UAV multispectral sensors capture the spectral
characteristics of wheat canopies and the texture features that reflect crop structure changes.
These texture features can reflect variations in wheat leaf color across various varieties and
fertilizer treatments and respond to changes in canopy structure during different growth
stages [23]. Texture metrics and crop biochemistry are closely related, but developing trust-
worthy crop information prediction models based only on texture metrics is difficult due to
the absence of a formulaic method to enhance their response to vegetation physiology [24].
Prior studies often used texture metrics in models to complement VIs and improve model
performance [25].

Although combining texture metrics with VIs improved the estimation accuracy of
crop LNC [14], most studies have relied on pre-existing texture metrics and VIs constructed
from specific spectral bands and combination formulas [26], ignoring the potential of fea-
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ture combination applications. VIs such as Normalized Difference Vegetation Index (NDVI)
and Ratio Vegetation Index (RVI), which are constructed using simple formulas, offer
advantages like reducing the impact of background noise and effectively mitigating the
interference from solar zenith angle, thereby enhancing their responsiveness to vegetation
features [27,28]. However, the current fixed pairing of bands and formulas in the VI design
limits the application potential of feature combinations in crop growth monitoring [19,29].
This study aims to improve the estimation capability of LNC across growth stages and meet
the demands of modern agricultural production by further investigating the feasibility of
constructing feature combination indices (FCIs) sensitive to LNC across multiple growth
stages using remote sensing data. It will allow for the full exploration of feature combi-
nations and their respective benefits. By leveraging spectral band information, the study
developed spectral feature combination indices (SFCIs) sensitive to LNC across various
growth stages. In addition, using the same methodology, the study has created texture
feature combination indices (TFCIs).

The potential of SFCIs in the field of precision agriculture is gradually being revealed
by scholars. Inoue et al. [29] constructed a series of spectral indices based on simple for-
mulas of NDVI and RVI, and found that the spectral index composed of the first-order
derivatives at 740 nm and 522 nm (RSI: D740, D522) is the most accurate and stable indi-
cator for monitoring canopy nitrogen content. Yao et al. [19] utilized spectral information
combined with simple formulas of NDVI and RVI to create a series of novel spectral indices
that achieves precise monitoring of leaf nitrogen accumulation in winter wheat. TFCIs are
also being progressively developed for crop growth monitoring. Fan et al. [21] demon-
strated that the use of feature combination formulas integrated with texture information
can significantly enhance the estimation accuracy of plant nitrogen content in potatoes.
Yuan et al. [19,30] constructed four texture indices based on hyperspectral texture infor-
mation to accurately estimate the leaf area index of rice. However, previous studies have
rarely constructed both SFCIs and TFCIs or systematically compared them with traditional
variables (VIs and texture metrics) in terms of estimation potential.

Based on the previously mentioned data, this study constructed 12 FCIs to reduce the
impact of canopy heterogeneity caused by variations in growth stages. It used spectral
bands and texture metrics from high-resolution UAV multispectral imagery at the Jointing,
Booting, Early filling, and Late filling stages. The objectives of this study are as follows:
(1) to thoroughly consider all possible combinations of the 12 developed FCIs (SFCIs, TFCIs)
based on UAV multispectral data (five spectral bands, 40 texture metrics) and to assess the
feasibility; (2) to compare the capabilities of the newly developed FCIs with traditional
variables (VIs, Tm) in estimating wheat LNC across multiple growth stages; and (3) to
evaluate the potential of using FCIs to enhance the accuracy of LNC estimation across
multiple growth stages and to investigate the feasibility of integrating multi-characteristic
features for wheat LNC estimation.

2. Materials and Methods
2.1. Experimental Area and Experimental Design

A two-year field trial of winter wheat was conducted in Chuzhou City, Anhui Province
(32◦48′52′′ N, 117◦46′7′′ E). The experimental site is located in the middle and lower reaches
of the Yangtze River, characterized by a humid climate with distinct seasons, typical of
a subtropical monsoon climate. The average elevation is 31 m, with an annual average
temperature of 15.4 ◦C, an annual average precipitation of 1000–1100 mm, approximately
144 days of rainfall per year, and a frost-free period of about 240 days throughout the year.

The winter wheat field trial primarily considered two variables: different nitrogen
application rates and different varieties, with three replicates for each, as detailed in Table 1.
In Exp. 1, there were a total of 36 sampling plots, each with an area of 16 m2 (2 m × 8 m),
and the wheat was planted with a row spacing of 0.3 m. Exp. 2 consisted of 36 sampling
plots, each with an area of 10 m2 (2 m × 5 m), and the wheat was planted using manual strip
sowing with the same row spacing of 0.3 m (Figure 1). Both Exp. 1 and Exp. 2 employed the
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same sowing techniques and fertilization levels, with phosphorus and potassium fertilizers
applied as basal fertilizers before sowing (P = 90 kg/ha, K = 135 kg/ha), followed by
topdressing at the jointing stage with a 6:4 ratio of basal to topdressing nitrogen fertilizers,
in accordance with local agricultural practices. The field trial was conducted following
the local farmers’ field management practices, and no pest or weed infestations occurred
during the trial period.

Table 1. Detailed information regarding the winter wheat field trial and sampling times.

Growing Season Variety N Treatments (kg/ha) Sampling Stage

Exp. 1
2021

V1: Huaimai 44
V2: Yannong 999
V3: Ningmai 13

N0 (0)
N1 (100)
N2 (200)
N3 (300)

Jointing (J, 14 March)
Booting (B, 8 April)

Early filling (EF, 9 May)
Late filling (LF, 24 May)

Exp. 1
2022

V1: Huaimai 44
V2: Yannong 999
V3: Ningmai 13

N0 (0)
N1 (100)
N2 (200)
N3 (300)

Jointing (J, 16 March)
Booting (B, 10 April)

Early filling (EF, 5 May)
Late filling (LF, 21 May)
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2.2. LNC Measurements

In the field, destructive sampling was conducted on each plot, with random samples of
winter wheat representing the average growth within the area taken and placed into sealed
bags for immediate transport to the laboratory. The wheat plants were then subjected to
stem and leaf separation, and the leaves were dried in an oven at 105 ◦C for 0.5 h, followed
by constant temperature drying at 75 ◦C for over 48 h until a stable weight was achieved.
The dried leaves were ground into a powder form. Then, 2 to 4 mg of the sample was
weighed and analyzed using the Euro Vector EA3000 automatic elemental analyzer to
determine the nitrogen concentration (%) of the wheat leaf tissue.

2.3. UAV Image Collection and Preprocessing

During the Jointing (J), Booting (B), Early filling (EF), and Late filling (LF) stages of
winter wheat, multispectral canopy imagery data were acquired using a Phantom 4 Mul-
tispectral RTK (DJI Technology Co., Shenzhen, China) unmanned aerial vehicle (UAV)
(Figure 2a). The UAV is equipped with five monochrome high-resolution sensors for mul-
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tispectral imaging, each with a resolution of 2.08 million effective pixels. It also features
individual filters for Blue (450 ± 16 nm), Green (560 ± 16 nm), Red (650 ± 16 nm), Red
edge (730 ± 16 nm), and Near-infrared (840 ± 26 nm) bands, with spectral bandwidths of
20 nm, 20 nm, 10 nm, 10 nm, and 40 nm, respectively. The UAV is equipped with an RTK
positioning system that offers a vertical accuracy of ±1.5 cm and a horizontal accuracy of
±1 cm, enabling the acquisition of high-precision spectral and texture information from
the wheat canopy. Data collection was conducted between 11:00 and 13:00 on clear days
with stable solar radiation intensity and no wind or clouds. The UAV flight routes for the
two-year winter wheat field trial were autonomously defined using DJI GS PRO software
(https://www.dji.com/cn/ground-station-pro/), with the UAV’s autopilot system exe-
cuting the predefined flight plans. The flight had a forward and side overlap of 90% and
85%, respectively, with a flight speed of 2 m/s and an altitude of 30 m. The images were
captured in TIFF format and stored on an SD card.
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The multispectral (MS) data were preprocessed using PIX4Dmapper software
(version 4.4.12, Pix4D SA, Prilly, Switzerland) to obtain high-resolution wheat MS im-
agery. This process included image calibration, generation of high-density point clouds,
mesh creation, and texture generation. Four radiance calibration panels with reflectance
values of 5%, 10%, 20%, and 40% (each 0.5 m × 0.5 m in size) were placed within the
UAV data collection area (Figure 2b). The empirical line method (ELM) was employed to
radiometrically calibrate the five bands of the MS imagery [31], converting digital numbers
into reflectance values.

2.4. Vegetation Index Calculation

Vegetation indices (VIs) are obtained by calculations or combinations of characteristic
bands, providing robust vegetation information factors and enhancing, to a certain extent,
the expressive ability of remote sensing data [19]. Building upon previous research, this
study initially selected ten commonly used VIs that are associated with estimating chloro-
phyll and nitrogen content to analyze their correlation with wheat LNC across multiple
growth stages and to establish estimation models (Table 2).

https://www.dji.com/cn/ground-station-pro/
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Table 2. Vegetation indices used in this paper.

Name Abbreviations Formulation References

Normalized Difference Vegetation Index NDVI (NIR − R)/(NIR + R) [27]

Coloration Index CI (R − B)/R [32]

Normalized Pigment Chlorophyll ratio Index NPCI (R − B)/(R + B) [33]

Green Chlorophyll Vegetation Index GCVI NIR/G − 1 [34]

Greenness Index GI G/R [35]

Triangular Vegetation Index TVI 0.5 × (120 × (RE − G) − 200 × (R − G)) [36]

Plant Senescence Reflectance Index PSRI (R − G)/RE [37]

Blue Red pigment Index BRI B/R [38]

MERIS Terrestrial Chlorophyll Index MTCI (NIR − RE)/(RE − R) [39]

Normalized Difference Red-Edge Index NDREI (RE − G)/(RE + G) [40]

2.5. Texture Metrics Extraction

Texture is a visual feature that reflects the spatial arrangement of an image indepen-
dent of its brightness, capturing information about changes in crop canopy structure by
calculating the gray-level spatial correlation properties between two pixels [41]. This study
employs the widely used Gray Level Co-occurrence Matrix (GLCM) method to extract
texture information from winter wheat. GLCM requires user-defined parameters such as
window size and orientation. To enhance the generalizability of the subsequent indices
and to facilitate comparative analysis with traditional methods, the study adopts the most
commonly used parameters for extracting texture metrics (Tm), specifically a window size
of 3 pixels × 3 pixels, an extraction direction of 45◦, and grayscale quantization levels set to
64 as default parameters. Detailed information is provided in Table 3.

Table 3. Texture metrics extracted based on the GLCM method.

Numbering Abbreviation Tm Formulation Description

1 Mea Mean
N−1

∑
i=0

N−1

∑
j=0

i × p(i, j) The mean value in the texture

2 Var Variance ∑
i
∑

j
(i − u)2p(i, j) The size of the texture change

3 Hom Homogeneity ∑
i
∑

j

1
1+(i−j)2 p(i, j) The homogeneity of grey level

in the texture

4 Con Contrast
Ng−1

∑
n=0

n2

{Ng

∑
i=1

Ng

∑
j=1

p(i, j)

}
|i−j|=n

The clarity in the texture
Same as contrast

5 Dis Dissimilarity
Ng−1

∑
n=1

n


Ng

∑
i=1

Ng

∑
j=1

p(i, j)


|i−j|=n

The similarity of the pixels in
the texture

6 Ent Entropy −∑
i
∑

j
p(i, j) log(p(i, j)) The diversity of the pixels in

the texture

7 Sem Second moment ∑
i
∑

j
{p(i, j)}2 The uniformity of greyscale in

the texture

8 Cor Correlation ∑i ∑j(i,j)p(i,j)−µiµj
σiσj

The consistency in the texture

Note: The parameters ui, uj, σi, and σj represent the average and standard deviation of the row and column
sums of the GLCM, i and j represent the row and column indices, respectively, while p denotes a matrix. p(i, j)
signifies the ratio of the value at the corresponding row and column in the matrix to the sum of all values within
the matrix.
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2.6. Feature Combination Index Construction

To fully explore and exploit the potential of feature combination applications, this
study has selected 12 different constructed formulas based on previous research to attempt
the construction of FCIs that remain sensitive to LNC across multiple growth stages. These
include 6 dual-index formulas and 6 triple-index formulas, with the detailed information
of these formulas provided in Table 4.

Table 4. Formulation and basis used for constructing feature combination indices (FCIs) in this study.

Type Abbreviation Formulation References

Spectral feature combination indices (SFCIs)
Texture feature combination indices (TFCIs)

SFCID 1
TFCID 1 (λ1 − λ2)/(λ1 + λ2) [27]

SFCID 2
TFCID 2 λ1 − λ2 [42]

SFCID 3
TFCID 3 λ1/λ2 [28]

SFCID 4
TFCID 4 (λ1 × λ1 − λ2)/(λ1 × λ1 + λ2) [43]

SFCID 5
TFCID 5 (λ1 − λ2)/λ1 [32]

SFCID 6
TFCID 6 1.5 × (λ1 − λ2)/(λ1 + λ2 + 0.5) [44]

SFCIT 1
TFCIT 1 (λ1 − λ2)/(λ2 + λ3) [45]

SFCIT 2
TFCIT 2 λ1/(λ2 + λ3) [46]

SFCIT 3
TFCIT 3 λ1/(λ2 × λ3) [47]

SFCIT 4
TFCIT 4 (λ1 × λ2)/λ3 [45]

SFCIT 5
TFCIT 5 (λ1 + λ2)/λ3 [45]

SFCIT 6
TFCIT 6 (λ1 − λ2)/(λ2 − λ3) [39]

Note: SFCID is a SFCI composed of two spectral bands, while SFCIT is a SFCI constructed from three spectral
bands. Similarly, TFCID is a TFCI composed of two texture metrics, and TFCIT is a TFCI constructed from three
texture metrics.

In the SFCIs constructed based on spectral band information, λ1, λ2, and λ3 represent
the reflectance of the respective spectral bands. In the TFCIs constructed based on texture
information, λ1, λ2, and λ3 represent the texture metrics (Tm) extracted using the GLCM
method. For subsequent comparative analysis, this study categorizes spectral information
into two groups: VIs (Table 2) and SFCIs (Table 4), and texture information into two groups:
Tm (Table 3) and TFCIs (Table 4).

2.7. Model Construction and Accuracy Assessment

To develop a model for estimating LNC across multiple growth stages of wheat, this
study tested four representative machine learning algorithms: partial least squares re-
gression (PLSR), random forest regression (RFR), support vector regression (SVR), and
Gaussian process regression (GPR). PLSR is a linear regression model that combines the
strengths of principal component analysis, canonical correlation analysis, and linear regres-
sion analysis. It projects the predictive variables and observed variables into a new space,
aiming to find the multidimensional direction that explains the maximum variance in the
predictive variable space, extracting the maximum information reflecting data variability.
PLSR is adept at addressing multicollinearity among independent variables and reducing
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the impact of random noise [48]. RFR is a non-parametric regression method based on
the decision tree approach. RFR constructs multiple decision trees on different subsets
of the data, training models on each subset. By aggregating the predictions from all the
individual trees, RFR enhances the model’s accuracy and reduces the prediction error [49].
RFR exhibits stable performance even in the presence of noise, effectively managing issues
of information redundancy and overfitting. SVR is a non-linear regression model that oper-
ates on the principle of structural risk minimization. It seeks to find the hyperplane that
maximizes the margin for feature variables by minimizing the cost function, resulting in a
model with strong robustness and generalizability [50]. GPR is a Bayesian non-parametric
method that performs regression by using a Gaussian process prior on the data. It also
provides posterior predictions, offering good generalizability and interpretability, making
it suitable for handling small datasets and non-linear problems [51]. The four machine
learning methods mentioned above were implemented using R language version 4.3.1 (R
Foundation, Vienna, Austria). In the study, the hyperparameters for each algorithm were
specified as follows. For PLSR, the number of components (ncomp) was set to a range
of 1–5. In RFR, the number of predictors randomly selected (mtry) was set to 3, and the
number of trees (ntrees) was set to 1000. For SVR with a Gaussian kernel, the standard
deviation (sigma) of the kernel function ranged from 0.01 with an increment of 0.01 up to
0.2. The regularization parameter (C) ranged from 0.01 with an increment of 0.1 up to 2.
GPR utilized a linear kernel for the regression task. To ensure the reproducibility of the
results, a random seed was set for the execution of the algorithms. Additionally, all the
aforementioned algorithms opted for data preprocessing through centering and scaling.

This study randomly divided the wheat LNC dataset from four critical growth stages
over two years (n = 288) into calibration and validation datasets. One-third of the data
were used to construct the LNC estimation model (Calibration, n = 96), and two-thirds
were used for model evaluation (Validation, n = 192). The study employed three statistical
metrics to evaluate the model performance, including coefficient of determination (R2), Root
Mean Square Error (RMSE), and the Relative Prediction Deviation (RPD). R2 represents the
proportion of variance in the dependent variable that is explained by the model. It serves
as a general indicator of model performance. The closer the R2 value is to 1, the better
the correlation between predicted and actual values. The RMSE translates the squared
prediction errors into units that are consistent with the actual values, effectively reflecting
the discrepancies between predictions and reality. The RPD also evaluates the stability of
the model by reflecting the differences between predicted and actual values. A higher RPD
indicates smaller discrepancies between predictions and actual values, suggesting better
model stability. Additionally, the flowchart from data acquisition to model construction
and evaluation is shown in Figure 3.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

RPD =
SD

RMSE
(3)

In the formulas, yi and ŷi represent the observed and predicted values of LNC, re-
spectively, y is the mean of the observed LNC values, n is the sample size, and SD is the
standard deviation of the reference values.
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3. Results
3.1. Variations in Winter Wheat LNC

Figure 4 illustrates the distribution and variation of LNC across four critical growth
stages of winter wheat. From Jointing to Late filling, the mean values of each sample
gradually decrease, specifically Mean J-LF: 4.141, 2.888, 2.380, and 1.253, while the standard
deviation remains relatively stable, with a range of 0.668 to 0.831. The point density distri-
bution across the four key growth stages is not uniform, indicating significant differences
in LNC at each stage, and a decreasing trend in LNC values.
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3.2. The Response of Spectral Information to Multiple Growth Stages LNC
3.2.1. Correlation between LNC and VIs at Multiple Growth Stages

The correlation analysis results between commonly used VIs and LNC are shown
in Figure 5. The correlation coefficients between VIs and LNC vary significantly across
different growth stages, with most VIs reaching their peak correlation at the Booting stage
and then gradually decreasing during the Early filling and Late filling stages (Figure 5a).
As indicated in Figure 5b, the VIs used in this study all show moderate correlations with
LNC across multiple growth stages of winter wheat (p < 0.05). Among them, TVI has the
strongest correlation (|r| = 0.593, p < 0.001), while GCVI has the weakest (|r| = 0.158,
p < 0.05). Integrating the correlations across different growth stages (Figure 5a), the overall
correlation of VIs with LNC smooths out the high and low values of correlation coefficients
at each stage, reflecting the overall relationship between VIs and LNC across growth stages.
Additionally, since this study constructed six SFCID and six SFCIT, to facilitate subsequent
comparative analysis of the performance of commonly used VIs in LNC estimation across
multiple growth stages, the top six VIs with the strongest correlations were selected for
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LNC modeling (Figure 5b); these are TVI, PSRI, MTCI, NPCI, BRI, and CI, with correlation
coefficients (|r|) of 0.593, 0.588, 0.543, 0.523, 0.517, and 0.517, respectively.

3.2.2. Correlation between LNC and SFCIs at Multiple Growth Stages

Based on the spectral reflectance of winter wheat canopies, SFCIs sensitive to LNC
across multiple growth stages were constructed using the formulas from Table 4, which
include six SFCID and six SFCIT. The correlation analysis results between these SFCIs and
LNC during multiple growth stages of winter wheat are shown in Figure 6. To explore
the potential of SFCIs for estimating LNC across wheat’s multiple growth stages, the
SFCIs with the strongest correlation for each FCI treatment were selected for subsequent
modeling, resulting in a total of six SFCID and six SFCIT. Among the SFCID, the six with
the highest correlation with LNC across winter wheat’s multiple growth stages are SFCID1
(RE,R), SFCID2 (B,R), SFCID3 (R,RE), SFCID4 (R,B), SFCID5 (RE,R), and SFCID6 (B,R), with
correlation coefficients (r) of 0.532, 0.652, −0.564, −0.598, 0.564, and 0.641, respectively.
Among the SFCIT, the six with the highest correlation with LNC are SFCIT1 (RE,R,NIR),
SFCIT2 (R,RE,B), SFCIT3 (RE,R,NIR), SFCIT4 (NIR,R,RE), SFCIT5(R,R,RE), and SFCIT6
(R,B,RE), with correlation coefficients (r) of 0.780, −0.597, 0.713, −0.661, −0.564, and 0.663,
respectively. From Figure 6, it can be observed that SFCIT has a better correlation with LNC
across multiple growth stages of wheat compared to SFCID, and SFCIs constructed with
multiple spectral reflectance bands show a stronger association with wheat LNC.
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3.2.3. Estimating LNC of Winter Wheat across Multiple Growth Stages Using
Spectral Information

This study employed PLSR, RFR, SVR, and GPR algorithms to construct LNC esti-
mation models based on spectral information (VIs and SFCIs) extracted from MS imagery
of winter wheat canopies obtained by UAV. The validation statistics of the models are
presented in Table 5. According to Table 5, VIs provide better estimation accuracy for LNC
than SFCID, but overall, they perform lower than SFCIT. Combining VIs with SFCID and
SFCIT to construct LNC estimation models yields higher accuracy, with the RFR model
showing the best performance among the four machine learning algorithms, specifically
with an R2 = 0.738, RMSE = 0.653%, RPD = 1.952.
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Table 5. Model validation statistics for estimating LNC across multiple growth stages of winter wheat
using spectral information.

Data Type Number Metrics PLSR RFR SVR GPR

VIs 6 R2 0.530 0.699 0.641 0.528
RMSE (%) 0.873 0.706 0.762 0.875

RPD 1.459 1.803 1.670 1.455

SFCID 6 R2 0.446 0.536 0.538 0.461
RMSE (%) 0.962 0.870 0.869 0.938

RPD 1.324 1.463 1.465 1.357

SFCIT 6 R2 0.661 0.694 0.668 0.655
RMSE (%) 0.744 0.704 0.737 0.748

RPD 1.711 1.808 1.727 1.702

VIS SFCID SFCIT 18 R2 0.671 0.738 0.696 0.682
RMSE (%) 0.733 0.653 0.703 0.721

RPD 1.737 1.952 1.813 1.768
Note: VIs represent Vegetation Indices, SFCID are SFCIs composed of two spectral bands, and SFCIT are SFCIs
composed of three spectral bands.
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3.3. Multiple Growth Stage LNC Estimation Based on Texture Information
3.3.1. Correlation between LNC and Texture Metrics at Multiple Growth Stages

The study extracted Tm from the five bands of the multispectral (MS) imagery using
the Gray Level Co-occurrence Matrix (GLCM) and analyzed their correlation with LNC
across multiple growth stages of winter wheat, as shown in Figure 7. The correlation
coefficients for the texture metrics across all bands are generally low, with none exceeding
0.5. Among them, the texture metric at the Near-infrared band (NIR.Con) shows the
highest correlation with LNC (r = 0.499). To enhance the precision of Tm in estimating LNC
across multiple growth stages and for comparative analysis with TFCIs (TFCID, TFCIT),
the study selected the six Tm with the highest correlation coefficients for subsequent model
construction. These are NIR.Con, NIR.Dis, NIR.Var, RE.Hom, G.Cor, and RE.Dis, with
correlation coefficients of 0.499, 0.487, 0.478, −0.464, −0.471, and 0.461, respectively.
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3.3.2. Correlation between LNC and TFCIs at Multiple Growth Stages

Based on MS imagery, Tm were extracted using the GLCM, and 12 TFCIs were con-
structed using the formulas from Table 4. The optimal TFCIs were selected for subsequent
modeling for each FCI treatment. Figure 8 presents the correlation results between TFCID,
TFCIT, and LNC across multiple growth stages of winter wheat. The numbers on each axis
correspond to the Tm for each band, specifically B: 1–8, G: 9–16, R: 17–24, RE: 25–32, and
NIR: 33–40, with the order of Tm for each band following the arrangement in Table 3.

From Figure 8, it can be observed that the TFCID with the highest correlation with
LNC across multiple growth stages of winter wheat are TFCID1 (NIR.Cor, RE.Cor), TFCID2
(R.Mea, B.Mea), TFCID3 (RE.Cor, NIR.Cor), TFCID4 (G.Cor, NIR.Dis), TFCID5 (NIR.Cor,
RE.Cor) and TFCID6 (NIR.Cor, RE.Cor), with correlation coefficients of 0.616, −0.634,
−0.623, −0.586, −0.607, and 0.609, respectively. The six TFCIT with the highest correlation
are TFCIT1 (RE.Cor, NIR.Cor, B.Hom), TFCIT2 (RE.Mea, R.Mea, NIR.Mea), TFCIT3 (NIR.Var,
RE.Cor, NIR.Mea), TFCIT4 (B.Dis, RE.Con, G.Var), TFCIT5 (NIR.Mea, R.Mea, RE.Mea),
and TFCIT6 (G.Dis, B.Dis, RE.Con), with correlation coefficients of −0.656, 0.688, 0.685,
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0.668, −0.662, and 0.627, respectively. The TFCIs constructed in this study show higher
correlations with LNC across multiple growth stages compared to the individual Tm, and
the TFCIT generally have better correlations with LNC than the TFCID (Figures 7 and 8).
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3.3.3. Estimating LNC of Winter Wheat across Multiple Growth Stages Based on
Texture Information

This study constructs LNC estimation models across multiple growth stages of winter
wheat using texture information (Tm and TFCI) extracted from MS imagery of wheat
canopies obtained by UAV, employing PLSR, RFR, SVR, and GPR algorithms. Table 6
presents the statistical results of model validation. According to Table 6, compared to
traditional Tm, the TFCIs constructed in this study perform better in estimating LNC of
winter wheat, with the performance ranking as TFCIT > TFCID > Tm. The SVR model with
TFCIT as the input variable achieves the highest accuracy, with R2 = 0.626, RMSE = 0.785%,
and RPD = 1.621. When Tm and TFCIs are combined as input variables for LNC estimation
models, the model performance is significantly enhanced, clearly surpassing models using
Tm and TFCIs individually. Furthermore, among the four machine learning algorithms,
the SVR model with texture information as the input variable consistently outperforms the
other three, with the highest accuracy achieved by the SVR model integrating Tm, TFCID,
and TFCIT, with specific metrics of R2 = 0.688, RMSE = 0.714%, and RPD = 1.783.
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Table 6. Model validation statistics for estimating LNC across multiple growth stages of winter wheat
using texture information.

Data Type Number Metrics PLSR RFR SVR GPR

Tm 6 R2 0.350 0.319 0.391 0.355
RMSE (%) 1.035 1.054 1.006 1.030

RPD 1.230 1.208 1.266 1.237

TFCID 6 R2 0.556 0.542 0.560 0.556
RMSE (%) 0.854 0.874 0.864 0.852

RPD 1.492 1.457 1.474 1.495

TFCIT 6 R2 0.579 0.622 0.626 0.591
RMSE (%) 0.828 0.783 0.785 0.816

RPD 1.537 1.627 1.621 1.561

Tm TFCID TFCIT 18 R2 0.645 0.659 0.688 0.679
RMSE (%) 0.761 0.744 0.714 0.722

RPD 1.675 1.711 1.783 1.763
Note: Tm represents texture metrics, TFCID are TFCIs composed of two texture metrics, and TFCIT are TFCIs
composed of three texture metrics.

3.4. Combining the UAV-Based Spectral and Texture Information for Estimating LNC across
Multiple Growth Stages of Winter Wheat

Based on four different machine learning algorithms, LNC estimation models were
constructed (Table 7, Figure 9). The results indicate that the optimal model for estimating
LNC using spectral information is RFR, which outperforms the other three algorithms
with higher accuracy: R2 = 0.738, RMSE = 0.653%, RPD = 1.952. The best models for
estimating LNC using texture information and a combination of spectral and texture
information are both SVR, which shows superior performance compared to PLSR, RFR,
and GPR, with specific metrics of R2 = 0.786, RMSE = 0.589%, RPD = 2.162. From the
perspective of data types, it was found that the capability of estimating LNC based on
spectral information across all four machine learning algorithms is superior to that of
texture information. Moreover, combining spectral information with texture information
maximizes the estimation accuracy of LNC across multiple growth stages compared to
using either type of information alone.

Table 7. Performance evaluation of winter wheat estimation models based on combination of spectral
information and texture information.

Data Type Number Metrics PLSR RFR SVR GPR

Spectral information
(VIs SFCID SFCIT)

18 R2 0.671 0.738 0.696 0.682
RMSE (%) 0.733 0.653 0.703 0.721

RPD 1.737 1.952 1.813 1.768

Texture information
(Tm TFCID TFCIT)

18 R2 0.645 0.659 0.688 0.679
RMSE (%) 0.761 0.744 0.714 0.722

RPD 1.675 1.711 1.783 1.763

Spectral and texture
information

36 R2 0.747 0.783 0.786 0.775
RMSE (%) 0.638 0.596 0.589 0.604

RPD 1.995 2.139 2.162 2.108

This study, based on the optimal estimation model for LNC across multiple growth
stages (SVRval: R2 = 0.786, RMSE = 0.589%, and RPD = 2.162), outlined the feature impor-
tance of the model (Figure 10). The feature importance scale runs from 0 to 100, where
100 represents the most contributing feature, and 0 represents the least contributing feature.
SFCIT1 had the highest feature relevance, while RE.Dis had the least. The top ten most
important features are FCIs. We created a ranking chart of feature type relevance by fur-
ther integrating the significance of various features by type and calculating the average
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(Figure 11). Figure 11 illustrates that developed FCIs are more significant than VIs and Tm.
The overall importance of feature types is as follows: SFCIT > TFCIT > SFCID > TFCID >
VIs > Tm, with SFCIT outperforming the rest.
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4. Discussion
4.1. Response of Spectral Information to LNC across Multiple Growth Stages

Spectral information, a type of remote sensing data that reflect the growth status
of crops, and crop phenotypic information are closely associated [52]. VIs derived from
band operations moderately correlate with LNC because the spectral bands extracted from
multispectral images responded differently to LNC (Figure 5). In contrast to previous re-
search [14,53], our study’s correlation between NDVI and LNC is not optimal. In addition,
the results indicate that, like NDVI, GCVI, which represents the amount of chlorophyll and
nitrogen in crops, has the lowest correlation with LNC across multiple growth stages. This
may be related to the growth stages of winter wheat used in this study, where canopy het-
erogeneity across multiple growth stages affects the comprehensive performance of NDVI
and GCVI. NDVI and GCVI gradually increased during the Jointing and Booting stages
followed by a sharp decrease during the Early and Late filling stages. The UAV-obtained
canopy images of winter wheat at the Jointing stage are susceptible to soil background
effects, and the complex spectral mixing effect [8] may affect the NDVI and GCVI informa-
tion. The canopy growth variations during the Booting stage mask the background effects,
enhancing NDVI and GCVI accuracy. Previously, Su et al. [16] also demonstrated that the
spectral accuracy during the Booting stage is superior to other periods. However, NDVI
and GCVI information tends to become saturated in the Early and Late filling stages due to
the wheat canopy closure [54], decreasing their sensitivity to LNC.

Previous research has shown that specific feature combination algorithms can pro-
vide spectral information reflecting crop growth conditions [55]. This study used feature
combination formulas to construct indices sensitive to LNC across multiple growth stages.
The findings indicate that, under each SFCID treatment, the spectral indices with the best
correlation with LNC in various growth stages are primarily composed of the R and RE
bands and that, under each SFCIT treatment, the spectral features with the best correlation
are mainly composed of the R, RE, and NIR bands (Figure 6). Thus, information from the R,
RE, and NIR bands has the potential for estimating LNC across multiple growth stages. Ni-
trogen is a constituent of the chlorophyll molecule, a vital pigment in plant photosynthesis,
and variations in the nitrogen content in wheat leaves can affect the amount of chlorophyll
present. Chlorophyll is particularly sensitive to red light, as the pigment predominantly



Agronomy 2024, 14, 1052 18 of 26

absorbs it [13]. Thus, an increase in LNC may result in a lower reflectance in the red spectral
band, reducing the amount of red light reflected to the sensor from the plant surface. The
RE band represents a transitory zone in the plant’s spectral reflectance, characterized by a
sharp increase. The position of this “red edge” correlates with the chlorophyll content [19].
An increase in LNC usually causes the RE to shift towards longer wavelengths, as more
chlorophyll absorbs light in the red band and extends the decline in reflectance to longer
wavelengths. While chlorophyll hardly absorbs any light in the NIR spectrum, variations
in this band significantly correlate with the internal structure and biochemical composition
of the plant leaves. The NIR band effectively represents crops’ health status since plant
cellular structure reflects a high percentage of the NIR spectrum [55].

In line with Fan et al.’s [56] findings, our investigation showed that SFCIT outperforms
SFCID in estimating LNC across multiple growth stages, providing a more accurate reflec-
tion of wheat LNC information (Figure 6). As wheat biochemical properties change over
time, complex canopy heterogeneity causes variations in spectral responses. Three-band
combinations respond better to these changes than two-band combinations, improving cor-
relation with LNC and the ability to estimate LNC. This also clarifies why LNC estimation
models constructed using VIs have better precision than SFCID but worse precision than
SFCIT (Table 5). Another important factor contributing to this diversity is the variations in
feature combination formulas. The study found that using the same band information but
different feature combination formulas has varying effects on mitigating the growth stage
effect. Zheng et al. [55] reported similar results when estimating LNC. The results indicate
that band information and feature combination formulas concurrently influence the ability
of SFCIs to estimate LNC across multiple growth stages.

Furthermore, with a correlation coefficient of r = 0.780, the study preliminarily de-
termined that SFCIT1 (RE, R, NIR) is the most promising feature combination index for
estimating LNC across multiple growth stages. The formulas in Table 4 indicate that SFCIT1
(RE, R, NIR) is equivalent to an improved NDVI index (called the Modified Vegetation
Index, MVI), where the numerator changes from (NIR-R) in NDVI to (RE-R), while the
denominator stays the same. The correlation coefficient (r) between SFCIT1 and wheat LNC
across multiple growth stages increased by 268% compared to NDVI.

MVI = (RE − R)/(NIR + R) (4)

Using the RE band, which is sensitive to leaf chlorophyll [57], rather than the NIR
band, which is strongly reflected by leaves [13], capitalizes on the physiological fact that
nitrogen is a key component of chlorophyll and is closely linked to it. Additionally, the
RE band has a lower reflectance rate than the NIR band regarding vegetation spectral
characteristics. MVI showed a generally acceptable match and a favorable response to LNC
across wheat growth stages (Figure 12a). The MVI and LNC density curves exhibited a
similar pattern, gradually increasing and peaking when LNC was around 3 and MVI was
around 0.3, before declining. Figure 12b shows a poor match with scattered data points
between the NDVI and LNC across multiple growth stages. Moreover, the NDVI density
curve peaked between 0.8 and 1.0, exhibiting a state of hyper-aggregation in this range.
The canopy heterogeneity during the different growth stages of wheat might be responsible
for this. NDVI may reach saturation during the reproductive growth stage, when the
wheat canopy is closed, with minimal overall variation and diminished spectral sensitivity.
However, the FCIs in this study were developed based on a two-year dataset of wheat
LNC during the Jointing, Booting, Early filling and Late filling stages. Future work will
include validating their performance on other crops and agronomic indicators at different
experimental sites and attempting to refine them into remote sensing indices with potential
for spatiotemporal transferability.
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In summary, the FCIs developed in this study consider both the vegetative and repro-
ductive growth stages, efficiently adapting to variations in LNC throughout wheat growth.
The Jointing, Booting, Early and Late filling stages of a two-year wheat LNC dataset were
the basis for developing these FCIs. Future work will verify their efficacy on other crops
and agronomic indicators across diverse experimental sites and attempt to enhance them
into remote sensing indices capable of spatiotemporal transferability.

4.2. Contribution of Texture Information to LNC Estimation across Multiple Growth Stages

Texture, which reflects the spatial arrangement of crop canopy structure without
relying on brightness, is frequently combined with spectral information to construct crop in-
formation estimation models, improving model performance [58,59]. Our study (Figure 7)
supports the widely accepted notion that a weak correlation exists between Tm and agro-
nomic parameters [58]. Thus, developing reliable models for crop phenotypic estimation
using just Tm is challenging. This study used Tm to construct 12 sensitive TFCIs across four
growth stages of wheat. The findings indicate that NIR information is superior to other
bands in estimating LNC, as the six Tm with the highest correlation with LNC were primar-
ily found in the NIR band [13]. Guo et al. [60] discovered that Con had the highest accuracy
in extracting maize heading date. Liu et al. [23] demonstrated that Con outperformed
other Tm in estimating rice above-ground biomass (AGB). The study’s optimal TFCID and
TFCIT treatments primarily consisted of Mea, Cor, Con, and Dis. This is consistent with
Liu et al. [61], who identified Mea, Con, and Dis as essential parameters for estimating win-
ter wheat AGB. Mea and Cor are low-frequency information reflectors within the window
that depict internal information about the growth and development of winter wheat. They
show the parts of the plant growing quickly and consistently, documenting the develop-
mental variations in wheat at various growth stages. Con and Dis focus on high-frequency
information, demonstrated by Liu et al. [23] to help estimate crop information, such as the
degree of gray-level fluctuations and the relationship between pixel distances and diagonal.
Sensitive Tm enhanced the response to LNC across multiple growth stages by employing
feature combination formulas, which reflected the changes in LNC over these times. In line
with Yang et al.’s [45] findings, our investigation discovered that all 12 TFCIs correlated
more with LNC than Tm. It could be attributed to the feature combination formulae high-
lighting crop canopy information by minimizing interference from soil background, solar
angle, terrain, and shadows after optimized band information [62,63]. Our study confirms



Agronomy 2024, 14, 1052 20 of 26

the feasibility of optimizing Tm using feature combination formulas, providing a practical
approach to enhance Tm’s responsiveness to LNC. Sarker et al. [64] also suggested that
texture information processed by formulas could improve the estimation accuracy of forest
biomass. Furthermore, the study indicated that TFCIT had a higher correlation with LNC
than both Tm and TFCID. In contrast to TFCID and Tm, TFCIT provides an extra dimension
of texture information [45], capturing the changes in wheat LNC over time in more detail
and further boosting the responsiveness to LNC.

4.3. The Significance of Combining Spectral and Texture Information

We found that the precision of LNC models constructed by combining spectral and
texture information was higher than when using either spectral or texture information alone
(Table 7), which is similar to the findings of Freitas et al. [25] and Zhang et al. [65] regarding
other physiological and biochemical parameters. Spectral and texture information reflect
different aspects of LNC changes, and integrating data from multiple feature types into a
more comprehensive feature set can enhance the performance of predictive models and
increase their interpretability [26]. However, spectral and texture information integration
does not always result in improved model performance. Using five machine learning algo-
rithms and two ensemble learning algorithms, Shu et al. [66] estimated corn leaf area index,
fresh weight, and dry weight. They discovered that the combined spectral and texture
information decreased the estimation accuracy, with texture information demonstrating
higher estimation capability than spectral information. Liu et al. [23] found that integrating
spectral and texture information for estimating rice AGB did not improve model precision.
Multiple factors influence this phenomenon. (1) Different experimental settings directly
affect the precision of spectral or texture information acquisition, and incorporating less
precise data into the model may diminish model accuracy [67]. In particular, distinct crop
types and varieties may result in variations in canopy structure [68], which can alter the
correlation between spectral and texture information and crop physiological and biochem-
ical parameters. All of this could have an impact on the accuracy of estimation models.
Different crop planting directions [69] and different UAV data acquisition times [70] can
cause different canopy shadows in remote sensing images, while different crop planting
densities [71] directly affect canopy structure arrangement. Climate conditions [72], sensor
types [66], image resolution [73], crop growth stages [74], and different UAV flight alti-
tudes [75] also affect the precision of spectral and texture information. (2) Machine learning
algorithms, also referred to as “black box” models, differ in the precision of the models
they construct [76]. By changing the model input variables, feature selection, a critical
step in machine learning algorithms, can directly affect the precision of estimation models.
Multiple-feature models are not always stable, and Liu et al. [77] found that the number
of variables in a model does not always equate to its performance. Overlapping features
can cause data redundancy, reducing model performance. Zhou et al. [67] discovered
that combining agronomic practice information (API) with spectral and texture features to
estimate rice yield decreased model precision. The contribution and mutual influence of
multiple feature characteristics affect the performance of models that incorporate spectral
and texture information. However, this study aimed to explore the potential of feature
combination formulas in estimating LNC across multiple growth stages, and thus, feature
selection was not a priority. The study selected features using the standard Pearson correla-
tion analysis method, focusing primarily on the response capability of spectral and texture
information to LNC while neglecting the mutual influence of features within the estimation
model. Future work will explore the relationship between feature interactions and model
performance to improve accuracy.

In summary, the significance of combining spectral and texture information in this
work lies in the ability to estimate wheat LNC more accurately and reliably. Spectral
information reveals the biochemical and physiological state of crops [19], while texture
information reflects the spatial arrangement and structural characteristics of the crop
canopy [23]. Integrating these two data types allows the model to better account for



Agronomy 2024, 14, 1052 21 of 26

the complex relationships between crop growth, canopy structure, and environmental
factors [78], leading to more precise estimation of crop traits. This integrated approach
leverages the strengths of both spectral and texture analyses, resulting in a more detailed
understanding of crop health and nutritional status [71]. Spectral indices may be affected
by factors such as soil background and crop canopy, and including texture information can
mitigate these effects. On the other hand, texture information can reveal additional insights
about the canopy’s microstructure that spectral information alone may not capture [23].
This integrated method can lead to more effective crop management strategies, optimized
fertilization, and higher crop yields and quality. It also encourages the development of
more powerful remote sensing tools for precision agriculture, enabling farmers to make
informed decisions based on comprehensive and accurate data.

4.4. The Comparability of Various Machine Learning Algorithms in Estimating LNC

Different machine learning algorithms are suited to different environments due to their
inherent limitations. In particular, the PLSR algorithm is sensitive to outliers, affecting the
model’s stability and predictive power [79]. In addition, inappropriate selection of model
parameters (number of components, regularization parameters) might reduce estimation
performance. While the RFR algorithm reduces the risk of overfitting based on individual
trees, it can still occur with high-dimensional datasets [79,80]. The SVR algorithm requires
the storage of support vectors, which can be memory-intensive for large datasets. Moreover,
SVR operations require considerable time and computational resources [71]. Selecting an
appropriate kernel function for GPR can be challenging since different kernel functions
may be suitable for various data types. However, there are no universal guidelines for
determining the optimal kernel function. Furthermore, GPR’s performance on large-scale
datasets is relatively average, since its computational complexity rises with the number
of data points [81]. This study used four machine learning algorithms, PLSR, RFR, SVR,
and GPR, to construct LNC estimation models for multiple growth stages of wheat. We
discovered that the optimal algorithm for estimating LNC across multiple wheat growth
stages seems to depend on the data type, which is consistent with the conclusions of
Yu et al. [82] that the effectiveness of RFR and SVR models in estimating wheat N content is
related to the type of imagery. Despite diverse feature input conditions, the RFR algorithm
demonstrated high robustness in LNC estimation models using spectral information,
with high R2, RPD, and low RMSE. The model utilizing VIs + SFCID + SFCIT as input
variables had the highest precision, with R2 = 0.738, RMSE = 0.653%, and RPD = 1.952.
Li et al. [71] confirmed the stability of the RFR algorithm in monitoring the crop nitrogen
nutritional status, using the RFR algorithm combined with spectral information to construct
a nitrogen monitoring model for wheat, with specific performance indicators of R2 = 0.74,
RMSE = 4.59 mg g−1, and RPD = 1.25. Compared to this, the RFR model in this study
showed a similar R2 but a significantly higher RPD, which may be related to the features
included in the model.

The accuracy of LNC estimation may be improved by integrating SFCID and SFCIT,
which can reflect crop LNC information [71]. The results of this study indicate that the
RFR algorithm is better suited for estimating LNC using spectral information, owing to
improved model performance and stability. The SVR algorithm outperformed PLSR, RFR,
and GPR in constructing wheat LNC estimation models based on texture information.
Among the four feature input sets of texture information, SVR consistently had the highest
R2, RPD, and the smallest RMSE, (R2 = 0.688, RMSE = 0.714%, and RPD = 1.783). This
precision is lower than that of the SPAD estimation model constructed by Xie et al. [83] using
the SVR algorithm combined with texture features based on the Litchi Fruit Growth Period
but higher than the model built using the combination of the Litchi Fruit Growth Period
and the Autumn Shoot Period. Models based on a single growth period are more robust, as
they do not have to account for the impact of canopy heterogeneity across multiple growth
stages on model estimation, further demonstrating the potential of the TFCIs developed in
this study for LNC estimation. When integrated with texture information, the SVR model
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constructed in this study outperformed the model that only used Tm as an input variable
alone (Table 6).

Interestingly, with the combined spectral and texture information dataset, the SVR
algorithm performed well in constructing LNC estimation models utilizing texture infor-
mation, presumably because half of the feature information was present. These results are
consistent with the findings of Zhu et al. [84], who used vegetation indices and texture fea-
tures in conjunction with machine learning algorithms to construct a wheat scab-monitoring
model and found that the SVR algorithm had the highest model accuracy. This could be
because the SVR algorithm, which applies the structural risk minimization principle [85],
performs better at predicting LNC across various growth stages than RFR since it can
manage the non-linear mapping relationship between texture information and LNC.

4.5. Limitations and Future Research Perspectives

The study entailed a two-year field trial of winter wheat with three high-yielding
varieties and four nitrogen gradients, using feature combination formulas to construct
SFCIs and TFCIs sensitive to LNC at several growth stages. Integrating these indices with
four machine learning algorithms yielded better LNC estimation across growth stages,
which can be improved further. With the rapid development of sensor technology, the
fusion of multi-source remote sensing data can enhance the accuracy of crop nitrogen
status estimation [71]. Future research will investigate using several sensors (such as
RGB, hyperspectral, and LiDAR) for collaborative observation to improve LNC estimation
performance in winter wheat. The remote sensing platform used in this study is relatively
unique, and the limits of UAV working hours and flight altitude restrict its application
potential on a large regional scale. The consistent development of satellite remote sensing
technology provides a solid foundation for large-scale agricultural surveillance. Future
studies will incorporate satellite remote sensing platforms and determine how to integrate
the advantages of various remote sensing platforms. In addition, our research identified a
vegetation index, MVI, with the potential to estimate LNC across multiple growth stages.
It would be interesting to test its performance in the future for other agronomic parameters,
such as LAI and AGB. Although this study achieved adequate precision in estimating LNC
across multiple growth stages using two years of trial data, the single trial location limits
its generalizability, and future work will test the model’s transferability across different
trial sites.

The integration of spectral and texture information to enhance LNC estimation accu-
racy in winter wheat across several growth stages still has limitations, primarily due to two
factors. First, soil noise significantly impacts the early growth stages of wheat. When UAVs
acquire remote sensing data during the early growth stages, the exposed soil background
increases sensor noise, lowering sensor precision [86]. Second, after wheat heading, UAV
imagery consists predominantly of leaves, spikes, and a small amount of soil, and the
complex spectral mixing reduces spectral sensitivity [16]. Therefore, future research will
focus on using various sensor signal-processing algorithms or removing soil background
pixels to minimize the impact of soil background. We would also employ mixed spectral
decomposition techniques to eliminate the effects of spectral mixing in the later growth
stages, thereby enhancing model accuracy.

5. Conclusions

This study used multispectral remote sensing data to constructed feature combination
indices (FCIs) sensitive to LNC across multiple growth stages based on multispectral
remote sensing data and compared the performance of spectral and texture information
in building LNC estimation models using four machine learning algorithms: PLSR, RFR,
SVR, and GPR. It also examined the potential of estimating LNC by combining spectral
and texture information. The results indicate that the combination of Red, Red edge, and
Near-infrared bands has a high potential for estimating LNC across multiple growth stages,
effectively capturing wheat’s developmental changes over time. Texture metrics such as
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Mea, Cor, Con, and Dis are highly sensitive to wheat LNC while showing modest resilience
to canopy heterogeneity across various growth stages. The SFCIs and TFCIs constructed
using feature combination formulas significantly improved the response to LNC across
growth stages. With a correlation coefficient increase of 268%, a preliminary finding of
a vegetation index, MVI, demonstrated significant improvement over NDVI, correcting
the over-saturation concerns of NDVI in time-series analysis and displaying outstanding
potential for LNC estimation. In addition, spectral information performed better than
textural information in estimating LNC across multiple growth stages. Integrating spectral
and texture information increased LNC estimation performance across growth stages,
with the SVR algorithm achieving the highest precision (R2 = 0.786, RMSE = 0.589%, and
RPD = 2.162). Our study has made it possible to precisely monitor LNC over multiple crop
growth stages, providing scientific guidance for more accurate field nitrogen fertilization
management and refined crop nutrition management.
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