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Abstract: The unreasonable use of fertilizers is a significant cause of cultivated soil cadmium (Cd)
accumulation. Although there is research about the effect of fertilizers on soil cadmium (Cd) accumu-
lation under different crops, soils, and cultivation durations locally and specifically, its relative and
determinant factors are seldom comprehensively and comparatively researched and evaluated. We
used meta-analysis to analyze the effects of fertilizers (mineral fertilizer N, P, K (NPK) with manure
(NPKM), NPK with straw (NPKS), and the mineral fertilizer N (N), NK (NK)), crops, duration,
climate, and soil texture on the Chinese soil total and available Cd change during 1987–2022. The
results showed that the order of the increased soil total and available Cd change was NPKM (total:
62%–104%, available: 61%–143%) > NPKS (50%–86%, 48%–116%) > NPK (25%–50%, 35%–75%) > NK
(5%–19%, 19%–33%) > N (2%–6%, 7%–31%). NPKM and NPKS significantly increased the total Cd
under maize (104%, 86%) and available Cd under rice (136%, 116%). Cd changed the fastest with the
NPKM cultivation duration for total Cd under maize (slope: 5.9) and available Cd under rice (6.6).
The change of the soil total and available Cd had the higher value in the semiarid region, clay soils,
lower pH, and long cultivations. The change of the soil total and available Cd were highest (398%,
375%) in the semiarid region for clay loam after 20–25 years of NPKM fertilization, when the pH
decreased to the lowest (−1.9). According to the aggregated boosted tree analysis, the fertilizers and
duration were the best explanatory variable (>53%) for the soil total and available Cd. In conclusion,
the soil Cd could be mitigated through reducing the long–term manure, straw, and P fertilizer content
with Cd, and field managements such as liming, wetting, and drying according to the crops, climate,
and soil texture.

Keywords: Cd; fertilizers; crop rotations; climate; soil texture

1. Introduction

Cadmium (Cd) is a prevalent heavy metal contaminant in agricultural soil [1]. Large
concentrations of Cd in the soil can harm crop development, production, and quality, and
they can enter the bodies of humans and other animals through food chain enrichment,
endangering human health [1]. Because of its toxicity and persistence in soils, Cd has been
classified as a priority inorganic soil pollutant globally [2]. Therefore, the investigation of
the Cd concentration in soil holds immense importance.

The natural concentration of Cd in agricultural soil is determined by the parent
material of the soil [3,4]; however, anthropogenic activities like fertilizers can have a
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significant impact on agricultural soil Cd concentrations [5]. Prior research suggested
that manures and other fertilizers containing Cd could be major sources of Cd entering
soil [6]. For instance, it has been shown that livestock manures supply 55% of all Cd
imports into China’s agricultural soils [7]. After 17 years of cultivation, Li and Wei (2009)
discovered that the application of pig manure fertilizer raised the total Cd concentration
in rice soil by 138%–162% and the available Cd concentration by 212–225% in southeast
China as compared to the initial treatment [8]. Gao and Huang (2021) observed that the
rice soil total Cd level treated with cattle manure significantly increased by 142% from
0.12 to 0.29 mg·kg−1 in Qiyang country of China after 38 years’ cultivation [9]. After
27 years of agriculture, the pig manure treatment greatly increased the total Cd content in
the paddy soil in Hangzhou, China, from 0.2 to 0.85 mg·kg−1, which is much greater than
the soil environmental quality risk management standard (0.3 mg·kg−1) [10]. Zhao and
Qiu (2018) found that all fertilization treatments (nitrogen, phosphorus, and potassium
fertilizers (NPK), NPK plus straw (NPKS), and NPK plus manure (NPKM)) increased the
soil available and total Cd by an average of 28% and 17% compared to CK (no-fertilizer
control) under wheat in Zhengzhou of China after 20 years’ cultivation [11].

Moreover, the water management, organic matter, pH, and texture of the soil all sig-
nificantly affect the bioavailability of Cd. When fertilization had been applied, the degree
of reactions and interactions occurring varies, leading to varying degrees of changes in
the soil physicochemical properties [12], which, in turn, affects the morphological change
and bioavailability of Cd in soil [13]. According to Yu and Gu (2022), applying organic
fertilizer to acidic soil can more successfully increase the soil’s capacity to adsorb Cd than
it can in alkaline soil [14]. According to Eriksson (1990), adding NPK-fertilizers into loamy
sand and clay soils, the extractable Cd was taken up to a greater extent from the sand
than from the clay [15]. This suggests that different soil types and fertilizer had different
reactions, but further systematic research is not available at this time. For paddy fields,
water management is a crucial factor affecting Cd concentration [16,17]. Flooding raises
the pH of lower-pH paddy soil from acidic to neutral, improves soil organic matter’s
capacity to adsorb and compound with Cd, and reduces Cd activity; on the other hand,
under some flooded conditions, it is possible for SO4

2− to be reduced to S2− due to the
prevailing reduction conditions [18]. This reduction process can promote the formation of
precipitates when combined with Cd2+, further contributing to the reduction in Cd activ-
ity [19]; under drainage conditions, the soil redox potential (Eh) increases, and sulfides are
oxidized, releasing Cd2+. The Cd availability in the soil rises concurrently with a reduction
in soil pH.

Food safety and environmental risk are threatened since the effects of fertilizer on
the soil Cd under various soil qualities, cropping years, and climate conditions have
not been compared and thoroughly studied. Therefore, in order to evaluate the impact of
fertilization on the soil Cd in polluted soils, we collected data from 1708 paired observations
and performed a meta-analysis utilizing those data. We took into account a number of
factors in this study, such as the climate, crop rotation method, length of cultivation, and
soil characteristics (e.g., texture, and pH). Our study set out to determine the following:
(1) how different fertilizer applications affected soil Cd content; (2) how climate, crop
rotation, cultivation time, and soil properties (texture, pH) affected soil Cd content; and
(3) what fertilizer application strategies were most effective in reducing soil Cd pollution
while maintaining agricultural sustainability and safeguarding public health.

2. Materials and Methods
2.1. Data Collection

On the China National Knowledge Infrastructure “http://www.cnki.net (accessed on
30 August 2023)”, China Science and Technology Journal Database “https://qikan.cqvip.
com (accessed on 30 August 2023)”, WanFang Data “https://www.wanfangdata.com.cn
(accessed on 30 August 2023)”, Web of Sciences “http://isiknowledge.com (accessed on
30 August 2023)”, ScienceDirect “https://www.sciencedirect.com (accessed on 30 August
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2023)”, Elsevier “https://www.elsevier.cn (accessed on 30 August 2023)”, SpringerLink
“https://link.springer.com (accessed on 30 August 2023)”, and Google Scholar “https:
//scholar.google.com (accessed on 30 August 2023)”, pertinent peer-reviewed scientific
journal articles were gathered using search terms like “long–term fertilization” and “soil
Cd concentration”. Relevant peer-reviewed works from 1987 to 2022 that focused on the
phrase “responses of soil Cd concentration and soil chemical properties” were chosen.
These works included information on the mean annual temperature, precipitation, soil
textures, pH, and the total and available Cd concentrations in the soil. The information
encompassed wide changes in soil, farming, fertilization, and climate overall. In addition,
we selected the articles based on the following criteria: (1) China as the primary study area;
(2) a clear study location (locality name, latitude, and longitude); (3) available crop types
(wheat, maize, wheat-maize, wheat-rice, and rice), soil texture, and climatic conditions
(mean annual temperature, MAP); (4) clear fertilizer management measures (cultivation
duration, and fertilizers); (5) with the following treatments serving as the basis for the study:
(i) no fertilization (CK); (ii) fertilization N (N); (iii) fertilization NK (NK); (iv) fertilization
NPK (NPK); (v) fertilization NPK with straw returning to soil (NPKS); and (vi) fertilization
NPK plus manure (NPKM).

We fetched 342 pertinent articles with 1708 data points for meta-analysis based on
the screening criteria mentioned above (Figure 1). The 83 fertilizing experimental stations
located in China were categorized into three zones based on the humidity index (HI): arid
(HI ≤ 25), semiarid (25 < HI < 50), and humid (HI ≥ 50) (Figure 2). The microwave digestion
extraction method was used to extract soil total Cd [20–22], and the diethylenetriamine
pentaacetic acid (DTPA) extraction method was used to extract soil available Cd [23–25].
The studies used atomic absorption spectrometry (AAS) and inductively coupled plasma
mass spectrometry (ICP-MS) for the soil total and available Cd content.
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the impact size metric [26]. To improve the statistical performance, we perform a logarith-
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Figure 2. The 83 long–term fertilization experimental stations in China, displayed as specified by HI
(HI = MAP/(MAT + 10) and cultivation duration (triangle: arid region, circle: semiarid region, and
inverted triangle: humid region). The size of symbols corresponds to the cultivation duration. The
digital elevation model (DEM) is a digital simulation of the terrain using limited terrain elevation
data. MAT represents the mean annual temperature; MAP represents the mean annual precipitation.
The map was sourced from website “http://bzdt.ch.mnr.gov.cn (accessed on 10 August 2023)”
and modified.

2.2. Data Analysis Method
2.2.1. Meta-Analysis

A statistical method for combining and analyzing data from several research on a
given subject is called meta-analysis. In a meta-analysis, an overall assessment of the
effect size or association between variables was obtained by synthesizing the findings from
various research. Meta-analysis can be used to more precisely assess the true impact size or
relationship, as well as to examine and find trends, contradictions, and causes of variability
in the results of prior studies. A meta-analysis’s findings can yield important information
for future study, policy creation, and clinical practice.

For the meta-analysis, we used the response ratio (RR) of the pooled count data
as the impact size metric [26]. To improve the statistical performance, we perform a
logarithmic transformation on RR. By linearizing the metric using the natural logarithm,
the approximate normal distribution with a mean equal to the genuine response ratio is
ensured. The calculation formula of RR and Ln(RR) are as follows [27]:

RR = Xf/Xc (1)

Ln(RR) = ln (Xf/Xc) = ln Xf − ln Xc (2)

where Xc is the given soil Cd concentration value in the unfertilized control group, and Xf
is the concentration value of Cd under the influence of fertilization.

http://bzdt.ch.mnr.gov.cn
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The ln(RR) variance (Var) was calculated using Equation (3):

Var(ln RR) =
SD2

f

nfX2
f
+

SD2
c

ncX2
c

(3)

where nf and nc are the sample size of the fertilization and control groups, respectively. SDf
and SDc are the SDs of the fertilization and control groups, respectively.

The calculation formula for Cd content increment is as below:

Increment = Xf − Xc (4)

Using the following equation, the average response ratio of the soil Cd content was
converted into the percentage change in order to assess the effects directly on the soil
Cd content:

Cd % Change = (eLn(RR) − 1) × 100 (5)

A positive effect of the fertilizer on the soil Cd content was indicated if the percentage
change value was larger than zero. The fertilizer had a negative effect on the soil Cd content
when the percentage change was less than 0.

2.2.2. Analysis of the Contribution of Explanatory Variables

Aggregated boosted tree (ABT) [28] analysis was used to rank the explanatory vari-
ables’ contributions for various factors (HI, soil pH, cultivation duration, fertilizer regimes,
crop types, and soil texture) in order to further analyze their significance to the effects on
the responses of soil total and available Cd. ABT is an ensemble learning technique that
improves predictive accuracy and generalization by combining multiple decision trees.
ABT analysis was performed in Python 3.9 software, using “sklearn 1.3.2”, “xgboost 2.0.3”,
and “pandas 2.0.3” packages in combination.

2.2.3. Statistical Analysis

Changes in soil total and available Cd content as a function of crop type, soil texture,
cultivation time, and fertilizer type were examined using the linear regression method.
The associations between the explanatory factors and the percentage change in the soil Cd
content were examined using correlation analysis. The effects of soil texture, HI, cultiva-
tion time, and fertilizer types on the total amount of soil and available Cd content were
tested using one-way ANOVA. Using SPSS 27.0 software, statistical tests were conducted.
p values < 0.05 and <0.01 were considered extremely significant and significant, respectively.

3. Results
3.1. The Effects of Fertilization on Total and Available Cd% Change

The order of the increased soil total and available Cd change (%) under different fertil-
izers and crops was NPKM (total: 62%–104%; available: 61%–143%) > NPKS (50%–86%;
48%–116%) > NPK (25%–50%; 35%–75%) > NK (5%–19%; 19%–33%) > N (2%–6%; 7%–31%)
(Figure 3). The organic fertilizer (NPKM, NPKS) significantly increased the change of total
Cd% (104% and 86%) under maize and available Cd% (136% and 116%) under rice com-
pared to mineral fertilizer. The NPKS treatment had the lower available Cd% (65%) change
under wheat-maize compared to wheat-rice (114%) (Figure 3). The total and available Cd%
change significantly increased under NPK compared to NK and N in all crop rotations,
which had the highest total Cd% change under wheat-rice (50%) and available Cd% change
under wheat (75%) (Figure 3).
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available Cd (b,d,f,h,j)). Numbers of sampling data are in the rightmost column. % change was
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3.2. The Effects of the Fertilization Duration and Fertilizers on the Soil Total and Available
Cd% Change

The total and available Cd exhibited a strong increasing trend after 35 years of NPK,
NPKS, and NPKM fertilization with the increasing order (NPKM > NPKS > NPK > NK > N)
under different crops (Figures 4 and 5). The biggest effect of the NPKM cultivation duration
on the total Cd% change was under maize (correlational lineal slope: 5.9), and that on
the available Cd% change was under rice (6.6). The biggest effect of the NPKS cultivation
duration on the total Cd% change was under wheat-rice (4.0) and that on the available
Cd% change was under rice (4.1). The NPK cultivation duration had the biggest effect on
the total (2.2) and available (2.3) Cd% change under wheat-rice rotation. The N and NK
cultivation duration had no big difference on the total and available Cd% change in all crop
rotations (<2) (Figures 4 and 5).
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3.3. The Effects of Climate on Soil Total and Available Cd% Change under Fertilizers

The change range of the soil total and available Cd% caused by mineral and organic
fertilizers were highest in the semiarid region (−48% to 398% and −46% to 375%) compared
to the arid (−16% to 236% and 18% to 33%) and humid region (−31% to 258% and −41%
to 176%). The increases in the soil total and available Cd% change was the highest in the
semiarid region when HI was between 35 and 45 in NPK (119 and 229%), NPKS (228 and
233%), and NPKM (398 and 375%), respectively (Figure 6).

3.4. The Effects of the Soil Texture, pH, and Cultivation Duration on Soil Cd% Change
under Fertilizers

The soil pH changed much in clay loam (−1.9) compared to sandy loam (−0.5) and
silty loam (−0.3). With the pH decreased most (−1.9) after 20–25 years of cultivation in
clay loam, the highest total (398%) and available (375%) Cd% change reached the highest
data. After 24 years of cultivation, the highest total Cd% changes was 305% in sandy loam
and the highest available Cd% changes were 206% in silty loam (Figure 7).
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4. Discussion
4.1. The Effects of Organic and Inorganic Fertilizers in Soil Total and Available Cd during Different
Crop Cultivations

Organic fertilizer (NPKM, NPKS) significantly increased the total Cd and available
Cd compared to mineral fertilizers (Figure 3) and this trend increased with the cultivation
duration (Figures 4 and 5). Zhao and Yan (2014) also found similar results after applying
organic fertilizer (NPKM, NPKS) to the soil [6]. That is caused from the multifaceted effects:
(1) There is a rise in Cd in manure due to the widespread use of heavy metals as medications
or food additives for cattle to protect against illnesses [7]. The straw returned to the soil
along with the Cd it contained [29]. (2) The application of manure and straw returning still
increased the soil organic matter (SOM) content [30]; the strong cation exchange ability of
SOM enrichment frequently contributes to the buildup of Cd in the soil [31]. (3) Manure
and crop straw can release organic acids into the soil during the microbial decomposition
process [32,33]; as the amounts of organic acids increased, so did the percentage of Cd that
was absorbed [34]. When compared to N and NK fertilizers, the inorganic NPK fertilizer
increased the soil total and available Cd beneath all crops by a much greater amount.
(Figure 3), which was consistent with earlier research [9,35]. That was mainly because
of the Cd (0.06–1.10 mg·kg−1) [36] content in phosphorus mineral fertilizer. Because the
Cd content in manure (0.29–3.52 mg·kg−1) [37] and straw (0.10–1.21 mg·kg−1) [38] in Cd-
contaminated locations were higher than the phosphorus mineral fertilizer, the order of
total and available Cd followed the order under fertilizations: NPKM > NPKS > NPK.

Moreover, for monocropping, the organic fertilizer increased the soil total Cd to be
the highest under maize and available Cd under rice (Figure 3). That was because maize
grows in an oxidizing environment [39], while rice grows in a reducing environment [40].
The paddy field affected the increase in available Cd in soil because, under a reducing
environment, Cd was more prone to transforming from the solid phase into the available
form that could be easily absorbed by plant roots [41]; and Cd trends to mobilize in flooded
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paddy soil due to the reductive dissolution of the iron (oxyhydr) oxides to which Cd sorbs,
resulting in an elevated available Cd accumulation in rice [42].

4.2. The Effects of Climate and Soil Properties (Texture, pH) on Soil Total and Available Cd under
Different Fertilizer Regimes

The highest increases in the soil available Cd were observed in the semiarid and semi
humid region (25 < HI < 50) compared to the arid and humid region. There is an increased
solubility of soil Cd in the humid region, but a weakened solubility of soil Cd ions in the
arid region [43]. The metal reactivity of soil in high HI was higher, resulting in the more
complete movement of metals toward stable fractions; the metal mobility factor (MF) was
more than 61.85% [44]. Simultaneously, soil oxides like manganese and iron oxide may
participate in the process, generating cadmium-rich sediment and lowering the amount of
Cd that is available in the soil [39].

The increase in the soil total Cd in the arid region was relatively low, which was
related to the microenvironmental conditions of arid region soil and the particle size of soil
components. The average SOC had the lower content in arid land (9.39 g·kg−1) compared
to semiarid (13.35 g·kg−1) or humid land (16.22 g·kg−1) [45]. Rich organic matter can
convert exchangeable metal parts into organic bound states in strongly bound forms [46],
and, by combining its surface functional groups (carboxyl, hydroxyl, and phenolic) with
Cd, the adsorption capacity of soil for Cd can be increased [47]. The soil component with
the smallest particle size (such as clay) generally has the maximum adsorption capacity [48].
The clay content in arid region soil (0.76% to 0.94%) is lower than that in paddy soil (1.09%
to 1.90%), which leads to a lower specific surface area and fewer adsorption sites, resulting
in a weaker Cd adsorption capacity [49] (Figure 7). Moreover, the industry developed faster
in the semiarid and humid region compared to the arid region [50], which results in the
lower average Cd accumulation from human activities. The soil properties such as texture
and pH had an effect on the total and available Cd (Figure 7, Table 1). The higher increases
in the soil total and available Cd were observed in the clay loam region compared to sandy
loam and silty loam with the order of clay loam > silty loam > sandy loam (Figure 7).
Clay loam soil had fine particles, a relatively large surface area, and a stronger adsorption
capacity [51]. Cd ions could bind to the particles of clay loam soil through mechanisms
like electrostatic attraction and surface functional group adsorption [52]. In sandy loam
soil, due to its high permeability, Cd was more prone to leaching downwards, resulting in
a relatively smaller increase in both total and available Cd [53].

Table 1. The rank correlation coefficients of Spearman between the responses of soil Cd and the
explanatory variables (pH, cultivation duration, and HI).

Soil Cd Explanatory Variables

Total Cd Available Cd HI Duration pH

Total Cd
0.53
**

363

−0.14
**

629

0.45
**

608

−0.26
*

416

Available Cd
−0.23

**
267

0.49
**

625

−0.31
*

282

HI
−0.09

*
135

Duration
−0.16

**
441

pH
* = p < 0.05, ** = p < 0.01. First line stands for the correlation coefficient, second line stands for the significance,
and third line stands for the sampling size. The hatched boxes indicate insignificant relations. Cells colored
indicate the relation were positively (green) or negatively (orange) significant, respectively. MAT: mean annual
temperature, MAP: mean annual precipitation. HI: humidity index (HI = MAP/(MAT + 10)).
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4.3. The Suggestions and Reasonable Management for Cultivated Soil Cd Mitigation

Through the use of aggregated boosted tree analysis, we discovered that the longest
period of agriculture was the most effective explanatory factor for the soil total Cd (32%),
exhibiting a markedly upward trend as a function of cultivation years (Figures 4 and 8).
The fertilizers had the best explanatory variable for soil available Cd (28%). Therefore,
it was crucial to control the source of Cd by controlling the fertilizer input, and fertiliza-
tion duration especially for the organic (manure and straw) and phosphorous fertilizer,
particularly by carefully testing the Cd content of fertilizers before the application of or
reduction of fertilizer [9] according to the plants’ demand. The excessive content of heavy
metals in feed is the main cause of Cd pollution in livestock manure [54]. The addition
of metal elements in feed should be strictly controlled, and the metal inorganic salts in
forages should be replaced with new, safe, and effective additives [54]. As a substitution,
more new fertilizers, such as biochar [55], foliar-based fertilization [56], iron/manganese
oxides, and so on, could be implemented, which had proven to be effective in reducing the
bio-availability of Cd [57–59].
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Regular soil Cd remediation can maintain relatively low levels of Cd in the soil. Field
management such as the wetting and drying in the rice cropping system could significantly
reduce the Cd availability in soil [6]. Especially, pay attention to the plant growth stage; Cd
levels in crop grains can be reduced by reducing the availability of Cd in the soil, especially
during the critical growth stage of grain filling [60], which could ensure food security. The
pH explained 16% and 14% of the soil total and available Cd, respectively (Table 2). As an
illustration, lime was commonly used in Chinese farmland to address soil acidification and
effectively manage the availability of Cd (Figure 8) [40,61].
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Table 2. The responses of soil Cd (total and available Cd) according to ABT analysis.

Variation
Explained (%)

Explanatory Variables

Fertilizer Crop HI Duration pH Soil Texture

Total Cd 27 11 9 32 16 5
Available Cd 28 10 17 25 14 6

5. Conclusions

Through a meta-analysis of published 1708 data, we were able to determine how
different fertilizer types, climate, crops, cultivation length, and soil texture affect soil total
and available Cd. In contrast to other fertilizers, the use of organic fertilizers (NPKM and
NPKS) across a 35-year period in our study resulted in a considerable and quick rise in the
total and available Cd with the order NPKM > NPKS > NPK > NK > N. The highest effects
on the increase in the soil total (104%) Cd under maize and available (143%) Cd under
wheat-maize were attributed to the application of NPKM fertilizer. NPKS significantly
increased the change of total Cd under maize (86%) and available Cd under rice (116%). The
NPKS treatment had the higher available Cd change (114%) under wheat-rice compared to
wheat-maize (65%). The NPK including mineral phosphorous demonstrated the highest
increase in the total Cd under wheat-rice (50%) and available Cd under wheat (75%)
compared to the other mineral fertilizers of NK and N. The Cd change was the highest
with the NPKM cultivation duration for the total Cd under maize (correlational lineal
slope: 5.9) and available Cd under rice (6.6), which was followed by NPKS on total Cd
under wheat-rice (4.0) and available Cd under rice (4.1) during 35 years of cultivation. The
soil total and available Cd increased the highest amount in the semiarid region (−48%
to 398% and −46% to 375%) compared to the arid (−16% to 236% and 18% to 33%) and
humid region (−31% to 258% and −41% to 176%). The continuous fertilization caused
soil acidification with the pH reduced by 1.9 after 20 to 25 years, which led to the highest
soil total Cd (398%) and available change (375%) for clay loam. The cultivation and the
fertilizers were the best explanatory variable for the soil total Cd (32%, 27%) and soil
available Cd (25%, 28%). Therefore, considering the crop rotations (upland crops were
preferred) and climate conditions (especially for a semiarid climate), we should reduce the
organic fertilizer amount with a local high Cd content (manure and straw) and P mineral
fertilizer, substitute fertilizers without Cd (such as biochar, foliar-based fertilization, and
so on), lime the acidified soils, and manage the drying and wetting especially in the
pustulation period for reducing the bio-availability of Cd, mitigating soil Cd accumulation
and food safety.
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