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Abstract: The enormous, 2–3-million-year evolutionary expansion of hominin neocortices to the
current enormity enabled humans to take over the planet. However, there appears to have been a
glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway
to the hippocampal memory-encoding system needed to manage the processing of the increasing
volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was
unnoticed by the early short-lived populations. It has now surfaced as Alzheimer’s disease (AD) in
today’s long-lived populations. With advancing age, processing of the converging neocortical data
by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and
high energy costs on these cells. This may result in their hyper-release of harmless Aβ1–42 monomers
into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that
initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC).
Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC
induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating
AβOs from ground zero is supported by Aβ’s own production mediated by target cells’ Ca2+-sensing
receptors (CaSRs). These data suggest that an early administration of a strongly positively charged,
AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting
therapeutic combination.
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1. Introduction

As the World population rose to 8 billion, there has been an increasing number of the
super-aged with a disease we suspect has resulted from an evolutionary glitch resulting
from the disproportionately immense neocortical expansion. It was Alois Alzheimer in
1901, while examining a behaviorally disturbed fairly young 51-year-old woman, who
discovered that she had what we now know as the rare pre-senile or early onset version
of this disease. After her death in 1906, he found that her brain was riddled with the now
hallmark plaques and tangles. Then, it was Emil Kraepelin who, believing this to be a new
disease, called it Alzheimer’s disease (AD) (Compendium der Psychiatrie, 1910) [1,2].

However, Alzheimer’s discovery was not as original as Kraepelin believed it to be. In
fact, it was Oskar Fischer (1876–1942) who first saw the plaques (though not the tangles)
in the brains of older senile patients with dementia [3]. Since tuberculosis was spreading
throughout Europe at that time and since cerebral tuberculosis is accompanied by a slowly
developing dementia with memory loss, he believed that the plaques were the tuberculosis-
like Dr
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As the World population rose to 8 billion, there has been an increasing number of the 

super-aged with a disease we suspect has resulted from an evolutionary glitch resulting 
from the disproportionately immense neocortical expansion. It was Alois Alzheimer in 
1901, while examining a behaviorally disturbed fairly young 51-year-old woman, who 
discovered that she had what we now know as the rare pre-senile or early onset version 
of this disease. After her death in 1906, he found that her brain was riddled with the now 
hallmark plaques and tangles. Then, it was Emil Kraepelin who, believing this to be a new 
disease, called it Alzheimer’s disease (AD) (Compendium der Psychiatrie, 1910) [1,2]. 

However, Alzheimer’s discovery was not as original as Kraepelin believed it to be. 
In fact, it was Oskar Fischer (1876–1942) who first saw the plaques (though not the tangles) 
in the brains of older senile patients with dementia [3]. Since tuberculosis was spreading 
throughout Europe at that time and since cerebral tuberculosis is accompanied by a 
slowly developing dementia with memory loss, he believed that the plaques were the 
tuberculosis-like Drṻsen (clubs) caused by the Mycobacterium tuberculosis-like Streptothrix. 
In fact, such infecting bacteria are carried to the medial temporal lobe via the middle cer-
ebral artery, where they directly target the hippocampal memory-encoding machinery, 
like AD’s endogenous toxic AβOs (Aβ oligomers) discussed below [3]. Once the 
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sen (clubs) caused by the Mycobacterium tuberculosis-like Streptothrix. In fact, such
infecting bacteria are carried to the medial temporal lobe via the middle cerebral artery,
where they directly target the hippocampal memory-encoding machinery, like AD’s en-
dogenous toxic AβOs (Aβ oligomers) discussed below [3]. Once the mycobacteria pass
through the blood–brain barrier, they infect microglia, discard their cell walls, and produce
mobile reservoirs of infectious bacteria. These bacteria can destroy the memory-encoding
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hippocampal machinery and spread upward along what appears to be an invariable AD
trajectory from an entorhinal ‘ground zero’ to the neocortex [4]. Since Fischer was the first
to describe the common late-onset form of AD, maybe we should call the amyloid deposits
Alzheimer–Fischer or just Fischer plaques.

The common (>95 % of the cases) late-onset or sporadic (LOAD/SAD) version of AD
starts stealthily in a late-middle-aged person who is unaware of the spreading destruction
of networks, a connectopathy. This has likely started in the ancient memory-recording part
of her/his brain that will clinically emerge only many years later. The disease is arguably
triggered by relatively small numbers of AβOs, which are toxic soluble quasi-infectious
oligomers of normally functioning monomers known as Aβx–42s, and then driven and
terminated by toxic hyper-phosphorylated tau oligomers (HPTOs). Here, we follow what
appears to be the prescribed trajectory of this destructive Aβx–42s→ AβOs→ HPTOs relay
race through the brain [4,5] from the entorhinal cortex to the neocortex and finally the
subcortical control panels and then suggest a novel way to potentially stop it.

2. Aβ Oligomerslikely AD-Starters, but Not the Terminators

AD starts from the failure of aging astrocytes’ and neurons’ control mechanisms to
prevent their normally functioning Aβ1–42 monomers from over-accumulating and seeding
cocktails of toxic AβOs. Such AβOs target and destroy synapses and, with them, networks
and memories, spreading from the pathology’s ground zero to induce normal target cells
to produce and release more of them. Thus, for example, injecting a tiny amount of an
AβOs-rich AD brain extract into a healthy ‘humanized’ rodent’s hippocampus results in
AβOs replication and induction of amyloidosis that spreads through the limbic region and
beyond [6,7].

In what follows, we will discuss how at the very core of AD is the destructive binding
of AβOs to synaptic prions, PrPCs, riding on membrane lipid-rich rafts followed by synapse
destruction, cognitive failure, and eventual neuronal death (Figure 1). This has been shown
with mice which normally do not develop AD. However, when AD-susceptible transgenic
mice carrying AβOs-producing human mutant APPswe/Psen 1∆E9 genes have their
murine PrPC genes knocked out, they can still accumulate AβOs. But now there is no loss
of synaptic markers, impairment of memory, or early death: the AβOs had lost their target
PrPC [8]. Moreover, as we shall point out below (cf. reference [9]), “mutant” humans who
cannot produce Aβs also cannot develop AD.

The interiors of neurons harboring such potentially dangerous proteins as Aβ1–42
monomers are turbulent nanocosms, loaded with dangerous IDPs (intrinsically disordered
proteins) that are being continuously battered by the random Brownian thermal motion
of water molecules that forces changes of their locations, conformations, interconnections,
and interactions [10,11]. To functionally survive their inner maelstroms, neurons must keep
their synaptic machinery intact and functioning [12]. For this, they have a ‘tool box’ con-
taining potent, though age-sensitive, PQCs (protein quality and quantity control systems)
that defend against protein conformation diseases such as AD. They do so by variously
eliminating toxic oligomerized misfolded proteins, aggregated IDPs, and oxidatively dam-
aged proteins using toxic agent-phagocytosing microglial cells, different types of folding
catalysts, molecular chaperones and the potent protein-degrading proteasome [10,13–16].

So how and where are the AD-initiating AβOs made? Trumbore [17] has suggested
that the principal region is outside of the cell. The brain has a cardiac pulsed interstitial
fluid (ISF). Since active neurons secrete Aβ1–42 into the ISF [18,19], AD starts with hyper-
accumulating, normally functioning Aβ1–42 IDPs being released from aging ‘Ground Zero’
entorhinal cells into the pulsing ISF [10–22]. It is the shearing action of the pulsing ISF
percolating through the neuropil that produces strained Aβ*s, which, when sufficiently
concentrated, collide with each other and thereby seed the toxic AβOs [17].

As the disease develops in its temporal–entorhinal cortical ‘ground-zero’ in a still
cognitively normal but doomed aging brain, the specially structured and intra-neuronally
situated Aβ1–42s content is rising. However, so far, there are no indications of the on-
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coming pathology, such as extracellular AβOs, plaques, or intracellular hyperphospho-
rylated tau tangles [22–24]. However, as we shall see, it appears that the expression of
the CaSR (Ca2+-sensing receptor), an important contributor to the pathology around the
dendritic spines and synapses, especially in the hippocampus, is increased by the rising
Aβx–42s monomers [25]. Moreover, because these are accumulating Aβx–42s monomers’
14HQKLVFFAEDVGSNK28 sequences resemble insulin’s 19BCGERGFFYTPKA30B sequence,
when released into the ISF they will compete with insulin for its receptor and thus cause
the early reduction of 18FDG (fluorodeoxy glucose) uptake observed in PET scans even
before the significant appearance of the toxic AβOs which might be stronger insulin com-
petitors [26–28]. These Aβx–42s are more dangerously prone to misfold and, when released
from the neurons seed the AβOs that destructively target the neurons’ spines and synapses.
When with time, the increasingly accumulating, helix-coil Aβ monomers are released
into the shearing ISF from the active synapses of such neurons, they can be distorted and
aggregate into extracellular toxic ‘cocktails’ of the lethal AD-initiating AβOs, but some will
later be safely ‘caged’ in, or attached to, the hallmark Alzheimer–Fischer plaques [29–36].
Larger aggregates in the pulsing ISF displace and distort synaptic complexes [34].
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intracellular Ca2+. AβOs can also increase intracellular Ca2+ by forming “membrane pores”. To-
gether, they activate calcium-sensing receptor (CaSR), which can stimulate additional Aβ produc-
tion to perpetuate the cycle. The cascade of such events can trigger synaptic degeneration leading 
to cognitive deficit in AD. Consequently, Aβ molecules, such as ABP, along with calcilytics that 
suppress CaSR activity, can potentially prevent the cascade of events that lead to Aβ-induced syn-
aptic loss in AD. 
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Figure 1. AβOs Selectively attack synapses. Schematic Representation of potential interactions of
Aβ1–42 oligomers (AβOs) with various cellular proteins and modulating their functions leading to
perpetuation of its own production and synaptic disruption in Alzheimer’s disease. As described in
the text, negatively charged AβOs, upon binding to positively charged N-terminus of PrPc, releases
the bound BACE1 and activate it. BACE1, along with γ-secretase, generates more AβOs-seeding
Aβx–42. AβOs, in collaboration with tau and Fyn kinase, also activate NMDARs, which increases
intracellular Ca2+. AβOs can also increase intracellular Ca2+ by forming “membrane pores”. Together,
they activate calcium-sensing receptor (CaSR), which can stimulate additional Aβ production to
perpetuate the cycle. The cascade of such events can trigger synaptic degeneration leading to cognitive
deficit in AD. Consequently, Aβmolecules, such as ABP, along with calcilytics that suppress CaSR
activity, can potentially prevent the cascade of events that lead to Aβ-induced synaptic loss in AD.
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In addition, an important fraction of the Aβx–42s accumulating in the AD brain have
their N-terminal Aspartate (D) and Alanine (A) residues cleaved, leaving the newly formed
N-terminal glutamate (E) residue. This is pyroglutaminylated into hypertoxic, AβOs-
forming AβpE3-42s by the increased level of pyroglutaminyl cyclase in the developing
pathology [30,37–44]. Their importance for AD pathology is suggested by the paradoxical
cognitive normalcy of some Aβx–42s/plaques–loaded elderly brains’ failure to significantly
make AβpE3-42 from the accumulating Aβ1–42s [39].

The physiologically functioning U-shaped Aβ1–42 monomer has a disordered, flexible
anionic 1–17 N-‘tail’ and an 18–42 β-turn β-folded bilayer with a protease-resistant middle
region. Within this region is the 24-28 bend and the C-terminal fold-stabilizing aspartate
(D) 23- lysine (K) 28 salt bridge [10,45–47]. Four negatively charged D and E residues are
concentrated in the unstructured N-‘tail’ (1DAEFRHDSGYE11). Because negative charges
repel each other and reduce the hydrophobicity of the monomers’ C-fold ends, the E22s
will tend to slow both the aggregation of monomers into soluble oligomers/protofibrils and
their eventual collection into the insoluble fibrils/plaques by forming a stack of E22s [10,47].
Indeed, as expected, removing the negatively charged E22 residue (e.g., with the Osaka
AD ∆E22, Arctic E22G, or Dutch E22Q mutations) does not eliminate the 24–28 bend,
but by breaking the 22–28 linkage and loosening the pre-22 part of the fold accelerates
oligomerization at least partly by increasing the hydrophobicities and eliminating the
repulsion of the assembling monomers’ C-fold regions [10,30,46,48–53]. The Osaka ∆E22
mutation strongly increases the internal stability, which accelerates toxic oligomerization of
Aβx–42s in humans and “humanized” mice, but by reducing the flexibility of the mutant
monomers, it impedes their insertion into fibrils and thus eliminates plaque formation in
pulsing ISF [10,30,49,54,55].

According to this electrostatic model, large, soluble, negatively charged AβOs with
their many flexible anionic 1-17 N-‘tails’ being buffeted in the ISF would be attracted to
and bind to targets with strongly cationic (e.g., K+-rich) patches, especially those optimally
configured for close contact with their targets. This indeed seems to apply to the PrPC′s (i.e.,
normal cellular prions with +vely charged N-terminus region) interaction at the core of
AD’s synapse pruning [56–60]. Indeed, Kostylev et al. [58] have found that in “humanized”
rodent models of AD brains, the PrPCs are targeted by a distinct population of soluble
high molecular weight AβOs. In support of this it has been shown that PrPCs strongly
bind to the high molecular weight AβO assemblies in AD patients’ brains but not to small
synthetic AβOs [61]. As we shall see below, the principal feature of the disease is the
AβOs→ AβOs• PrPCs (cellular prions proteins, 57,58)→ HPTOs chain of interactions that
destroys synapses (Figure 1). The anionic AβOs trigger a multipronged cascade of events
by binding to cationic PrPCs exposed to the ISF on cholesterol-rich lipid rafts in synaptic
membranes where the PrPCs were restraining Aβx–42s production by binding to BACE1, the
β-amyloid precursor-cleaving enzyme 1 [62,63] (Figure 1). Thus, binding of AβOs to PrPCs
initiates Aβx–42s production cascade by dissociating PrPCs from BACE1, thereby activating
the APP-cleaving enzyme [64,65]. The PrPC, itself an IDP, consists of a flexible N-terminal
domain (residues 23–125) and a globular C-terminal domain (residues 126–254), which are
anchored by the C terminus to the outer cell membrane leaflet via glycosyl–phosphatidyl–
inositol. Specifically, the AβOs selectively bind to PrPCs [KKRPKGGGTHSQWNKPSKP-
KTNMK] cationic patch produced by the folding together of the 23–27 and 92–111 re-
gions [42,65–69]. Interestingly, there is a negatively charged RNA aptamer that can induce
the release of Aβ from AβOs• PrPC complex by targeting PrPC′s two N-terminal positively
charged patches [70]. Moreover, the normal physiological α-cleavage between residues 111
and 112 of PrPC produces the N1+ (N-terminal 1) fragment that selectively binds AβOs and
sequesters them in the extracellular space, which prevents them from accessing and destroy-
ing synapses [65,69]. Li et al. [71] have also shown that an antibody that selectively targets
the N-tails, but not one that targets the C-termini, of soluble AβOs rescues the ability of
the hippocampal CA1 cells to establish LTP in AD mice. As discussed below, there may be
other cellular proteins such as pericentriolar material-1 (PCM1) protein and myristoylated
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alanine-rich C kinase substrate (MARCKS) protein that can potentially bind AβOs through
their cationic patches, 1276KTFKTRKASAQASLASKDKTPKSKSKKRNSTQLKSRVKNI1314

and 152KKKKKRFSFKKSFKLSGFSFK172, respectively, and mediate their effects [72–76].
As we shall see further on, the cell surface, CaSR is another AD driver that induces

its cells to produce and secrete endogenous AβOs-seeding Aβx–42s when it is somehow
selectively activated by exogenous AβOs [77,78] (Figure 1). When scanning the CaSR amino
acid sequence for some kind of a cationic patch in this molecule’s bi-lobed extracellular
VFT (Venus-Fly-Trap-like) domain, we found that there is indeed a small, strongly cationic
R25-[Q26]-G27-K28-K293+ patch at the tip of lobe 1 (Gorvin et al., [79]). But the CaSR is
normally activated by cationic agents such as Ca2+ and polyamines such as spermine rather
than the Aβ1–42 with its anionic N-tail or the polyanionic AβOs [78]. However, we suggest
below that the CaSR-activation by AβOs is mediated by the Ca2+ surges resulting from the
synaptic response to the AβOs→ PrPCs interaction, which could account for the apparent
selectivity of the activation of CaSR by AβOs (Figure 1).

When AβOs bind to PrPCs in cholesterol-rich lipid rafts on synaptic membranes,
they also trigger the principal destructive cascade that ends with a Fyn kinase-induced
hyperactivation of neighboring NMDA receptors, producing an excitotoxic Ca2+ surge.
However, if the AβOs are cleaved down to chargeless 25–35 (GSNKGAIIGLM) peptides, they
will mimic the AβOs by simply binding to raft cholesterols and producing membrane pores
through which excitotoxic Ca2+ surges occur [79–82] (Figure 1).

3. The Deadly AD Family

Histopathological studies have defined three sub-types of AD, (a) memory-impairing,
(b) limbic cortex-attacking, and (c) hippocampus-sparing (thus memory-sparing) Alzheimer’s
disease [83]. Here, we focus on the most studied hippocampus/memory-attacking AD.

The common (>95% of cases) LOAD/SAD is probably started by hyper-accumulating
toxic AβOs-seeding Aβ1–42s in the ISF of a lateral entorhinal cortical nidus where the flow
of primary data from various regions of the massive neocortex converge on the small
entorhinal gateway to the hippocampal system. The pathology first spreads unnoticed
from ground zero for decades along a limbic-neocortical trajectory, likely pruning synapses
and inducing mature neurons to re-enter their cell cycle. This can potentially be detected
in some people by REM sleep disturbances; by changing levels of Aβx–42s and tau in
the CSF (cerebrospinal fluid); by MRI and fMRI-demonstrable hyperactive yet shrink-
ing hippocampi, swelling ventricles; by declining glucose uptake, and also, by the early
appearance of phspho-tau 181in the bloodstream [27,84–89].

The incidence of LOAD/SAD increases exponentially in people living longer than
65 years [90,91], but the length of its asymptomatic onset varies from person to person. In
addition to aging, the female gender, and several minor risk factors for LOAD/SAD, the
only other major risk factor is having the ε4 allele of the Apo-e gene for the apolipoprotein-E
(Apo E) protein. While ApoEε2 and ApoEε3 isoforms play major roles in lipid transport
and injury repair, they do not increase AD susceptibility. However, heterozygous (i.e.,
ε3/ε4) or homozygous (i.e., ε4ε4) persons have twice or more the risk of developing
LOAD/SAD [29,92–94]. A major reason for this is that ApoEε4 competes with Aβx–42s
for LRP1, which otherwise would bind the Aβx–42s and rapidly carry them through the
increasingly leaky aging BBB (blood–brain barrier) and release them into the blood [95].
It has also been reported that ApoEε4 impairs Aβs clearance by reducing the migration
of human microglia-like cells and their phagocytic activities [96]. This reduced Aβx–42s
clearance is accompanied by increased Aβx–42s production through increased AβPP pro-
cessing [94]. The result of this is people with ApoEε4 carry a substantial amount of AβOs,
which of course, increases the risk of developing AD.

The very rare (~1% of AD cases) and faster developing AD is EOAD (early onset AD)
or FAD (familial AD). EOAD/FAD symptomatically emerges as early as 40–50 years of age
after a decade(s)-long unnoticed build-up, and it is thus less likely than LOAD/SAD to be
distorted by any accompanying disease of aging.
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Unlike the slow LOAD/SAD that emerges from its nidus and spreads along a tra-
jectory of normal wild-type cells, EOD/FAD owes its much faster development to its
post-nidal trajectory consisting entirely of mutant cells having three AβPP genes-carrying
chromosome 21s (i.e., Down’s trisomy 21), or carrying a hyperactive mutant secretase such
as BACE1(β-secretase 1) with its gene on chromosome 11), or presenilin 1 (γ-secretase
1 with its gene on chromosome 14), or presenilin 2 (γ-secretase 2 with its gene on chromo-
some 1), any one of which produces excessive amounts of AβOs-seeding Aβx–42 monomers.
These mutant cells also hyperproduce the Aβx–42 monomers that are poised near the
threshold of seeding the same ‘infectious’ toxic ‘cocktails’ of soluble oligomers that start
LOAD/SAD [17,30,32,34,97–104].

The brain region on which we focus our brief glimpse of the ADs and their ‘infectious’
AβOs is the relatively small evolutionarily ancient EC (entorhinal cortex)-hippocampus
complex connected to massive ensembles of neurons in the more recent immense neocor-
tex.As we shall see, the brain uses this machinery together with the vmPFC/AC (medial
prefrontal cortex/anterior cingulate cortex) to record, store, retrieve, and display objects in
virtual form and more or less accurately replay events [105–107].

The human brain is an immensely complex electrochemical device consisting of bil-
lions of neurons in the cortex along with the same numbers or even more astrocytes
communicating with each other via receptors, gap junctions, and nanotubes and, in the
case of neurons, with various membrane potential oscillations from synaptic ensembles
in dense clusters of rich-club cortical and subcortical core networks as well as sparsely
interconnected peripheral networks [108–111]. Astrocytes literally cradle the neurons and
collaborate with them via Ca2+ bursts (but not via action potentials) and gliotransmitters
such as glutamate to form working ANTs (Astrocyte•Neuron Teams). Studies with Nor-
mal Adult Human cerebral Astrocytes (NAHAs) appear to suggest that the AβOs-driven
intra-brain contagion can spread throughout the ANT networks via astrocyte gap junctions
and tunneling nanotubes [112,113]. The immensity of this circuitry is indicated by the
fact that just one astrocyte can contact 4–8 neuronal somata and enwrap as many as 140,
000 synapses in rat hippocampus, while a much larger human astrocyte can enwrap and
communicate with as many as 2 million synapses [114–117].

A synapse is commonly regarded as a tripartite device consisting of a pre-synaptic
and post-synaptic neuron around which is wrapped a process of a functional astrocyte
collaborator [118]. There is a fourth component. If not soon overwritten by competing
inputs, the synapse may be locked into a hole in a synaptic cradle which is a scaffold of
CSPG (chondroitin sulfate proteoglycan)-associated ECM (extracellular matrix) [119–121].
By isolating and maintaining synapses, these ECM cradle holes provide storage sites for
long-term memory consolidation and retrieval. However, the locking of synapses, and
the spaces they occupy, in these ECM cradles increases with the age of the hippocampus
and is associated with normal age-related plasticity and cognitive decline. Destroying the
synapse-cradling ECM nets releases the synapses from their storage spaces and restores
competitive erasure (plasticity) [119].

4. Neuron–Astrocyte collaboration

As we shall see further on, the neurocontagion’s toxic AβOs start AD by pruning
synapses in the entorhinal cortex of the persisting ancient limbic core of the medial tem-
poral lobe by being released into the local ISF from presynaptic vesicles and from EVs
(extracellular vesicles, exosomes) produced by the autophagic intercellular signaling sys-
tem [18,19,122]. Attracted by synaptic PrPCs, the infectious’ AβOs spread through the
medial temporal perirhinal and parahippocampal gyruses, for example, into the neocortical
rich-club networks of the posterior cingulate gyrus and parietal associational cortices,
destroying synapses and disconnecting the circuits as they go [112,123–130].

As mentioned above, most synapses are enwrapped by the ANTs’ astrocytes. Armato
and his colleagues have found that when exposed to Aβ25–35 (Figure 1), NAHAs produce
and secrete both AβOs-seeding Aβx–42s and HPTOs [77,113]. The AβOs that activate ANT



Cells 2023, 12, 1618 7 of 36

astrocytes’ CaSR [121] stimulate them to produce various factors, one of which stimulates
their neuron teammates to produce complement C1q, which tags post-synapses [131–134].
The C1q tag then induces the associated reactive astrocytes to additionally hyper-produce
complement C3 which results in the postsynaptic deposition of AβOs•C1q•C3complexes.
These complexes induce nearby-hovering microglia expressing the C3 receptor to phagocy-
tose the tagged synapses [131,134–136]. In addition, AβOs also contribute to the synaptic
destruction by triggering a destructive cascade on the PSD (postsynaptic density) by their
selective binding to PrPCs N-tails (Figure 1).

The collaboration becomes dangerous when ANT astrocytes use their EAAT trans-
porters to uptake spilled-over glutamate from their neuron teammate’s synaptic cleft in
order to avoid destructive excitotoxicity. However, when the ANT neurons released Aβx–42s
start seeding AβOs in the ISF, they activate the partner astrocytes’ α-7nAChRs, the signals
from which stimulate the astrocytes to release their accumulated glutamate [137]. This
glutamate activates the neurons’ extrasynaptic NMDARs that trigger excitotoxic Ca2+ surges
and events, including dysfunctional mitochondria pumping out ROS and destroying the
synapse [137,138].

It is also likely that when ANTs’ neurons start making and secreting Aβx–42s and
seeding AβOs, it causes their astrocyte partners to do the same, but instead of dying, the
astrocytes become sustained neuron killers and pathology spreaders by projecting the
‘contagious’ AβOs and their following HPTOs through the widespread astrocyte/neuronal
network [126,139–141].

5. Where Does AD Start?

Our memory system began with the ancient medial pallium (Latin for covering) linked
to olfactory lateral and proto-cortex dorsal pallia. In the various vertebrates, it has evolved
over millions of years into a remarkably conserved ‘hippocampus wrapped in a unique neo-
cortex’ [142,143]. The job of hippocampi extending from their pallial beginnings to now,
is to rapidly record information from the neocortex into neuronal ensembles [144]. Small
mammals such as mice can directly transmit primary neocortical information to the hip-
pocampal system, but, as we shall see below, humans cannot directly transmit primary
information to the hippocampal system from our massive neocortices [145]. Instead, we
must transmit abstracted neocortical information to the hippocampal system.

The key feature of the evolution of primate brains has been the low growth of the
limbic components (amygdala, entorhinal cortex, hippocampus, olfactory system, and
septum) and the enormous growth of the human neocortex and that even includes it’s
invading the brain stem and cord [146]. The current focus is on the likely pathological
consequence of the enormously disproportionate expansion of the hominin neocortex,
which began ~2.5 mya and ended ~3000 years ago [147]. This evolutionary neocortical
‘Big Bang’ happened without an equivalent expansion of the EC-hippocampus in the
medial temporal cortex. This required the development of ways to manage the increased
flow of messages converging on the memory system [130,148–155]. This challenge was
met with an internet-like [156] increase in the routing of messages through the perirhinal
and parahippocampal cortices via the EC to the hippocampus, which rapidly induces
the cortical rubbing of the abstracted original event-inducing networks into interacting
ensembles for on-cue replay [144,152,157–159].

These two cortical message collectors or abstracting routers are well described by
Reagh and Ranganath [154], Michon et al. [148], Sekeres et al. [160], and Rudy [152]. Mes-
sages in the ventral stream carrying the gist of messages about objects from the perirhinal
cortical neurons and in the dorsal stream carrying the gist of messages about spatial actions
from the parahippocampal cortical neurons are delivered to the EC. EC then constructs a
hexagonal neuronal grid to contain the hippocampal message-processing place cells and
identify where the animal or human was when the messages were thus ‘GPSed’ by the
EC-hippocampus system [143]. Cueing the combined activation of the originally induced
group of cortical ensembles after they have been hubbed (wired) together in the neocortex
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by the integrating hippocampus gives a replay of the events—the what and where and
when [143,161–163].

As we shall see below, a powerful device was invented about 2/3 of the way through
the neocortical expansion, likely by Homo erectus, which channeled the enormous flow of
information about the individual’s external and internal worlds from the neocortex to the
temporal hippocampus memory recording system. This became the deeply embedded
temporal library of relatively small neuronal ensembles, which evolved into the words of
our current human languages. These words can be accessed, variously combined, and
recorded by the hippocampus system to produce and store throughout the neocortex as sets
of words, each of which, when expressed, activate the original huge ensembles of neurons
that produce the images that make up the flow of consciousness.

AD-like pathology emerges at low levels in the ECs of primates, such as aging
macaque monkeys and very old chimpanzees, but it emerges far sooner and at a much
greater level in the human LEC. AD is likely the product of the lifelong overloading of
our memory-recording system, with immense amounts of data continuously streaming
on it from the enormous neocortex that now occupies ~ 80% of the brain [164,165]. As
pointed out above by Khan et al. [23] and Small and Swanson [166], AD starts in the tiny
(only 1.3 × 105/~1.6 × 1010 neocortical neurons; 0.3/1843 cm2 neocortical area) entorhinal-
perirhinal border-zone (BAs 28b and 35). This region is uniquely structured to guzzle
ATP and receive non-spatial messages from the ventral stream. The message is further
routed through the perirhinal collector, along with the parahippocampal spatial messages
from the dorsal stream, into the dentate gyrus-hippocampus and the vmPFC/ACC (medial
prefrontal cortex/anterior cingulate cortex) system for ‘engramming’ [107,142,144,166–172].

Unlike any other part of the neocortex, the human LEC (Lateral Entorhinal Cortex) has
bumps called verrucae (Latin for warts), which are visible to the naked eye. They contain
dense clusters of large neurons with dendrites reaching up into the layer 1 bundle of axons
carrying message packets from the perirhinal collector/router to the LEC gateway and
from there to the dentate gyrus-hippocampus [24,166,173].

As pointed out above, the basic core of AD is the selective targeting and pruning of
PrPCs-bearing synapses by AβOs. Therefore, this electrostatic attack by AβOs is probably
most effectively carried out on neurons assembled, for example, to map exterior objects
and events with their PrPCs-rich clusters of spines and synapses maintained in an LTP
configuration, thus poised to replay the episode upon cue [152,174,175]. Each poised
synapse’s post-synaptic component is loaded with increased numbers of actin filaments,
clumps of PSD-95 associated with GluA2 AMPA receptors that, when activated by a Glu
pulse, trigger a spike of Ca2+ by activated NMDARs The early reptilian proto-hippocampal
medial pallium probably directly received and recorded the small amounts of minimally
associated and edited primary sensory data projected into it from the tiny dorsal and the
larger olfactory lateral pallia. As the evolving EC-hippocampal regions were induced
to process ever-escalating amounts of diverse data from the expanding neocortex, they
developed the two-collector system. The modern images in the modern conscious brain
are produced by large interconnected ensembles of neocortical neurons. This probably
did not challenge the ancestral, hippocampus-destined reptilian medial cortical pallium,
which was as large or larger than the connected tiny dorsal cortical pallium and the then
larger olfactory lateral cortical pallium [176–182]. The brains of our reptilian ancestors
had no mammalian-strength neocortex. Their survival depended on such things as the OT
(optical tegmentum) visual ‘Where’ system to locate and appropriately respond to preda-
tors, potential mates, and food sources. While on the other hand, the simple recognition
of familiar salient objects depended on the olfactory and thalamic ‘What’ systems [183].
These things came together with the invention of the massive 6-layer, functionally diverse
modules of the human neocortex wired together with long, invasive axons, which took
control of the brain-stem OT and complexified the visual system. This created the four
modern neocortical visual pathways, which included the OT ‘What’ pathway in the occip-
totemporal pathway [183,184]. The medial pallium eventually became the hippocampal
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conformation, and its archaic lateral and dorsal pallial connections became, in part, the
small LEC super-hub [178,181].

As mentioned in the Introduction, the AD’s AβOs are basically synapse-pruners
and, therefore, network-disconnecting connectopathies. They are a kind of connectional
diaschisis that spread along what appears to be a prescribed trajectory stretching from
an EC nidus or ‘Ground Zero’ via parahippocampal gyrus to the retrosplenial cortex,
posterior cingulate cortex, precuneus connector hubs, and the hub-rich default-mode
network (DMN) [4,23,166,185–188]. Indeed, looking at the left medial hemisphere of the
end-stage AD brain (Van Hoesen and Solodkin, Ref. [127]) and the striking overlap of the
Aβx–42s deposition with cortical hub sites described by Buckner et al. [187], one can trace
the destructive trajectory of the pathology from its EC nidus in the medial temporal lobe to
the synapse-loaded neocortical hub-way. According to the electrostatic model discussed
above, the toxic AβOs spreading out of the EC are likely to follow hub-ways with synapses
loaded with PrPC targets in their PSDs.

So, after starting within the LEC nidus, AβOs likely spread upwards into the cerebral
cortex leaving behind them a trail of highly visible amyloid plaques and pyramidal neurons
stripped of their synapses [22,23,56–62,68,127,189–192]. However, AβOs seem to avoid the
deeply anchored canonical sensory-motor regions (i.e., A1, MT, S1, and V1) and, at least
initially, spare the basal ganglia-cerebellum non-declarative memory circuits [193].

6. Origins

The human brain, with its strikingly enormous neocortex dominating the relatively
small limbic system, is the product of a disproportionate expansion of the neocortical
prefrontal and the parietal association regions, with the vital memory-recoding machinery
(including entorhinal cortices and the hippocampus) lagging behind [146,194–196]. This
disproportional expansion of the neocortical/limbic region induced by the evolutionary
neocortical ‘Big Bang’ might be a contributing factor in the development of AD in the
longer-living, aging brain.

The current enormous 6-layer cortex is the product of a 3-layer reptilian-like brain
consisting of periventricular sheets known as medial, dorsal, lateral, and ventral pallia,
each with only one layer of pyramidal neurons [177–181,194,197,198]. Between the medial
and lateral pallia was a narrow wedge of dorsal neuropil with an immense World-changing
future—the enormous human neocortex. Something momentous happened in the third-
layered (allocortical) brains of the mammal-like cynodontian reptiles that had survived the
massive Permian Period extinction (~250 mya) and were on their way to full mamahood
while coping with the emerging diurnal dinosaurs. These dinosaurs, with their special
oxygen-conserving respiratory system, could thrive and grow in very low oxygen levels
(~5–10%) during the ensuing Triassic and Jurassic Periods [199]. However, the evolving
mammals, with their far less efficient respiratory system, had to stay small to cope with
the oxygen lack and avoid the growing, evolving, and increasingly fierce dinosaurs. This
forced them to shelter in burrows and function as much as possible in the cold at night
with eye-supplementing-whiskers to scan and ‘feel-see’ things in dark places, advanced
ear structures, and high-frequency communications to escape the attention of the ferocious
diurnal dinosaurs [149,197,199,200].

One major brain-altering consequence of avoiding dinosaurs and coping with the
lack of oxygen was a large expansion of the olfactory bulbs and the pre-piriform lateral
pallium [146,181,194,201,202]. Consequently, the expanding lateral pallium slid over the
dorsal pallial wedge to produce a potent double allocortical ‘sandwich’ with multiple layers
of wide-ranging pyramidal neurons. This consisted of the overlapping part of the lateral
cortex contributing layers II (2), III (3), and IV (4) and the underlying dorsal allocortex
contributing the future layers V (5) and VI (6) of the unique mammalian neocortex. The
non-overlapping, still three-layered part of the ancient lateral pallium stayed attached to
the new neocortex as the allocortical piriform cortex [198].
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Eventually, the mammals coming out of their nocturnal refuges took the first step on
the road to the evolutionary ‘Big Bang’ and AD. With the extinction of the still-dominant
and thriving non-avian dinosaurs as a consequence of the collision of a massive meteorite-
asteroid with the earth, the early small mammals, with their novel neocortices, could spread
out into the daylight and occupy terrestrial niches. The nocturnal limbic olfactory era then
gave way to the diurnal audio/visual era. According to Paredes et al. [203], the increasing
brain size and, with it, a lengthening RMS (rostral migratory stream) increasingly impeded
and reduced the flow of progenitor neurons into the olfactory bulb. The lagging allocortical
medial pallium stayed tightly connected to both the antique limbic olfactory region and
the new elaborate neocortex and eventually became the hippocampus. Thus, was born the
dangerously overstrained EC.

Thanks to the deadly diurnal dinosaurs, our ancestors developed the 6-layer neocortex,
consisting of a two-dimensional, ~2–3 mm-thick, ~2600 cm2 layer consisting of Mountcastle
cortical columns (modules packed side-by-side and functioning according to the regions
to which they are linked) [204–207]. Thus, was produced the strikingly gyrified (wrin-
kled) powerful human neocortex because this was the only way a neocortical sheet could
enormously expand without avoiding conduction delays and supporting high synaptic
connectivity.

The dentate gyrus•hippocampal memory-recording machinery in the brains of the
rat-sized early mammals was nearly half the size of the overlying neocortex (which, as in
the rat, is itself less than 15% of the entire brain). They were likely flattened banana-shaped
allocortical tubes attached by their stems to the septal complex of thalamically and hy-
pothalamically connected nuclei in the evolving temporal lobe [178,179,181,182,207–211].
Alongside the hippocampal slab was the amygdala, which was also attached by a short
extension to another hypothalamus-connected septal nucleus, the bed nucleus of the stria
terminalis [181,211]. With the growing temporal cortex pulling on septal connections, the
hippocampal and the amygdalar short medial septal connections were circularly pulled
down into the dentate gyrus’s indusium griseum, the hippocampus’s fornix and the amyg-
dala’s stria terminalis [182,211–213]. Thus, was formed, the group of ‘cables’ stretching
down over the striatum and thalamus to the amygdala, the dentate gyrus-hippocampus
attached to what became the subiculum, parasubiculum, and, the temporal EC gateway
along with the pyriform, perirhinal and parahippocampal collectors and routers of the LEC
and MEC hubs from the diverse neocortical regions [178,181].

Between ~6 and ~2 mya, while a succession of African hominins (Sahalanthropus,
Ardipithecus, and Austalopithecus) was progressively distancing themselves from the panin
ancestor but holding the sizes of their brains at ~320–450 mL, they were drastically
modifying their skeletons to become uniquely bipedal [214]. While the hominins (with
46 chromosomes) originally had chimpanzee-sized brains, their brain size ‘suddenly’ began
growing as if destined for a 1000-pound super-gorilla. However, the mutating genes in
bipedal chimpanzee-like hominins generated a neocortical ‘Big Bang’. The surge began
with Homo habilis, who emerged ~2.5–3 mya with ~612 mL brains. Then, ~21 mya, on the
way through the Big Bang came early Homo erectus, who had the first modern body form
and a ~870-mL brain. Then, ~ 1 million-50,000 years ago came late Homo erectus with a
~950 mL brain. These growing brains were encased in extremely thick skulls with thick
occipital tori and very thick supraorbital ridges [215,216]. The H. erectus brain was followed
~200,000 years ago by the massive ~1500 mL H. neanderthalensis brain and the ~1350 mL
(~8.6× 1010 neurons) 46 (23 pairs)-chromosome H.sapiens brain, both of which had dispropor-
tionately massive neocortices loaded with ~200 functional regions [180,195,197,216–221].

As mentioned above, the evolutionary expansion of our enormous neocortex and,
with it, today’s AD began when the mammal-like cynodonts with their reptilian-type
allocortical brains were forced to shift over to olfaction by the emerging diurnal dinosaurs.
It now appears that another event leading to the enormous neocortical expansion happened
~14 mya when an ancestral primate’s cortical NOTCH2 gene duplicated into a functional
and a pseudogene [222]. During this time, both the hominin and non-hominin primates’
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neocortices were growing because of the expansion of the gestational cortical VZs (ven-
tricular zones) and the formation and subdivision of the SVZs (subventricular zones) into
inner and outer regions (iSVZs and oSVZs) with NOTCH2-promoted accumulation of the
progenitor cells in the oSVZs [223–226].

The next event leading to the massive growth of the human and Neanderthal neocor-
tices may have happened ~3–4 mya only in a hominin ancestor with PDE4DIP-NOTCH2NL
by interacting with the NOTCH2 gene. The enormous growth of the hominin neocor-
tex over the subsequent millennia triggered by these Notch-involved events was due to
the truncated NOTCH2NL-Bs somehow increasing the level of NOTCH2 activity, partic-
ularly in the oSVZ of the developing hominin neocortex [227,228]. This NOTCH2NLs-
induced NOTCH2 activity increased neocortical growth via the increased NOTCH2′s
NICD-induced Hes1 gene activity that prolonged transit amplifying (TA) cell accumulation
in the oSVZ [223,224,227,229].

Another contribution to the hominin neocortical expansion was made by the ARHGAP11A
gene when its partial duplication included a single base substitution [230,231], which shifted
the original ARHGAP 11A localization from nuclear importation into neural progenitor
cells’ mitochondria [231]. This stimulated glutaminolysis which, like Hes 1 gene stim-
ulation by NOTCH2, increased oSVC and upper neuron production by stimulating TA
proliferation and increasing the number of cells to differentiate into neurons and, with this,
an enlarged number of neocortical columns.

This massive expansion of the neocortical mantle with its huge cognitive leap forward
from Australopiths’ chimpanzee-sized brains to the expanding Homo brains was due mainly
to increasing numbers and widths of the mini Mountcastle columns, enhanced prefrontal
cortex’s executive functioning with increased axonal connections to the pre-motor and
the parietal and temporal association regions [166,195,204,232]. The enormously increased
cognitive power of the human neocortex also benefitted from cheaper, shorter, and denser
interconnecting wiring by hemispherically lateralizing, cognitively advanced multimodal
networks [233].

When the caudally increasing neocortex began pushing against the occipital cranial
wall, it shifted its expansion downward and rostrally to produce a special primate pro-
trusion, the temporal lobe of the memory machinery [181,206]. The pushing against the
ventricular wall caused the allocortical plate to be forced into a sea horse (e.g Hippocampus
leria)-like structure [181]. Although it was also growing, this ancient hub was only ~1.0–1.5%
of the size of the massive neocortex. Though small, these relatively old complexes continued
sending increasing amounts of data through the collector cortices into the EC-hippocampus
for cortical hubbing of the event-participating networks [24,144,166,173,181,234]. This
disproportionately expanding neocortex, now with more neurons than the other primate
neocortices and an increased modal diversity of radial neuronal columnar units, resulted in
the projection of enlarged streams of messenger packets to the LEC ‘hot spot’ gateway and
through there to the hippocampus [166,181,197,234–236]. Thus evolved our powerful brain
but with an age-hidden deadly glitch in the early short-lived humans.

Despite its undersized LEC data nexus, the big brain served the short-lived (~20 years)
populations extremely well because the common life-long youthful brains were protected
by the anti-stress array of protective mechanisms. Then, the only AD in the small tribes of
big-brained Homo. neanderthalensis and Homo. sapiens would have been very rare EOD/FAD
mutants locally spreading the connectopathy. This could have been caused by inbreeding
or, maybe, by funerary cannibalism as was practiced not very long ago by the Fore tribe of
Papua New Guinea, as suggested by the death of a tribe member from the PrPsc- induced
Creutzfeldt-Jakob prion encephalopathy they called Kuru [237]. However, now, in our
long-living (~75 years) populations, there are increasing numbers of super-old people with
brains having only declining PQCs and failing glymphatic disposal systems that cannot
prevent LOAD/SAD.

Finally, relatively short lives and lack of sufficiently disproportionately large neocor-
tices could explain the very late emergence of an AD-like connectopathy in aging monkey
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and chimpanzee brains. Thus, for example, the human neocortex is ~3 times larger than
the chimpanzee cortex, but it is without a correspondingly enlarged entorhinal cortex [217].
This human combination accelerates and magnifies AD emergence. However, when artifi-
cially infused into the lateral ventricles of the much smaller brains of aged female rhesus
monkeys, human AβOs accumulate in layer 3 of their dorsolateral prefrontal cortices and
in the hippocampi where, just as in human AD, they target PSD95 and destroy spines and
synapses [238]. In other words, all that is required to start and accelerate the connectopathy
in the primates is to provide an endogenous or exogenous source of AβOs, i.e., create an
artificial, human-like overworking entorhinal gateway.

7. How Might AD Start?

Why are human LEC cells the AD starters? As mentioned above, the human LEC
is structurally unique. Khan et al. [23] have found that the superficial layers of the AD-
vulnerable LEC are extremely active; that is, they are a metabolic white-hot spot. The layer
2 cells are packed into striking bumps or verrucae, enmeshed in dense networks of blood
vessels. Its neurons are loaded with mitochondria, and with the glucose and oxygen from
the dense blood vessels, they generate ATP [239–243]. Obviously, this temporal region has
evolved from overloading it with immense volumes of data to process from, for example,
the conscious, awake neocortex. This is expensive; it requires lots of glucose and ATP.
However, the production of toxic mitochondrial ROS byproducts (e.g., O•− → H2O2) in
the LEC verrucae [244] becomes especially dangerous for aging LEC neurons with their
declining protective tool kits.

The EC FC and SC gateway cells’ function is to appropriately process and then project
the abstracted cortical data from the perirhinal and parahippocampal collectors into the
dentate gyrus and the hippocampus proper for hubbing cortical networks into a cueable
engram to replay the cortical event. The ‘ground zero’ AD initiators are the hyperactive
LEC fan cells. Because the LEC II (2) verrucal cells are so active, they have more AβPP and
are thus prone to produce more Aβx–42s than other neurons in normal brains. Thus, when
their PQC systems start declining, they promptly start over- accumulating Aβx–42s, and
secreting them into the surrounding pulsing perivascular shearing ISFs, which energize
them into AβOs-seeding Aβ*s [17–19,166,245]. In other words, the LEC data nexus is a
medial temporal ‘hot spot’ that releases large amounts of Aβx–42s into the pulsing ISF
for making AβOs-seeding Aβ*s. As expected from this, Welikovitch et al. [22] have seen
Aβx–42s ominously increasing with age in EC neurons before the appearance of any AD
hallmarks, even in post-mortem brains from still cognitively normal individuals. Also, there is
a large decline of connectivity in the medial temporal lobe, probably because of the early
onset of synapse pruning by AβOs before a significant decline in cognition [188,246].

Another feature of these dentate gyrally-projecting layer 2 cells is their reelin, ho-
modimers of which are needed to produce hippocampal dendritic spines and synapses
in the adult brain [247,248]. In aging brains, as the Aβx–42s-clearing PQC systems are
declining, layer II neurons start accumulating PrPCs, which bind to reelin and cause the
assembly of non-functional reelin multimers [247,249]. Normally the reelin dimers activate
the ApoER2 receptors that stimulate fyn to tyrosine (Y)-phosphorylate Dab1 adaptors and
inhibit GSK3β [7]. However, unlike the reelin dimers, the AβOs-induced reelin multimers
do not cause ApoER2-Dab1-mediated activation of the fyn pathway. Thus, this process
activates GSK3β, which, in turn, phosphorylates tau and produces toxic HPTOs [249].
Thus, AβOs and HPT start their long connnectopathogenic process from the limbic region.

Because the layer II (2) verrucae of the small LEC→ hippocampal gateway are inces-
santly bombarded by multimodal messages from the huge neocortex, it becomes the most
heavily damaged of all cortical regions by the AD connectopathy [241]. It costs a lot of ATP
to process this data flow, but the EC ANTs must contend with toxic ROS-byproducts from
their overworking synapses’ mitochondria [244,250–253]. This could be the reason why
these neurons are so vulnerable to destruction. Indeed, the continual ROS-generating data
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processing in the hot spot is equivalent to focusing a destructive beam of ionizing radiation
on it [254].

Neurons in the nidal EC layer 2 verrucae, like other active neurons, can make a lot of
Aβx–42s during SVC (synaptic vesicle cycling) and release it, through, for example, exosomes,
along with the glutamate transmitter, into the synaptic cleft [18,19,29,166,245,247,255–257].
In the reelin-expressing EC ‘hot spot’ nexus of a young brain, these activity-generated
Aβx–42s are kept at a safe level by the cells’ diverse protection systems [16,18,19,29,255–257].
At this stage, the tau protein in the busy neurons is compartmentalized in the neuronal
axons forming microtubule trackways in association with tubulin, along which the kinesin
and dynein transporters carry cargos to and from the presynapses [258]. Tau is normally
prevented from dangerously escaping into the somatodendritic compartment (SDC) by
the AIS (axonal initial segment) filter [259]. As the brain ages, with the weakening PQC
systems, neurons will start hyper-accumulating Aβx–42s which seed AβOs that stimulate
tau-hyperphosphorylating kinases such as GSK 3β. The hyper-phosphorylated tau detaches
from axonal tubulin and can pass through the AβOs-impaired AIS into the SDC [260]. In
addition, activation of fyn kinase signaling by the accumulating AβOs stimulates tau
synthesis via MAPK (ERK), S6, and the loading of the SDC with hyperphosphorylated tau.
Thus, the AβOs have set the stage for the massive multipronged network-destroying attack
on the PrPC-displaying synapses [29,126,140,247,249,261–263].

Besides this, AβOs in the ISF also start the core synapse-pruning by selectively and
avidly binding to PrPC -displaying PSD to form a transmembrane signaling receptor
complex with the mGluR5 (the metabotropic GluR5 receptor). This activates the SDC
fyn kinase in PSD and contributes to synapse destruction along with the complement
system-activated microglial cells, as described above. The activated fyn kinase can also
hyper-activate neighboring ionotropic NMDAR, which destroys the synapse by triggering
an excitotoxic Ca2+ surge through the receptor [29,68,264–268].

This is not all. As we outlined in more detail above, the AβOs also induce the ANTs
astrocytes to induce the neurons to tag their synapses with complements of C1q and C3 to
form C1q•C3 complexes that stimulate microglia hovering nearby in the ISF to phagocytose
the synapse by activating their C3 receptors [131–134]. The AβOs also inhibit NKA-α3
(Na/K ATPase-α3), and with it, the ability to generate action potential and eventually open
another way for toxic Ca2+ build-up [30,269].

As discussed above, the vulnerability of these energy-guzzling cells in LEC verrucae
is also partly attributable to their synapses’ large loads of mitochondria that are also the
targets of AβOs [270–272]. The AβO•PrPC•mGluR5•Fyn signaling complex converts
the mitochondria from ATP producers to ROS producers and releasers of apoptogenic
cytochrome c by disabling various mitochondrial targets, including the Complexes V and
IV, and ATPsynthase [261,263,271,273–276]. Thus, these cascades of events stimulate the
production of superoxide and its toxic products instead of driving ATP production, leading
to the killing of cells and thus, destruction of the EC gateway [271,277]. The accompanying
mislocalization of hyper-phosphorylated tau prevents any mitochondrial replacements
from reaching the moribund neuronal synapses from the neuronal soma. [104,278]. Thus,
the EC gates are closing, and the data/information-collecting olfactory, perirhinal and
parahippocampal regions are disconnected from the dentate-hippocampus and, with this,
episodic memory recording.

Until very recently, another likely participant in AD connectopathy has been ignored.
Neurons, like most other mammalian cells, have immobile primary cilia bristling with
various receptors and are key parts of the cognitive machinery [279,280]. They are most
likely involved in AD because it has recently been shown that AβOs target the p75NTR in
the primary cilia of murine hippocampal neurons, the resulting signals from which impair
recognition memory [281]. It is known that the AβOs in the ISF somehow collect at the
ciliary base where they prevent such things as ciliary growth and p75NTR and SHH [Sonic
Hedgehog]signal transductions in the dentate-gyrus and thus contribute to spreading the
connectopathy [280–283]. It is not clear how AβOs reach the ciliogenic machinery in the
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centrosomal hub. One possibility is that the AβOs in the pulsing ISF simply bind to the
waving cilium and are carried down to the cilial base [17]. Another possibility might
involve the PCM-1 protein. This is a 228.5 kDa protein that is believed to be involved in
ciliary structure and function [284–286]. PCM-1 has a highly basic, K+-rich patch in its
1276–1314 region, which selectively binds AβOs [72]. Thus, we speculate that PCM-1 may
pick up negatively charged AβOs with its polybasic patch and deliver them to the ciliary
base and affect their function.

8. The Spreading of LOAD/SAD Connectopathy

At the heart of the slowly spreading LOAD/SAD in the aging brain is the heavy
intercellular traffic of EVs (extracellular vesicles, exosomes) along the main cerebral path-
ways [287,288]. The EV cargos are normally lipids, proteins, and mRNAs. The cargo might
also include products such as the AβOs that are delivered by the attachment of the donor’s
loaded vesicles to the recipients’ membranes, followed by the endocytic release of the
AβOs [289,290]. The connectopathy is also locally spread from the nidus by the release of
AβOs-seeding Aβx–42s into the ISF by neuronal SVC and AβOs from periplaque halos [17].

As mentioned earlier, this happens at first asymptomatically and spreads from the
nidus, with AβOs pruning synapses and disrupting the dense connections of the allocortical
olfactory, amygdala complex, and the transitional entorhinal–allocortical hippocampal
complex [7,23,35,104,112,126,127,188,262,291–294]. The spread of the connectopathy is
likely maintained by at least two things: the selective attraction and binding of ISF AβOs
to postsynaptic PrPCs, and the resulting Ca2+ surge-induced stimulation of CaSRs that
induces the cell to make more AβOs [77,113,295].

When the ANTs in parts of aging brains, such as the hippocampus, start seeding
toxic AβOs, they try to destroy them with their fading autophagic machinery. They
inflate MVBs (multivesicular bodies) with the degradation-resistant AβOs that are even-
tually released as EVs into the ISF, with their toxic contents being delivered to nearby
cells [7,29,287–290,296–301]. Moreover, instead of being released from neurons or astrocytes
in EVs, some AβOs may enter the ANT cells’ nuclei and bind to the AβID (Aβ-interacting
domain) regions of the AβPP and BACE1 gene promoters to increase endogenous Aβ
production and enhance the spreading intra-brain infection [302,303].

In contrast, AD trajectory in an EOAD/FAD brain can spontaneously hyper-accumulate
AβOs-seeding Aβx–42s either because they have 3 chromosome 21s (Down’s syndrome),
each carrying an AβPP gene or one of the two autosomal dominant secretase genes (e.g.,
presenilin 1). However, here too, the LEC is likely to be the nidus because these “mutant”
neurons are also equipped to hyper-produce Aβx–42 in their structurally unique EC nidal
‘hot spots’ although we would expect them to be maintained much closer to the picomolar
‘red line’ than pre-LOAD/SAD cells and likely to be pushed over it by earlier and therefore
smaller declines in a younger brain’s Aβx–42s clearance mechanisms [104,141,304,305].

9. CaSRs Participation in Driving the Connectopathy

Neuronal activity promotes the production and release of Aβx–42s along with neu-
rotransmitters from the ANT neurons, and thus the amount released into the pulsing
ISF is a function of neuronal activity. Indeed, SVC is necessary for amyloidogenic AβPP
processing [19,257,306]. In a normal plasma membrane, AβPP is compartmentalized into
one set of small lipid rafts, and the individual secretases that cleave the Aβx–42s out of
it reside in separate rafts. This separation in the normal membrane is maintained by the
MARCKS (myristolylated alanine-rich protein kinase C substrate) protein with its myris-
toylated N-terminus inserted into the membrane and its highly basic (K-rich) 152–172 patch
bound to membrane PIP2s (phosphatidyl inositol bisphosphates). Under these conditions,
AβPP is directly targeted by the non-amyloidogenic membrane α-secretase, ADAM 10, and
produces a neurotrophic and neuroprotective sAβPPα fragment [257,307–310]. Besides
synaptic stimulation, another early event in AD development appears to be increased PKC
activity [311]. PKC phosphorylates several sites on MARCKS protein (S159, S163, S167,
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S170), which causes the strongly positive K-rich 152–172 patch to become less positive and
thus separate it from PIP2. This permits the fusion of lipid rafts, which allows the interaction
of AβPP with secretases resulting in the production of Aβx–42s [77,257,307–312]. When the
neuron empties these loaded synaptic vesicles, the Aβx–42s are released into the synaptic
cleft along with the neurotransmitter [22]. The released Aβx–42s in the pulsing ISF then
seeds AβOs that can infect more distant cells as described earlier [17,122,257,287,288,296].

A consequence of the Aβx–42s accumulation in the aging EC cells appears to be the
stimulation of CaSR expression [25]. Small locally produced AβOs-‘barrels’ lined with their
negatively charged N-‘tails’ are inserted into the cell membranes and enable a Ca2+influx,
which would activate the CaSRs [10,17,30,77,78,257,313–315]. The AβOs can also stimulate
CaSR via the AβOs→ PrPCs→ mGluR5→ NMDA triggered Ca2+ surge described above.
Most importantly, activated CaSRs are also AβOs replenishers that maintain the ‘conta-
gion’. Thus, there are two ways the anionic AβOs can selectively induce connectopathy-
driving reactions, one via Ca2+•CaSR-mediated production and release of AβOs seeding
Aβx–42s, and another by reducing ADAM10 and increasing AβPP [77,78]. Moreover, the
AβOs→ Ca2+ → Ca2+•CaSR signaling induces various harmful cytokines [77,78,112,113].

10. Why Is LOAD/SAD a Disease of Aging?

As pointed out above, the densely crowded and intricately structured cellular inner
nanoworld, be it neuronal or astrocytic, is constantly battered by the aqueous Brownian
maelstrom [12,14]. Thus, the complex interacting nano-devices in such a place must
constantly be repaired or replaced. As these systems decline over the years in the wild-type
brain, the damage mounts, and LOAD/SAD is one of its many consequences. An example
of one such important decline in the aging brain is that of BDNF, likely because of the
reduced physical exercise of older people [316].

The high activity forced on the neurons in the EC gateway-hippocampus complex in a
young brain produces relatively large amounts of Aβx–42s which normally promote synap-
tic plasticity and episodic memory recording provided they are kept at or below picomolar
levels [18,29,245,247,255,256]. As the PQCs decline with age, some of the increasingly un-
cleared Aβx–42s seed mixed ‘cocktails’ of toxic AβOs in the ISF and on the surfaces of large
plaques [17,34,77,98,269,278,317–319]. In the healthy young brain, PQCs prevent Aβx–42s
surging above the physiologically safe picomolar level. For example, Aβx–42s/AβOs can
be cleared by zinc-metalloproteinases such as insulysin and neprilysin and/or by trans-
portation across the blood–brain barrier (BBB) into the blood circulation by lipoprotein
receptor-related protein-1 (LRP1) [98,320–322]. Then, there is also the glymphatic system in
which networking astrocytes take up waste from the brain with their neurovascular endfeet
and drain it into the peripheral lymphatic circulation [17,323–327].

Glymphatic processing starts in CSF from the four ventricular choroid plexuses flow-
ing out of the fourth ventricle into the SAS (subarachnoid space) through the foramina
of Magendie and Luschka [328]. As the CSF flows through the SAS, portions are pulled
down into the perivascular Virchow–Robin spaces by the pulsing arteries and arterioles.
Stationed along these pulsing vessels are phalanxes of astrocytes attached to them by
end-feet containing AQP4 (Aquaporin 4) water channels [327–330]. This astrocyte sys-
tem, functioning optimally in a young sleeping brain, sends a bulk flow of waste-bearing
ISF through the large veins, into the arachnoid granulations, the superior sagittal sinus,
and finally into the peripheral circulation. With advancing age, the penetrating arterial
and arteriolar walls stiffen, and thus, the glymphatic system’s principal pumps weaken,
the phalanxes of periarterial astrocytes disperse, and the Aβx–42s/AβOs-bearing ISF flow
slows [326,327,331]. Along with this, the system is likely being progressively dismantled
with the perivascular AQP4-bearing astrocytes being dispersed by the accumulating AβOs.
Various cytokines, as well as NO and its toxic derivatives and MMP9 (Matrix MetalloPro-
teinase 9), produced by astrocytes in response to AβOs, disrupt the claudin-attached BBB
lining of the blood vessels [327,330,332]. The destructive impact of the declining sewage



Cells 2023, 12, 1618 16 of 36

system on the cognitive machinery is increased by the build-up of high molecular weight
AβOs not being clearable from the interstitial fluid [30,333].

11. The Clinical Emergence of LOAD/SAD after Its Long Stealthy Prelude

As the connectopathy spreads outwards and upwards from its shrinking nidus, it leaves
a trail of harmless Aβx–42s monomers and toxic ‘cocktails’ of ‘infectious’ AβOs that will
destroy, for example, the hippocampus, the posterior cingulate gyrus, and parietal cortical
rich-club networks, but not primary motor, or somatosensory areas [127,128,321,334–338].
However, the Aβx–42s and AβOs from the cells are locked into the dense cores of large
senile plaques that prevent them from spreading the contagion beyond their immediate
neighborhoods [34]. However, Aβx–42s being squeezed and stretched by flowing over the
surfaces of large plaques can seed AβOs that can attack and prune nearby synapses [34].
Most importantly, the plaques can mark the trajectory of the connectopathy from the EC to its
neocortical targets [339–341]. The changes in the levels of the Aβs in the blood and CSF also
reflect the kinetics of formation and clearance of Aβx–42s/AβOs and have enabled the detection
of the spreading pathology much before the onset of clinical symptoms [27,34,342,343].

Along with synaptic pruning and cell cycle initiation, there is a surprising pre-plaque
fMRI-detected surge of false hyperactivity in the hippocampus despite the degenerating
fornix and the EC layer II2 [23,86,87,133,317,344–351]. Despite this spurious hyperactivity,
there is a significantly impaired functioning of the dentate gyral/CA3 regions in MCI
brains, along with their shrinking hippocampi [352,353].

One cause of this early hippocampal hyperactivity could be the accumulating AβOs that
activate CaSRs that can hyperactivate hippocampal pyramidal cells by downregulating their
GABA-B-R1 receptors [113,354–356]. A related reason could be the increased MMP-9 levels
that damage the pyramidal neuron-restraining hippocampal GABA-ergic PV+ (parvalbumin)
interneurons by destroying their protective PNNs (perineuronal nets) [357,358].

Since fMRI gives a signal based on blood oxygen and volume levels [359], another
possible contributor is the AβOs-stimulated release of VEGF (vascular endothelial growth
factor) and proinflammatory cytokines (i.e., Il-1β, IFN-γ, TNFα) from astrocytes’ end
feet attached to hippocampal blood vessels during the prolonged presymptomatic pe-
riod. Such a sustained VEGF bombardment should drive angiogenesis and increase the
EC gyral/hippocampal microvasculature density and, with it, the BOLD fMRI signaling
responses [354,360–368]. An enhanced surge of blood through such an expanded vascu-
lature would flood the shrinking hippocampus with oxygen and glucose, thus instead
of a fading BOLD fMRI signaling, there is supernormal BOLD signaling peaking in mid-
MCI [86,353,368–371]. This means that a hypersurging blood flow along with damage to the
GABAergic PV+ neurons will make DG/CA3 cells hyperoxic, hyperglycemic, hyperactive,
and, consequently, hypofunctional [364]. Moreover, and most importantly, the hyperac-
tive neurons will produce and release into the ISF increasing amounts of AβOs-seeding
Aβx–42s [19,86,344,372,373].

The post-MCI collapse of the BOLD fMRI signal when the brain converts to full-blown
AD is likely, at least in part, due to the sustained spreading of perforation and severing of
blood vessels, particularly in the hippocampus induced by Aβ (Aβ1-40) deposits and the
production of NO and its toxic derivatives [354,362,366,374,375]. There will be spreading
regions of hypoxia from the vascular damage leading to a buildup of HIF-1 (hypoxia-
inducible factor-1), which in turn would stimulate Aβx–42s/AβOs production by activating
BACE1 and γ-secretases [360,376–380]. Along with this spreading BBB breakdown are the
local leakages of toxic serum components into the brain, which can activate astrocytes and
microglia to produce inflammatory cytokines. This is accompanied by a spreading shortage
of glucose and thus ATP [327,381–385]. Thus forms the basis of the hypo-metabolism
indicated by declining 18FDG-PET signaling in regions along the AβOs’ trajectory, such as
the PCC and precuneus [27].

As conversion to full-blown AD nears, not enough damage has so far been done to dis-
rupt daily activities, but the roiling intra-brain pathological activity could be seen in disap-
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pearing EC layer 2 verrucae, shrinking hippocampi, and cerebral ventricles
swelling [27,241,242,251,382,386–389]. However, the spreading of AD connectopathy be-
comes increasingly entangled with other pathologies-of-age, especially neurodegeneration-
promoting cardiovascular diseases. Eventually, the spreading damage reaches the threshold
of irreversibility.

12. The Lethal Tau-Driven Finale

In the EC of an aging but still cognitively normal person, there is a harmless pro-
gressive accumulation of Aβx–42s with no AβOs. Eventually, the accumulating Aβx–42s
reach the toxic AβOs-seeding level and the onset of AD connectopathy as indicated by the
generation of Ptau-T181 and its release into the circulation [88]. AD is actually a terminal
tauopathy in which the currently invisible toxic AβOs start the connectopathy by inducing
the mislocation of normal tau from the axon to the SDC by stimulating its hyperphos-
phorylation. This produces the unfolded toxic tau that collaborates with PrPCs to destroy
synapses [260,390–392]. So, the hyperaccumulating AβOs produce the toxic HPTOs that
actually kill the cells and, like AβOs, are also able to prion-like spread the clinical symp-
toms [5,22,126,390,393]. Thus, the developing pathology has entered the final stage with the
toxic AβOs-induced HPT/HPTOs’ spreading, destroying synapses, disconnecting circuits,
and filling neurons with the hallmark NFTs (neurofibrillary tangles) [292,394]. The person
converts into full-blown dementia, in which he/she may survive semi-functionally, but not
at all cognitively, for a few more years [5,141,262,293,395–398].

According to Ittner and Götz’s delightful metaphor [140], Aβs and taus are parts of
a toxic two-step (pas de deux) choreography. To paraphrase Bloom [139], AβOs load the
AD gun with HPT ‘bullets’ and then fire it to kill the cell. Consistent with this, it has
been reported that in triple transgenic mice expressing both human Aβx–42s and the mutant
human tau P301S, primary cilia in dentate granule cells were significantly shortened (~50%),
but not in transgenic mice expressing only human Aβx–42s [280,282]. Chiarini et al. [304]
have reported that NAHAs, treated with Aβ25–35, overproduce HPT, package it into exo-
somes, and release them into the culture medium. Rapoport et al. [399] have reported that
neurons expressing either human or mouse tau degenerated in the presence of Aβs, but
tau-depleted neurons were unaffected. Roberson et al. [400] have reported that reducing
endogenous tau in AD-model mice reduced Aβ-induced actions. Similarly, Tackenberg
and Brandt [401] have reported that Aβx–42s alone were not toxic for cultured transgenic
murine hippocampal CA3 neurons, but there was a massive neuronal degeneration in
these Aβ-treated cultures when tau was also expressed and made toxic by hyperphos-
phorylation and oligomerization to HPTOs. Khan et al. [23] have further illustrated this
by showing that exposing mice to either a mutant human AβPP or a mutant human tau
did not significantly affect them. Expressing them together damaged the mice. More
recently D’Avanzo et al. [395], Jorfi et al. [402], and Takeda et al. [403] have shown that 3-D
cultures of human neural progenitor cells produced with iPSC (induced pluripotent stem
cells) derived from AD patients accumulated Aβx–42s and human HPTOs, but selectively
decreasing Aβx–42s production with BACE1 or γ-secretase inhibitors decreased HPTOs.
Finally, an elderly woman in Colombia was carrying her family’s presenilin 1 gene and
thus was expected to develop AD early in life like all of her relatives [404]. As expected,
her brain was loaded with plaques, but unexpectedly she had no tau tangles in her brain,
and she had somehow escaped AD’s hyperphosphorylated tau [404].

13. The Synapses Pruning AβOs-PrPC-Tau Combination Also Induces Neurons to
Suicidally Try to Enter Their Cell Cycle

It appears that something surprising and important starts with the asymptomatic onset
of the AβOs-triggered AD that may be responsible for as much as 90% of the eventual neu-
ronal death [405,406]. The aging neurons, with their declining nano-machinery trying to sur-
vive the toxic onslaught of AβOs in the EC and the hippocampus, unsuccessfully attempt to
switch on their cell survival program that includes cell proliferation [190,405,407–412]. This
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is surprising because such mature neurons should have permanently dismantled their cell
cycle machinery. This attempt to proliferate could be due to AβOs inducing the synapse-
pruning microglial cells as well as astrocytes to produce enough IL-1, IFN-γ, TNFα, and
VEGF to stimulate the neurons to attempt to restart cycling in the hippocampal CA1 and
CA3 regions [112,405–408,411,413–415]. However, according to Kodis [190], the initiation
of cell cycling is likely due to the AβOs-induced phosphorylation of tau at the Y18 residue,
which activates fyn kinase in dendrites and spines. Activated fyn kinase phosphorylates
NMDA receptors, which cause a Ca2+ influx that triggers cell cycle re-entry [416].

The cell cycle suppression in normal mature neurons is partly due to the confine-
ment of DNA-replication-driving genes in dense chromatin along with a high level of Rb
(retinoblastoma) protein that blocks the expressions of these genes by blocking their contact
with the E2F transcription factors [417,418]. This proliferative silence is broken when the
AβOs induce chromatin-restructuring and upregulation of miR-26b that derepresses the
set of E2F-responsive genes such as the replication-initiating Cdk2-cyclin E. [408,418]. The
AβOs, also stimulate the MEK-ERK pathway that turns off TAp73 and, with it, the miR-34a
that has been blocking the production of the cell cycle-initiating cyclin D1 kinase [415].

These activities start the buildup of chromosome replication. Some neurons can
replicate their DNA and become tetraploids, but more likely, they become genetically
unbalanced aneuploids by only partly replicating their chromosomes [419]. However,
none of the neurons can initiate prophase because, in the AD brain, Cdk1•Cyclin B1
remains in the cytoplasm associated with HPT and NFTs and cannot get into the nucleus
to trigger the events that break down the envelope [406–408,420,421]. The danger of this
is that Cdk1•Cyclin B1 marooned in the SDC stimulates kinases such as Cdk5 and GSK-
3β to further load the SDC with HPTOs [139,397]. If these are not challenging enough,
the cytoplasmic Cdk1•Cyclin B1 also phosphorylates and activates the apoptogenic Bad,
which, if not blocked by BDNF (which is reduced in aging brains [316], would induce an
aneuploid pyramidal neuron to suicidally start the destructive restructuring needed to
enter mitosis [407,408].

14. Do AβOs Really Co-Drive AD Pathology?

There are doubts about AD being triggered by Aβ and thus questioning the amy-
loid hypothesis of AD [422]. One of the main reasons for this is that several anti- Aβ
antibody-based therapeutics have failed in clinical studies. Because of the wildly held
incorrect belief that AD is caused by the plaques, it was felt that it should be treatable
by plaques-eliminating agents [423,424]. This has recently been tested, for example, by
Biogen/Eisai’s monoclonal anti-Aβantibodies, aducanumab (ADUHELM, [425]), and
lecanemab (Leqembi, [426]). While they did indeed significantly reduceAβ-plaques, they
only marginally reduced the patient’s cognitive decline.

However, Dodart et al. [427] reported that a monoclonal anti-Aβ antibody did rapidly
reverse memory impairment but without reducing Aβ deposition in the cortices or hippocampi
of PDAPP AD Tg mice. Chui et al. [428] reported that transgenic mice carrying the human
presenilin 1 gene suffered cognitive decline also without Aβ plaques. AD patients carrying
the E22-less Osaka ∆E22 mutant are severely cognitively impaired with AβOs in their
CSFs, but extremely low levels of plaques [28]. Knight et al. [429] have reported that
AβOs, which accumulated in the brains of mice carrying the Osaka ∆E22 mutant, were
associated with memory defects again without plaques. Lesné et al. [388] have reported
that injecting purified AβOs into the ventricles of wild-type rats dramatically reduced
spatial memory formation. In other words, the histologically striking plaques or deposits
do not correlate to the brain damage in rodents and humans, while it is increasingly evident
that the histologically invisible small amounts of diffusible high molecular weight AβOs,
do correlate with brain damage with or without accompanying Alzheimer-Fischer plaques.
Finally, the most convincing role of Aβ in AD development is the inability of a group of
Icelandic people with an impaired amyloid APP gene to develop the disease [9].
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Thus, the AD treatment failures are likely due to using a wrong model of this con-
nectopathy. It is initiated by AβOs instead of the very visible later-appearing Alzheimer–
Fischer plaques. It first irreversibly advances unnoticed for decades in aging EC neurons
and then extracellularly along its characteristic trajectory from the limbic origin to the neo-
cortex, irreversibly pruning the synapses. However, in some people, the consequences of
the stealthy AβOs-inflicted EC-hippocampus damage develops a decade before clinical AD.
As outlined above, the multipronged attack on synapses, particularly those of pyramidal
neurons, by AβOs•PrPC complexes also include the production of toxic HPTOs by Fyn and
Pyk2. Unfortunately, the progression and staging of the pathology in humans have been
based too late on accumulating plaques and tau tangles instead of the onset of AβOs pro-
duction, which would be the best time to start treatment. This problem may be on the verge
of the solution by the ability to detect the early AD-specific appearance of P-T181 [88] or
the recently reported brain-specific tau [89] in blood plasma. Unless the pruning is stopped
before becoming functionally noticeable in an MCI patient, the AβOs-induced HPTOs might
even have independently started driving a secondary tauopathy. However, just reducing
Aβx–42s and the pertinent AβOs then can have little or no effect on cognitive decline. A
combined anti-AβOs and anti-HPTOs treatment would have to be combined to control
this. Even if this were to be initially effective in preventing the accumulation of AβOs, it
would have to be continued because of the aging brain’s unfortunately unstoppable ability
to continuously generate AβOs.

In summary, there are two major reasons for the current failures of the clinical trials of
putative Aβ -based AD therapeutics. The first is not knowing which of the heterogeneous
AβOs in the toxic cocktails triggers the AD pathology. Towards this end, recent clinical
data on the Aβ-protofibril-targeting antibody therapeutic, donanemab, may shed some
light on this [430]. The second is we do not yet know how to detect the asymptomatic
onset before the appearance of PETscan-detected plaques to prevent the pathology from
starting. Obviously, it would be ideal to be able to give routine (e.g., yearly) MRI brain
scans to discover and follow the development of early asymptomatic hippocampal and
ventricular structural changes. However, this has been impossible because of the very high
cost. The invention of a small, very much cheaper, mobile (on wheels), radiofrequency-free
Ultra-low-field MRI scanner may be helpful in addressing this issue [431].

15. How Might AD Be Treated?

The principal features of the LOAD/SAD connectopathy are: it starts in the LEC of
aging brains, and it does so by asymptomatically spreading, slowly disrupting cognitive
circuitry, one or two decades before patients, families, and physicians are aware of anything
being amiss. Clearly, the most effective way to treat the developing pathology would be
to strike it directly on ‘Ground Zero’ as soon as possible. However, before considering
treatment options, we must still find a way to detect AD onset long before the accumulation
of Alzheimer–Fischer plaques and tangles. Perhaps something like the appearance in the
bloodstream of molecules such as T181-p-tau [88] or the recently described brain-specific
tau [89] that are easily measurable might be helpful, in addition to other early biomarkers.

From this brief overview of some of the growing number of AβOs’ targets in LOAD/SAD
brains, it appears that the core of AD connectopathy advancing through the brain is
AβOs→ PrPCs→ Ca2+•CaSR→ HPTO (Figure 1). This destroys synapses and induces
mature neurons to suicidally try re-entering their cell cycles. It follows that the connecto-
pathic cascade might be stopped by an avid AβOs binder, such as monoclonal antibodies or
basic peptides [72,73], which would prevent AβOs from triggering the cascade by binding
synaptic PrPCs as soon as possible after the onset of the disease in the LEC.

A connectopathy like AD is highly complex; therefore, countless approaches have
been and are currently being made to understand and arrest it. Here, we describe one such
approach using a strongly positively charged polypeptide that selectively targets AβOs
as potentially therapeutic. Chakravarthy et al. [72] have reported a cationic amyloid-β
binding peptide (ABP) that selectively binds to high molecular weight AβOs, but poorly to
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physiologically functional monomeric Aβ1–42. [73]. They have shown that this peptide targets
AβO aggregates when microinjected into the hippocampi of living double-transgenic AD
mice harboring PSEN1dE9 and APPSWE transgenes [73] and also ex vivo in brain sections
of both transgenic mice and postmortem human AD patients. Interestingly, ABP, which
can also inhibit membrane-associated PKC activity) [75,76] is actually the 1276–1314 region
of the human PCM1 described above.

Recently a bifunctional fusion protein has been generated in which a blood-brain
barrier crossing single-domain antibody FC5 is fused to an amyloid binding peptide (ABP)
via mouse IgG2a Fc fragment (FC5-mFc2a-ABP). In aged transgenic McGill-R-Thy1-APP
rats expressing human APP751 with familial AD mutations, 5-week treatment with KG207-
M markedly reduced brain Aβ levels measured by positron emission tomography reversed
hippocampal atrophy and improved resting state functional connectivity [432].

It also appears that the pathology’s advance through the cortex is sustained by signals
from AβO−s→ Ca2+•CaSR to make and secrete more AβOs [78,113,354]. Therefore, any
drug that can inhibit Ca2+•CaSR signaling could collaborate with an AβOs binder to stop
the spread of the connectopathy (Figure 1). Such a family of drugs, specifically the CaSR-
inhibiting ‘calcilytics’ (e.g., NPS2143), have recently been shown to inhibit the secretion
of Aβ and all of their toxic actions in cultured human astrocytes and neurons [78,113,354].
Moreover, these drugs have been pre-clinically and clinically shown to be well-tolerated by
rodents and humans [45,356,433,434]. Thus, for example, delivering a double therapeutic
consisting of an AβOs binder and a safe catalytic like NPS 2143 before MCI or even
later might stop the further spreading of LOAD/SAD, likely without reversing already
inflicted damage. However, unless we can stop aging or otherwise eliminate the old brain’s
AβOs producing machinery, it will resume hyper-accumulating Aβx–42s and seeding AβOs
cocktails if we should stop treatment. Therefore, such a combined therapy would likely
need to be given intermittently for life.
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Abbreviations

AβPP Amyloid-β pecursor protein
Aβ Amyloid-β
AβOs Amyloid-β oligomers
AD Alzheimer’s disease
α-7nAChRs Nicotonic acetylcholine receptors
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANTs Astrocyte•Neuron Teams
Apo E Apolipoprotein-E
BACE1 Beta-site amyloid precursor protein cleaving enzyme-1 (β-secretase 1)
BBB Blood–Brain Barrier
BDNF Brain-derived neurotrophic factor
BOLD fMRI Blood Oxygen Level Dependent functional Magnetic Resonance Imaging
CaSRs Ca2+-sensing receptors
Cdk Cyclin-dependent kinase
CSF Cerebrospinal fluid
DG Dentate gyrus
DMN default-mode network
EAATs Excitatory Amino Acid Transporters
EOAD/FAD Early-Onset or Familial AD
EC Entorhinal cortical
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ECM Extracellular Matrix
EVs Extracellular Vesicles
GSK3β Glycogen synthase kinase-3 β
IDPs Intrinsically disordered proteins
ISF Interstitial fluid
LEC Lateral entorhinal cortex
LRP1 LDL receptor-related protein 1
MAPK (ERK) Mitogen-activated protein kinase (extracellular signal-regulated kinase)
MARCKS Myristoylated alanine-rich C kinase substrate
MCI Mild Cognitive Impairment
NAHAs Normal Adult Human cerebral Astrocytes
NFTs Neurofibrillary tangles
NMDARs N-methyl-D-aspartate receptors
PCM1 pericentriolar material-1
PET Positron Emission Tomography
PKC Protein Kinase C
PrPC Cellular prion protein
PQCs protein quality and quantity control systems
ROS Reactive Oxygen Species
LOAD/SAD Late onset or sporadic AD
HPTOs Hyper-phosphorylated tau oligomers
PQCs Protein quality and quantity control systems
PSD Postsynaptic density
SDC somatodendritic compartment
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Abstract: The enormous, 2–3-million-year evolutionary expansion of hominin neocortices to the cur-
rent enormity enabled humans to take over the planet. However, there appears to have been a glitch, 
and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the 
hippocampal memory-encoding system needed to manage the processing of the increasing volume 
of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unno-
ticed by the early short-lived populations. It has now surfaced as Alzheimer’s disease (AD) in to-
day’s long-lived populations. With advancing age, processing of the converging neocortical data by 
the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high 
energy costs on these cells. This may result in their hyper-release of harmless Aβ1–42 monomers into 
the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate 
AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electro-
static binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces 
hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from 
ground zero is supported by Aβ’s own production mediated by target cells’ Ca2+-sensing receptors 
(CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-
interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting thera-
peutic combination. 
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1. Introduction 
As the World population rose to 8 billion, there has been an increasing number of the 

super-aged with a disease we suspect has resulted from an evolutionary glitch resulting 
from the disproportionately immense neocortical expansion. It was Alois Alzheimer in 
1901, while examining a behaviorally disturbed fairly young 51-year-old woman, who 
discovered that she had what we now know as the rare pre-senile or early onset version 
of this disease. After her death in 1906, he found that her brain was riddled with the now 
hallmark plaques and tangles. Then, it was Emil Kraepelin who, believing this to be a new 
disease, called it Alzheimer’s disease (AD) (Compendium der Psychiatrie, 1910) [1,2]. 

However, Alzheimer’s discovery was not as original as Kraepelin believed it to be. 
In fact, it was Oskar Fischer (1876–1942) who first saw the plaques (though not the tangles) 
in the brains of older senile patients with dementia [3]. Since tuberculosis was spreading 
throughout Europe at that time and since cerebral tuberculosis is accompanied by a 
slowly developing dementia with memory loss, he believed that the plaques were the 
tuberculosis-like Drṻsen (clubs) caused by the Mycobacterium tuberculosis-like Streptothrix. 
In fact, such infecting bacteria are carried to the medial temporal lobe via the middle cer-
ebral artery, where they directly target the hippocampal memory-encoding machinery, 
like AD’s endogenous toxic AβOs (Aβ oligomers) discussed below [3]. Once the 
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Abstract: The enormous, 2–3-million-year evolutionary expansion of hominin neocortices to the cur-
rent enormity enabled humans to take over the planet. However, there appears to have been a glitch, 
and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the 
hippocampal memory-encoding system needed to manage the processing of the increasing volume 
of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unno-
ticed by the early short-lived populations. It has now surfaced as Alzheimer’s disease (AD) in to-
day’s long-lived populations. With advancing age, processing of the converging neocortical data by 
the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high 
energy costs on these cells. This may result in their hyper-release of harmless Aβ1–42 monomers into 
the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate 
AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electro-
static binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces 
hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from 
ground zero is supported by Aβ’s own production mediated by target cells’ Ca2+-sensing receptors 
(CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-
interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting thera-
peutic combination. 

Keywords: Alzheimer’s disease; evolution; hippocampal memory; entorhinal cortex; neocortex 
 

1. Introduction 
As the World population rose to 8 billion, there has been an increasing number of the 

super-aged with a disease we suspect has resulted from an evolutionary glitch resulting 
from the disproportionately immense neocortical expansion. It was Alois Alzheimer in 
1901, while examining a behaviorally disturbed fairly young 51-year-old woman, who 
discovered that she had what we now know as the rare pre-senile or early onset version 
of this disease. After her death in 1906, he found that her brain was riddled with the now 
hallmark plaques and tangles. Then, it was Emil Kraepelin who, believing this to be a new 
disease, called it Alzheimer’s disease (AD) (Compendium der Psychiatrie, 1910) [1,2]. 

However, Alzheimer’s discovery was not as original as Kraepelin believed it to be. 
In fact, it was Oskar Fischer (1876–1942) who first saw the plaques (though not the tangles) 
in the brains of older senile patients with dementia [3]. Since tuberculosis was spreading 
throughout Europe at that time and since cerebral tuberculosis is accompanied by a 
slowly developing dementia with memory loss, he believed that the plaques were the 
tuberculosis-like Drṻsen (clubs) caused by the Mycobacterium tuberculosis-like Streptothrix. 
In fact, such infecting bacteria are carried to the medial temporal lobe via the middle cer-
ebral artery, where they directly target the hippocampal memory-encoding machinery, 
like AD’s endogenous toxic AβOs (Aβ oligomers) discussed below [3]. Once the 
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Abstract: The enormous, 2–3-million-year evolutionary expansion of hominin neocortices to the cur-
rent enormity enabled humans to take over the planet. However, there appears to have been a glitch, 
and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the 
hippocampal memory-encoding system needed to manage the processing of the increasing volume 
of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unno-
ticed by the early short-lived populations. It has now surfaced as Alzheimer’s disease (AD) in to-
day’s long-lived populations. With advancing age, processing of the converging neocortical data by 
the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high 
energy costs on these cells. This may result in their hyper-release of harmless Aβ1–42 monomers into 
the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate 
AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electro-
static binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces 
hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from 
ground zero is supported by Aβ’s own production mediated by target cells’ Ca2+-sensing receptors 
(CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-
interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting thera-
peutic combination. 

Keywords: Alzheimer’s disease; evolution; hippocampal memory; entorhinal cortex; neocortex 
 

1. Introduction 
As the World population rose to 8 billion, there has been an increasing number of the 

super-aged with a disease we suspect has resulted from an evolutionary glitch resulting 
from the disproportionately immense neocortical expansion. It was Alois Alzheimer in 
1901, while examining a behaviorally disturbed fairly young 51-year-old woman, who 
discovered that she had what we now know as the rare pre-senile or early onset version 
of this disease. After her death in 1906, he found that her brain was riddled with the now 
hallmark plaques and tangles. Then, it was Emil Kraepelin who, believing this to be a new 
disease, called it Alzheimer’s disease (AD) (Compendium der Psychiatrie, 1910) [1,2]. 

However, Alzheimer’s discovery was not as original as Kraepelin believed it to be. 
In fact, it was Oskar Fischer (1876–1942) who first saw the plaques (though not the tangles) 
in the brains of older senile patients with dementia [3]. Since tuberculosis was spreading 
throughout Europe at that time and since cerebral tuberculosis is accompanied by a 
slowly developing dementia with memory loss, he believed that the plaques were the 
tuberculosis-like Drṻsen (clubs) caused by the Mycobacterium tuberculosis-like Streptothrix. 
In fact, such infecting bacteria are carried to the medial temporal lobe via the middle cer-
ebral artery, where they directly target the hippocampal memory-encoding machinery, 
like AD’s endogenous toxic AβOs (Aβ oligomers) discussed below [3]. Once the 
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