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Abstract: Purkinje cells (PCs) in the cerebellar cortex can be divided into at least two main subpopula-
tions: one subpopulation that prominently expresses ZebrinII (Z+), and shows a relatively low simple
spike firing rate, and another that hardly expresses ZebrinII (Z–) and shows higher baseline firing
rates. Likewise, the complex spike responses of PCs, which are evoked by climbing fiber inputs and
thus reflect the activity of the inferior olive (IO), show the same dichotomy. However, it is not known
whether the target neurons of PCs in the cerebellar nuclei (CN) maintain this bimodal distribution.
Electrophysiological recordings in awake adult mice show that the rate of action potential firing
of CN neurons that receive input from Z+ PCs was consistently lower than that of CN neurons
innervated by Z– PCs. Similar in vivo recordings in juvenile and adolescent mice indicated that the
firing frequency of CN neurons correlates to the ZebrinII identity of the PC afferents in adult, but
not postnatal stages. Finally, the spontaneous action potential firing pattern of adult CN neurons
recorded in vitro revealed no significant differences in intrinsic pacemaking activity between ZebrinII
identities. Our findings indicate that all three main components of the olivocerebellar loop, i.e., PCs,
IO neurons and CN neurons, operate at a higher rate in the Z– modules.

Keywords: cerebellar nuclei; action potential firing; development; ZebrinII; morphology

1. Introduction

The cerebellum integrates inputs from sensory, motor, cognitive and limbic systems
in dedicated parts of its cortex and nuclei [1]. Cerebellar defects that span several lobules
are, therefore, likely to result in complex disorders affecting, for instance, social behavior,
sensorimotor integration and language [2]. Based on the connectivity of the pre-cerebellar
afferent systems, i.e., mossy fibers and climbing fibers, as well as the cellular composition,
the cerebellar cortex and cerebellar nuclei (CN) can be divided in modules. Although there
are unifying theories on how the crystalline cerebellar architecture allows processing of
diverse types of information, all of which enter as action potential (AP) firing patterns
with specific spatiotemporal patterns [3], it remains to be elucidated how the modular
organization of the olivo-cerebellar system correlates to the actual output of the cerebellum,
i.e., the CN firing pattern.

Various factors are known to influence the CN firing patterns. CN neurons are charac-
terized by pacemaking activity, i.e., fire APs even in absence of any synaptic inputs [4] and
receive excitatory mossy fiber and climbing fiber input via axon collaterals. Additionally,
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CN neurons receive inhibitory input from Purkinje cells (PCs), the axons of which synapse
on the perisomatic membrane [5]. Despite the dense PC convergence onto CN neurons (40:1
in adult murine brain; [6]), CN neurons are known for their extensive dynamic range in fir-
ing frequency, which is particularly evident from recordings in awake preparations [7–13].
The precise impact of the excitatory and inhibitory afferents has been studied in detail in
silico, in vitro and in vivo [6,14–18], but without attention for the impact of the modular
organization of the cerebellum.

Immunohistochemical stainings for several markers, of which ZebrinII (aldolase-C) is
the most frequently used, clearly reveal that the CN can be divided into two domains, a
ZebrinII-positive (Z+) and a ZebrinII-negative (Z–) domain, based upon the density of Z+
and Z– PC axons [19,20]. The functional relevance of the ZebrinII identity of individual
CN has recently been identified. The lateral, posterior interposed and caudal portion of the
medial CN are mostly innervated by Z+ PCs, whereas the anterior interposed and rostral
portion of the medial CN are mostly innervated by Z– PCs [21]. Recent studies in adult mice
have shown that the Z+ PCs fire APs on average at lower frequencies than Z– PCs [22,23],
which has been linked to various behaviors. For instance, eye blink conditioning is encoded
in Z– anterior interposed nucleus, which receives innervation from the portion of the
cerebellar cortex in which Purkinje cells on average fire at a higher frequency [24]. Also in
the medial CN the ZebrinII identity was recently shown to differ for various functional
domains, in that motor, positional, autonomous and vigilance information is encoded
by various regions in the medial CN that receive input from Z+ or Z– Purkinje cells [25].
To investigate whether the input from Z+ or Z– Purkinje cells has an effect on the firing
frequency of CN neurons, we established the firing patterns of CN neurons in Z+ and Z–
nuclei in various developmental stages and assessed the impact of synaptic inputs.

2. Materials and Methods
2.1. Subjects

For in vivo extracellular recordings in the CN, we used a total of 62 mice, aged
between postnatal day (P)12 to P133. We used both males and females and selected the
pups randomly from a litter, and used either Slc1a6-EGFP [26] or C57BL/6J mice to record
CN neurons. We recorded 111 CN neurons in 18 Slc1a6-EGFP and 293 CN neurons in
44 C57BL/6J mice. The Slc1a6-EGFP mice were used to shorten the histological procedure,
since the ZebrinII pattern is already fluorescent. All recording locations where stained with
biocytin or Evans Blue, therefore we did not use any mice for both in vivo and in vitro
recordings. For in vitro whole-cell recordings in CN we used a total of 22 Slc1a6-EGFP
mice. The Slc1a6-EGFP mice were used to visualize the ZebrinII identity of the CN at the
patch setup. We calculated the difference between Slc1a6-EGFP and C57BL/6 recordings,
but found no significant difference between any parameter (data not shown).

The Slc1a6-EGFP mice were bred in-house by crossbreeding with C57BL/6 mice.
The C57BL/6J mice used for experiments were obtained from a time-pregnant female
imported from the vendor (Charles River, Wilmington, MA, USA, or Janvier Labs, Le
Genest-Saint-Isle, France). All experiments were performed in accordance with the Eu-
ropean Communities Council Directive. Protocols were reviewed and approved by the
Dutch national experimental animal committees (DEC) and every precaution was taken to
minimize stress, discomfort and the number of animals used.

2.2. Surgery for In Vivo Awake Recordings

Mice were subcutaneously injected with buprenorphine (0.015 mg/kg) (RB Pharma-
ceuticals Ltd., Slough, UK) and Rimadyl cattle (5 mg/kg) (Zoetis, Parsippany, NJ, USA)
60 min before surgery. Mice were anesthetized with isoflurane (3% in 0.4 L/min O2 for
induction and for maintenance 0.5–1.3% in 0.2–0.4 L/min O2) (TEVA Pharmachemie, Haar-
lem, The Netherlands). During the surgery the temperature was maintained at 37 ◦C using
a heating pad and anal probe in an automated feedback system. Before and after shaving
of the skin 2% lidocaine (AstraZeneca, Cambridge, UK) was applied. To expose the skull
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the skin was opened over the rostro-caudal midline. The skull was covered with a layer of
Optibond (Kerr, Salerno, Italy) for stability and 5 holes were drilled using a high speed,
diamond-tipped drill (Foredome, Bethel, CT, USA). To obtain ECoG signals, five pure
silver ball-tipped electrodes (custom-made from 0.125 mm diameter silver wire; Advanced
research materials LTD, Eynsham, Oxford, UK) were placed on the meningeal layer of the
dura mater. Two silver electrodes were positioned bilateral above the primary cortex (M1:
1 mm rostral; 1 mm lateral; relative to Bregma), two were placed above the primary sensory
cortex (S1: 1 mm caudal; 3.5 mm lateral relative to Bregma), and one in the interparietal
bone (1 mm caudal; 1 mm lateral relative to Lambda). UV-sensitive composites, a layer of
Optibond (Kerr, Salerno, Italy) and Charisma or Charisma Flow (Heraeas Kulzer, Hesse,
Germany), were used to fixate the silver electrodes and the head-fixing pedestal, consisting
of two M1.4 nuts. To obtain extracellular recordings a craniotomy was made in the occipital
bone, which was temporarily closed with Kwik-Cast sealant (World Precision Instruments
Inc., Sarasota, FL, USA) to prevent cooling of the brain. At the end of the surgery the mice
received 0.1–0.2 mL saline intraperitoneal injection for hydration.

2.3. In Vivo Awake Extracellular Recordings

Within 2 h of the start of the surgical procedure the mice were relocated to the setup
where the body temperature was supported via a feedback-controlled heating pad. We
evaluated the state of the mice using the behavior (spontaneous whisking, response to
auditory stimuli) and ECoG (presence of slow-wave, high-amplitude activity indicating
drowsiness, or fast, low-amplitude activity indicating alert state). ECoG and extracellular
recordings were sampled at 20 kHz (setup 1: Digidata 1322A, Molecular Devices LLC.,
Axon instruments, Sunnyvale, CA, USA), amplified, and stored for offline analysis (Cyber-
Amp 380 and Multiclamp 700A, Molecular Devices) or at 50 kHz (setup 2: ECoG: adapted
MEA60, Multichannel system, Reutlingen, Germany; extracellular: Multiclamp 700B am-
plifier with a DigiData 1440; Molecular Devices). Single-unit recordings started 2 h or more
after the termination of isoflurane application and only when the ECoG appeared normal
for an awake mouse (evaluated by the experimenter from raw traces), free from NREM
and REM sleep waves in the ECoG [27] and display alert whisking behavior. Next, cells
were recorded using borosilicate glass capillaries (Harvard apparatus, Holliston, MA, USA)
with 0.5–1.0 µm tips and a resistance of 6–12 MΩ. Glass pipettes were filled with internal
solution containing (in mM): 9 KCl, 3.48 MgCl2, 4 NaCl, 120 K+-Gluconate, 10 HEPES,
28.5 Sucrose, 4 Na2ATP, 0.4 Na3GTP (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
in total pH 7.25–7.35, osmolarity 290–300 mOsmol/Kg; and 1% biocytin or 0.5% Evans
Blue (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany). We used an internal record-
ing solution to easily dissolve biocytin or EvansBlue. At the recording location biocytin
was released with iontophoresis with 1 s pulses of 4 µA for 3 min (custom-built device,
Erasmus MC, Rotterdam, The Netherlands), or Evans blue was injected with pressure.
In our analysis, we included only cells that we could identify the injection spot by the
recording location, see Figure 1A (right panel). We determined the specific subnuclei using
confocal images (see Supplementary Figure S1), the confocal images were compared to
both the Paxinos and Franklin atlas [28], and the previously published ZebrinII staining in
the CN [20] (Figure 1, Table 1). This process was at least performed by two independent
observers; in case the observers’ classification of the ZebrinII identity did not match, the
neuron was discarded from further analysis.

2.4. Slice Preparation for In Vitro Whole-Cell Recordings

Adult mice (>P90) were isoflurane-anesthetized before decapitation, their brain
quickly removed and placed in warm (~34 ◦C) artificial cerebrospinal fluid (aCSF) con-
taining the following (in mM): 123 NaCl, 2.5 KCl, 1 MgCl2, 1.3 NaH2PO4, 26 NaHCO3, 10
glucose, 2 CaCl2, bubbled with 95%O2/5%CO2, pH 7.4 [29]. Coronal slices (250 µm) of
cerebellar tissue including CN were cut using a vibratome (VT1200S, Leica Biosystems,
Wetzlar, Germany) with a ceramic blade (Campden Instruments Ltd., Manchester, UK).
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Directly after slicing the cerebellar slices were transferred to a recovery bath, and were
incubated in oxygenated (bubbled with 95% O2 and 5% CO2) aCSF and maintained at
34 ± 1 ◦C. After 30 min the slices were transferred to a recording chamber and maintained
at 34 ± 1 ◦C under continuous perfusion with the oxygenated physiological solution.
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resentative confocal image (and corresponding stereotactic atlas extracted from (Paxinos and Franklin, 2001) [28]) of a 
Slc1a6-EGFP cerebellar slice with a biocytin-labelled injection spot (red) at the recording location of an extracellularly 
recorded CN neuron in the anterior interposed nucleus. (B) Two representative example traces of CN neurons recorded 
in areas innervated by Z+ and Z– PC axons in adult mice (>P90). (C) Quantification of firing frequency (C), (D1) coefficient 
of variance (CV), and (D2) CV2 for Z– (gray, n = 40) and Z+ (green, n = 57) CN neurons recorded from 11 Slc1a6-EGFP 
mice. (E) The fraction of the total population of bursting spikes followed by ≥50 ms pause is displayed as the burst index. 
(F) The asymmetry of the distribution of interspike intervals (ISI) is represented by the skewness. (G) The ‘tailedness’ of 
the interspike interval (ISI) distribution is represented by the kurtosis. AIN = Anterior interposed nucleus; IntDL = dorso-
lateral hump of the interposed nucleus; LCN = lateral cerebellar nucleus; LatPC = lateral nucleus parvicellular part; MCN 
= medial cerebellar nucleus; PIN = posterior interposed nucleus. * denotes p<0.05, each triangle represents a data point of 
single neurons. See Supplementary Table S1 for all statistical data. Data are represented as mean ± SEM. 

Figure 1. Cerebellar nuclei (CN) firing frequency differs between ZebrinII domains in vivo in the adult mouse. (A) (Left)
An example picture of a fluorescently-labelled CN neuron, which was stained during whole-cell recording. (Right)
Representative confocal image (and corresponding stereotactic atlas extracted from (Paxinos and Franklin, 2001) [28]) of
a Slc1a6-EGFP cerebellar slice with a biocytin-labelled injection spot (red) at the recording location of an extracellularly
recorded CN neuron in the anterior interposed nucleus. (B) Two representative example traces of CN neurons recorded in
areas innervated by Z+ and Z– PC axons in adult mice (>P90). (C) Quantification of firing frequency (C), (D1) coefficient
of variance (CV), and (D2) CV2 for Z– (gray, n = 40) and Z+ (green, n = 57) CN neurons recorded from 11 Slc1a6-EGFP
mice. (E) The fraction of the total population of bursting spikes followed by ≥50 ms pause is displayed as the burst index.
(F) The asymmetry of the distribution of interspike intervals (ISI) is represented by the skewness. (G) The ‘tailedness’ of the
interspike interval (ISI) distribution is represented by the kurtosis. AIN = Anterior interposed nucleus; IntDL = dorsolateral
hump of the interposed nucleus; LCN = lateral cerebellar nucleus; LatPC = lateral nucleus parvicellular part; MCN = medial
cerebellar nucleus; PIN = posterior interposed nucleus. * denotes p < 0.05, each triangle represents a data point of single
neurons. See Supplementary Table S1 for all statistical data. Data are represented as mean ± SEM.
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2.5. In Vitro Whole-Cell Recordings

For all recordings, slices were bathed in 34 ± 1 ◦C aCSF (bubbled with 95% O2 and
5% CO2). Whole-cell patch-clamp recordings were performed using an EPC-10 amplifier
(HEKA Electronics, Lambrecht, Germany) for 20–60 min and digitized at 20 kHz. Whole-
cell recordings were obtained using borosilicate pipettes (4–6 MΩ) filled with internal
solution containing (in mM): 120 K-gluconate, 6 NaCl, 10 HEPES, 1 EGTA-KOH, 0.1 CaCl2,
4 Mg-ATP, 0.4 Na-GTP, 2 KCL, 14 Creatine phosphate TRIS, 2 MgCl2 (pH 7.36, osmolarity
290 mOsmol/Kg). After breaking the gigaseal, the spontaneous activity was first recorded
for at least 2 min. Recording pipettes were supplemented with 1 mg/mL biocytin to
allow histological staining (see below). All recordings were performed in the presence of
picrotoxin (100 µM, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) to block GABAA-
receptor-mediated inhibitory postsynaptic currents (IPSCs) and glycine receptors, NBQX
(10 µm, Tocris, Bristol, UK) and 10 µM APV (10 µm, Tocris) to block respectively AMPA
and NMDA receptors.

2.6. Measurement of In Vitro Electrophysiological Parameters

Current-clamp traces were acquired using Patchmaster software (HEKA Elektronik Dr.
Schulze GmbH, Lambrecht, Germany) and stored for offline analysis. Immediately after
breaking the gigaseal, the resting membrane potential (Vrest) was recorded as well as the
spontaneous AP firing. Vrest was calculated as the mode of the membrane potential during
the first 1000 ms of a I = 0 pA current-clamp recording. These recordings lasted 120 s each
and were used to calculate the spontaneous AP firing pattern. Input resistance (RI) and
series resistance (Rs) were recorded in voltage-clamp mode by −5 or −10 mV voltage steps.
Recordings were discarded from further analysis if RI or RS varied by >25% over the course
of the experiment. For analysis of evoked APs, the first APs fired by each cell in response to
a series of increasing depolarizing current steps was isolated and analyzed using a custom
build Matlab code (Maltab 2016, Mathworks, Natick, MA, USA). The AP threshold was
calculated as the potential at which the second derivative peaked (d2V/dt2) [30]. The
baseline for analyzing the amplitudes of the AP and the fast after-hyperpolarization (fAHP)
were calculated relative to the mode of 10 ms of the trace (from −15 to −5 ms before the AP
peak). The rise and decay time were calculated using the AP threshold as start point using
10–90% of the total rise and decay period, the half-width was also calculated taking the AP
threshold as the start of the AP. For current-frequency (I-F) plots we calculated the average
firing frequency for each level of injected current. We calculated the rheobase as the first
level of current injection (50 pA steps) that evoked an AP. The frequency adaptation was
calculated from selected traces with an average firing rate of ~40 Hz for both Z+ and Z–
cells and normalized all interspike intervals to the initial interval. The recording traces
with current injections were repeated three times and values were averaged per cell.

2.7. Immunofluorescence for In Vitro Recordings

Slices were placed in 4% PFA (in 0.12 M phosphate buffer (PB)) for at least 24 h.
Subsequently, slices were transferred into 0.1 M phosphate buffered saline (PBS), rinsed
with PBS three times for 10 min and incubated for 1 h at room temperature (RT) in blocking
solution. Thereafter, the slices were rinsed three times for 10 min and incubated for 2 h with
Streptavidin-Cy3 (1:200, Jackson Immuno Research Inc., West Grove, PA, USA) diluted in
PBS containing 2% normal horse serum and 0.4% triton. Finally, slices were rinsed in PBS,
mounted with Vectashield (Vector laboratories, Burlingame, CA, USA) and imaged with a
LSM 700 confocal microscope (Carl Zeiss Microscopy, LLC., Thornwood, NY, USA).

2.8. Fluorescence Microscopy for 2D Sholl Analysis

Recorded neurons were labeled with biocytin. Epifluorescent tile images were ob-
tained using a 20×/0.30 NA (air) objective and a LSM 700 microscope (Carl Zeiss). The
position of labeled neurons was confirmed using a stereotactic atlas. To determine the
dendritic arborization of biocytin filled cells, we imaged using a 40×/1.3 numerical aper-
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ture (NA) oil-immersed objective to acquire a stack of images with 0.5× digital zoom and
a voxel size of 313 nm width × 313 nm length × 300 nm depth for a 2D Sholl analysis
by a Sholl analysis macro implemented in FIJI [31] software. For preprocessing, stacks
with excessive background signal were excluded from further analysis. Subsequently the
maximum projection of each image was thresholded in FIJI, and the dendritic arborization
was measured in concentric shells of 10 µm distance starting with 15 µm distance from the
center of the soma.

2.9. Immunofluorescence for In Vivo Recordings

At the end of the in vivo recordings mice were sacrificed with an overdose of pentobar-
bital and transcardially pre-rinsed with PBS followed with a solution of 4% paraformalde-
hyde in 0.1 M PB. The brain was removed and post-fixed for two hours at room temperature
(RT) in this paraformaldehyde solution, and then placed overnight at 4 ◦C in a solution
of 10% sucrose in 0.1 M phosphate buffer. Brains were embedded in a 0.1 M PB with 12%
gelatin and 10% sucrose, the embedded brain was fixed for two hours in 10% formaldehyde
and 30% sucrose solution of 0.1 M PB. Then it was placed in a 0.1 M PB with 30% sucrose
overnight at 4 ◦C. Brains were sliced in 40 or 100 µm thick slices on a freezing microtome.
A standardized immunochemistry protocol was used and all slices from C57BL/6 mice
were stained with the primary aldolase-C (goat, 1:1000, Santa Cruz Biotechnology Inc.,
Dallas, TX, USA) for four days at 4 ◦C, and for two hours at RT for the secondary antibody
anti-goat (1:200, Jackson Immuno Research). Note that the aldolase-C staining is comple-
mentary with the Slc1a6-EGFP expression pattern [26] and that ZebrinII is the same as
aldolase-C [32]. In case biocytin was used, slices were also stained with streptavidin (1:200,
Jackson Immuno Research). All slices received a nuclear DAPI staining for 10 min, and
were mounted on cover slips from a chromium(III) potassium sulfate solution and then
covered with a microscope slide with mowiol.

2.10. Acquisition of Confocal Images

Wide-field fluorescent tile scan images were acquired with a LSM 700 (Carl Zeiss) or a
SP5/SP8 (Leica Microsystems) confocal laser scanning microscope. The tile scans of the
injection spots were made with a 10× objective, 20% overlap and online-stitched. Only
recorded neurons that were located within 300 µm from the center of the injection area
(identified by the Evans blue or biocytin staining) were analyzed. If the injection center
was near the border between Z+ and Z– domains and at least one of the experimenters
G.B.C, S.V.G. and/or F.E.H. were uncertain about the definitive location, the recording was
excluded from analysis.

2.11. Spike Analysis

For spike analysis of the CN neurons (n = 404 cells) recorded in vivo we included only
cells with a recording length of at least 90 s (duration: 214 ± 160 s). In our analysis we
included only the cells of which we could trace the recording location by the use of the
injection spot. We used a Matlab (Mathworks) code to detect spikes using threshold and
principal component analysis [33]. We analyzed the regularity of AP firing patterns using
the coefficient of variance (CV) and CV2. CV is the variation in interspike intervals (ISI):

CV = standard deviation ISI/mean ISI (1)

CV2 represents the variance on a spike-to-spike base and is less sensitive for a single
outlier compared to CV [34]:

CV2 = (2 × |ISIn+1 − ISIn|)/(ISIn+2/ISIn) (2)
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The mean instantaneous firing frequency (miFF) is the average firing frequency (FF)
on a spike-to-spike basis,

miFF = mean ((1/ISIn) + (1/ISIn+1)) (3)

The burst index reflects the fraction of all spikes that were part of a ‘burst’, which
we defined by at least three spikes at ≥100 Hz followed by a pause of 50 ms (‘burst index
50 ms’) or 100 ms (‘burst index 100 ms’).

2.12. Statistical Analysis

Using GraphPad Prism8.3.1 (GraphPad Software, San Diego, CA, USA) we ran the
appropriate statistical comparisons between groups and subgroups, the outcome of which
is represented in designated supplementary tables. We defined p < 0.05 as a significant
difference. Summarized data are represented as mean with ± standard error of the mean
(SEM) unless stated otherwise.

3. Results
3.1. Firing Frequency Differs between ZebrinII Domains in Cerebellar Nuclei during Adulthood

To confirm the dichotomous labelling of the CN that was shown in the rat [21], we
evaluated the presence of a clear separation between CN innervated densely by Z+ PC
axons and by Z– PC axons assessing the eGFP labelling of ZebrinII (aldolase-C) in the
CN in Slc1a6-EGFP mice [22,35,36]. Indeed, we found that the Z+ domains of the CN
encompass the posterior interposed, lateral and the medio-ventral portion of the medial
nuclei, whereas the anterior interposed and the latero-dorsal portion of the medial nuclei
are innervated predominantly by Z– fibers (Figure 1A; Supplementary Figure S1).

To evaluate the average firing frequency of cerebellar nuclei neurons located in the
Z+ and Z– domains (hereafter referred to as Z+ and Z– CN neurons, respectively), we
performed extracellular in vivo recordings throughout the CN in awake, adult mice (>P90).
A total of 97 of the recorded neurons was confirmed to be located in the CN by histological
verification (see Section 2) (Figure 1A). The CN cells showed disparity in firing patterns
(Figure 1B; Supplementary Table S1) as a higher firing frequency was observed in Z– CN
neurons compared to Z+ CN neurons (Z+: 53.9 ± 3.5 Hz; Z–: 68.7 ± 4.7 Hz; p = 0.0107,
unpaired t-test; Figure 1C; Supplementary Table S1). The regularity of AP firing was
quantified by calculating the CV and the CV2; we found that the regularity was not
significantly different between neurons recorded in Z+ or Z– CN (CV: Z+: 1.25 ± 0.27;
Z–: 1.02 ± 0.29; p = 0.6211, Mann–Whitney U test; CV2: Z+: 0.48 ± 0.02; Z–: 0.48 ± 0.03;
p = 0.9957, Mann-Whitney U test; Figure 1D1,D2 respectively; Supplementary Table S1).
Because of the higher firing frequency of Z– cells, we investigated whether the Z– cells
were more prone to burst firing. We found that the fraction of burst firing in Z– CN
neurons is not significantly different from Z+ CN neurons (Z+: 0.0027 ± 0.0018; Z–: 0.0008
± 0.0003; p = 0.7041 Mann–Whitney U test; Figure 1E; Supplementary Table S1; see also
Supplementary Figure S2). Hence, we investigated the interspike interval distributions,
which can be described by the skewness, a parameter for the asymmetry of the distribution,
and the kurtosis, for the ‘tailedness’ of the distribution. We found no significant difference
in the skewness (Z+: 11.3 ± 3.7; Z–: 7.5 ± 2.7; p = 0.92 Mann–Whitney U test; Figure
1F; Supplementary Table S1) and kurtosis (Z+: 984 ± 629; Z–: 380 ± 289; p = 0.86 Mann–
Whitney U test; Figure 1G; Supplementary Table S1) between Z+ and Z– CN neurons.

3.2. No Differences in Firing Frequency between ZebrinII Domains in Cerebellar Nuclei (CN)
during Development

The firing frequency of Z+ and Z− PCs starts to differentiate from P12 [23], and the
ZebrinII pattering in PCs is complete around P12-15 [37,38]. To determine if a similar
timeline is present for CN neurons, we recorded the activity of Z+ and Z− CN neurons
at different developmental stages. Starting from P12, we found a gradual increase in the
firing frequency for both Z+ and Z− CN neurons (Figure 2A,B; Supplementary Table S2).
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However, when comparing the firing patterns of Z+ and Z− CN neurons during the
different developmental stages, we found that at none of the studied ages, i.e., P12-14,
P15-17 and P18-P20, a significant difference. Also when we evaluated the firing patterns we
found no significant differences, except for the a more irregular firing pattern in Z+ domains
compared to Z− domains at P15-17 (CV: Z+: 1.77 ± 0.21; Z−: 1.00 ± 0.13; p = 0.0082,
Kruskal–Wallis test; CV2: Z+: 0.69 ± 0.03; Z−: 0.55 ± 0.05; p = 0.0267; Brown-Forsythe and
Welch ANOVA; Figure 2C1,C2,Supplementary Table S2). The burst index of spikes fired
within a burst that is followed by a pause of ≥50 ms is significantly different for P21-24 (Z+:
0.0026 ± 0.0006; Z–: 0.0003 ± 0.0001; p = 0.0052 Kruskal–Wallis test; Figure 2D; see also
Supplementary Figure S2B; Supplementary Table S2) and P30-P40 (Z+: 0.0032 ± 0.0013; Z–:
0.0001 ± 0.0001; p = 0.0054 Kruskal-Wallis test; Figure 2D; see also Supplementary Figure
S2; Supplementary Table S2). In all other ages there were no significant differences between
the firing pattern parameters (all p-values > 0.05; Figure 2, see also Supplementary Tables
S1 and S2). These findings indicate that the difference between the firing frequency of Z+
and Z− CN neurons that we recorded in vivo in adult mice (>P60) appears only after P40.
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3.3. Similar Excitability and Pacemaker Activity of Cerebellar Nuclei Neurons in
ZebrinII Domains

As CN cells are known to fire APs in the absence of synaptic input [4], we investigated
whether the lower firing frequency of Z+ CN neurons compared to the Z– CN neurons
recorded in vivo is due to a difference in the spontaneous activity of CN neurons. To do so,
we performed whole-cell patch-clamp recordings of CN neurons from coronal cerebellar
slices of adult (>P90) mice. We identified CN neurons with a relatively large soma as the
big glutamatergic cells [39] and recorded the resting membrane potential and AP firing
patterns in the presence of AMPA-, NMDA-, GABAa-. glycine-receptor blockers (NBQX,
APV and PTX, respectively; Figure 3A). We did not observe a difference in the resting
membrane potential (Vrest: Z+: −48.2 ± 1.0 mV; Z–: −47.2 ± 0.7 mV, p = 0.4633: unpaired
t-test; Figure 3B; Supplementary Table S3). The firing frequency was also not significantly
different between the two groups (Z+: 70.8 ± 9.1 Hz; Z–: 83.9 ± 10.0 Hz; p = 0.4363, Mann–
Whitney U; Figure 3C; Supplementary Table S3). Moreover, the regularity of AP firing did
not show any trend (CV: Z+: 0.17 ± 0.04; Z–: 0.13 ± 0.02; p = 0.7692, Mann–Whitney U test;
CV2: Z+: 0.05 ± 0.01; Z–: 0.05 ± 0.01; p = 0.8698; Mann–Whitney U test; Figure 3D1,D2;
Supplementary Table S3).

Next, we studied AP firing dynamics and focused on the firing frequency versus
injected current (F-I) relationship, which provides information related to the excitability of
a neuron and how stable the resulting AP firing pattern is. We found that the rheobase was
not different between the two groups; CN neurons from both Z+ and Z– domains showed
AP firing in response to the smallest current step used (50 pA of depolarizing current;
Figure 3E,F; Supplementary Table S4). Also the frequency of the evoked APs did not show
a significant effect of the ZebrinII identity (p = 0.2687, 2-way ANOVA, Supplementary
Table S3). When testing the AP adaptation, we found that there was a significant effect on
the number of interspike intervals (p < 0.0001), but no effect of ZebrinII-identity (p = 0.7614,
mixed-effect analysis; Figure 3G; Supplementary Table S3). In addition, we also analyzed
the shape of the first evoked AP fired in response to series of depolarizing current steps of
increasing amplitudes (from −100 pA to 800 pA). We found no significant differences in the
AP threshold, half-width, rise time, decay time, peak amplitude and after hyperpolarization
(all p-values > 0.05; Supplementary Table S4).

3.4. Morphology of Cerebellar Nuclei Neurons in ZebrinII Domains

Following immunohistochemical staining, we reconstructed the morphology and
location of the patched neurons (Figure 4A; Supplementary Table S5). We found that the
average surface of the somata was not different between Z+ (306.4 ± 16.7 µm2) and Z–
(342.1 ± 30.2 µm2; p = 0.3121, Welch t-test; Figure 4B1; Supplementary Table S5). The
dendritic branching was investigated using 2D Sholl analysis and revealed that although
there was a significant effect of distance to soma (p < 0.0001), the dendritic arbor complexity
decreased with increasing distance from the soma. There was no effect of ZebrinII identity
(p = 0.3675) nor a consistent difference at the intersections between Z+ and Z– (mixed-effects
model; Figure 4B2; Supplementary Table S5).

Figure 3. Cont.
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Figure 3. Firing frequency is similar in spontaneous spiking activity of Z+ and Z– CN neurons. (A) (Top) Immunoflu-
orescence images of labelled CN neuron (white) following whole-cell recording with a biocytin-filled patch-electrode
(green indicates Slc1a6-EGFP). (Bottom) Example traces of neurons recorded in vitro by whole-cell patch-clamp without
injected holding current in Z+ and Z– nuclei. (B) Quantification of resting membrane potential (Vrest), (C) firing frequency,
(D1) coefficient of variance (CV) and (D2) CV2 for 20 Z+ and 14 Z– neurons recorded from 22 Slc1a6-EGFP mice. (E) Example
traces of AP firing evoked by depolarizing current injection. (F) Average firing frequency evoked by steps of various current
amplitudes (F-I curve). (G) Frequency adaptation depicted by interspike interval (ISI) length normalized to the first ISI.
Each triangle represents a data point of a single neuron. See Supplementary Tables S3 and S4 for all statistical data. Data are
represented as mean ± SEM.
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4. Discussion

Here we investigated the differences in spiking activity of CN receiving inputs from
Z+ and Z– PCs in mice. Our in vivo recordings of AP firing showed that the average
firing frequency of CN neurons was higher in the Z– than in Z+ domain, but that this
difference could only be confirmed for the adult stage, not during the postnatal stages
between P12-P40. To investigate whether the intrinsic pacemaking activity of CN neurons
contributes to this difference, we performed in vitro recordings of AP firing in the presence
of neurotransmitter blockers. In the absence of input we found no significant difference
between the spontaneous and evoked spiking patterns between the CN neurons in Z+
and Z– domains. These findings suggest that the difference in firing pattern between Z+
and Z– domains in CN are absent during development and, at least partially, caused by
synaptic afferents.

Previous studies showed that PCs with a Z– identity on average have a higher firing
frequency than Z+ PCs [22,23,40,41]. Given the inhibitory effect of PC afferents on CN
neurons, we expected to observe a lower firing frequency in the Z– domain of the CN
than in the Z+ domain. However, conversely we found that the firing frequency of Z– CN
neurons is higher than that of Z+ CN neurons. These counterintuitive findings might be,
at least partially, due to four reasons: firstly, the heterogeneous population of neurons
of the cerebellar nuclei [42]. Although we used extracellular recording electrodes and
thus presumably recorded the cells with a relatively large soma diameter and continuous
AP firing (see also [7]), it may still be that we recorded from various neurochemical
subzones [19]. Secondly, a potential difference in the number of synaptic inputs between
CN neurons in the different ZebrinII domains, which extends beyond the PC input and
that of local inhibitory interneurons to extracerebellar sources of excitatory input from
mossy fiber and climbing fiber collaterals [17,18,43]. Thirdly, a potential difference in
intrinsic firing rate between Z– and Z+ CN neurons. The higher firing rate in Z– PCs
in vivo was reproduced by recordings in vitro, even in small sample sizes (see Figure 5C
in [22]). In our in vitro CN neuron recordings we did not observe a robust difference, but
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that potential difference might have been obscured by the large variability in firing rates
in vitro. Fourth, and finally, the potentially different levels of synchrony in PC AP firing
between the microzones that receive input from electrotonically- and functionally-coupled
IO neurons [44] and possibly innervate different ZebrinII domains of the CN. Person and
Raman (2011) demonstrated that the synchrony of the inhibitory impact of PCs determines
the generation of CN APs [6]. Which of these four factors affects the difference in Z+ and
Z– firing rates in adult stages remains unknown.

Apart from PC inputs, also the excitatory afferents from mossy and climbing fiber
collaterals control CN spiking patterns. For mossy fiber inputs it was shown that selective
stimulation can evoke CN AP firing [45], a feature that can be modulated by the level of PC
synchrony [46]. Also climbing fiber collaterals have been identified as drivers of CN AP
firing [17]. Due to the electrotonic coupling of IO neurons, the synchronicity of climbing
fiber activity can be effectively coupled, substantiating the potential role of climbing fiber-
mediated CN spiking. A previous in vivo study indicates that in anesthetized mice ~15%
of CN APs is indeed preceded by putative climbing fiber inputs [47]. Whether a similar
percentage applies to our recording conditions is unclear, but we assume that also in our
in vivo dataset part of CN spiking is driven by excitatory inputs.

Although the firing frequencies from our in vivo awake CN recordings is in the range
of previous findings (e.g., [7]) we cannot exclude that the use of the anesthetics isoflurane
and buprenorphine prior to the surgery has had an effect on AP firing. The continued
effect of isoflurane on PC firing patterns after the administration had been ceased was
experimentally determined to have disappeared after 8 minutes [48]. For CN recordings we
found the impact of isoflurane to be even shorter [7], indicating that for the current dataset
the use of isoflurane will have had a very limited influence, since it was terminated at least
two hours prior to the actual recording of neural activity. In contrast, buprenorphine has a
half-life time in adult mice of ~3 h and could potentially have influenced our recordings [49].
One potential effect of buprenorphine administration can be a decrease of AP firing, as
has been described for in vivo olfactory bulb recordings [50]. Although the exact effect of
buprenorphine on cerebellar spiking patterns has yet to be determined, opiate receptors
are present in cerebellar tissue [51]. What already is known is that buprenorphine has
an impact on the firing frequency in regions that project to cerebellar neurons, such as
the dopaminergic axons from the ventral tegmental area [52–54]. However, to the best
of our knowledge these projections are not different between ZebrinII domains and thus
may have a limited effect on the regional difference in cerebellar spiking patterns that we
recorded in vivo.

Our in vitro experimental design was initiated by acute slicing without cooling the
tissue. This approach allowed us to record continuous spiking [29], which in the presence
of AMPA, NMDA and GABA blockers, represented the intrinsic pacemaking activity of
the CN neurons in ZebrinII domains. All the cells recorded showed high frequency firing
rates as previously shown in large-soma glutamatergic neurons [4,17,39,55]. Moreover, we
found by histological reconstruction that the recorded neurons in both Z+ and Z– domains
had a relatively large soma and dendritic tree, comparable with previous data [17,39,56].
Our data, therefore, indicate that if we recorded from various cell types, this may have
occurred in both ZebrinII domains. Another factor that may have influenced our recordings
is the neurochemical heterogeneity of CN neurons [19]. Other than the ZebrinII domains,
which in our experimental setup were identifiable by the high versus low PC expression
level of EAAT4, the CN neurons can also be divided in several subclasses, some of which
are prominent in individual CN. Future studies should identify the electrophysiological
signatures of these neurochemically distinguishable CN populations and investigate the
correlation with the ZebrinII identity of PC afferents.

Our current experiments were performed from the second postnatal week, a time span
for which it has been shown that GABA-mediated transmission in CN elicits inhibitory
responses [57,58]. We and others found that during the first postnatal months the firing
frequency of CN neurons increases over time [59–61], much alike the increase in PC
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firing [62]. Recently, our team revealed that Z+ and Z– PC firing already differs in postnatal
mice, from P12 onwards to adulthood in both in vivo as in vitro recordings [23]. Why
these differences are not matched in CN firing frequencies remains unknown. Potentially,
a difference in the regularity or synchrony of postnatal Z+ and Z– PCs does not develop
before adult stages. In adult mice the role of extrinsic input in PC firing rates is higher in Z–
domains when compared with Z+ domains (see Figure 2-figure supplement 2A2 in [23]),
contributing to the regional differences between the two subtypes of PCs. Since we only
observed a higher firing rate in Z– CN neurons compared to Z+ CN neurons in vivo and
not in vitro, the role of extrinsic input is leading in CN neuron ZebrinII-related firing.

Finally, it would be prudent to determine if there are differences between CN firing
pattern of specific nuclei. For example, although the afferents to the anterior interposed
have been studied in several species (as reviewed by [63]), we are not aware of publications
that report differences in the firing patterns of this (or any other) CN. However, with the use
of optogenetics and viral tracing techniques several recent studies have been able to specify
regions within the interposed nuclei as functionally distinct [13,45,64,65]. We propose that
the firing pattern of the ZebrinII domains are tuned to the specific functions, much like
the diversification of the PC spiking patterns between ZebrinII bands [3,22–24,41,66,67].
Whether the downstream targets of CN neurons adhere to the distinct output patterns of
ZebrinII domains remains a topic of further investigation.

5. Conclusions

Baseline firing frequencies of Purkinje cells in the cerebellar cortex and neurons in the
inferior olive show a dichotomous distribution in line with the ZebrinII identity of Purkinje
cells. Here we show that the firing patterns of cerebellar nuclei neurons of awake alert
adult mice adhere to the same distribution.

Supplementary Materials: The following supplementary figures are available online at https:
//www.mdpi.com/article/10.3390/cells10102686/s1, Supplementary Figure S1: Confocal pictures of
endogenous GFP expression in the CN, Supplementary Figure S2: Burst index 100 ms. The following
supplementary tables are available online at www.mdpi.com/xxx, Supplementary Table S1: Statis-
tics for in vivo electrophysiology in the adult mice, Supplementary Table S2: Statistics for in vivo
electrophysiology in mice from P12-40, Supplementary Table S3: Statistics for in vitro electrophysiol-
ogy in adult mice, Supplementary Table S4: Statistics for action potential properties in adult mice,
Supplementary Table S5: Statistics for CN neuron morphology in adult mice.
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