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Abstract: Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated
with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to
attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection
fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF.
Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial
function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were
randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and
HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation
started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals,
cardiac function was assessed by echocardiography at baseline and throughout the experiment. At
the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected
for assessment of mitochondrial function and for histological and molecular analyses. Leucine
had already improved diastolic function after 4 weeks of treatment. This was accompanied by
improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and
hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration
of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression
and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data
show that leucine supplementation improves diastolic function and decreases remodeling processes
in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-β1/Collagenase
downregulation and indicate a potential use in the treatment of HFpEF.

Keywords: ZSF1 rat; HFpEF; leucine; diastolic dysfunction; HDAC4

1. Introduction

Heart failure (HF) is a worldwide burden that affects around 26 million individuals.
Approximately half of all HF patients present with a preserved left ventricular ejection
fraction (HFpEF; LVEF greater than 50%), and the prevalence is increasing (around 10% per
decade) due to an aging population and an increase in other risk factors such as diabetes
mellitus, arterial hypertension, and sedentary lifestyle [1,2].

The HFpEF phenotype is characterized by diastolic dysfunction due to impaired left
ventricular (LV) relaxation and/or increased LV stiffness; in other words, the heart loses its
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ability to appropriately store blood during diastole [3]. The condition is accompanied by
cellular and structural cardiac alterations such as cardiomyocyte hypertrophy, inflamma-
tion, and fibrosis, which ultimately contribute to decreased relaxation of the left ventricle
despite the intrinsic contractile capacity of the heart remaining within the normal range [3].

Thus far, most efforts to reduce morbidity and mortality in HFpEF have failed. Only
the recently published EMPEROR-trail, which used Empagliflozin [4], a Sodium-Glucose-
Transporter 2 inhibitor, and exercise training [5,6], showed beneficial results for HFpEF.

Another promising therapy for HF includes nutritional intervention by leucine sup-
plementation. Amino acids provide approximately 30% of the energy that sustains the
contractile function and are used for the maintenance of ionic homeostasis in the heart [7,8].
This may be related to recent findings of leucine supplementation improving mitochondrial
fusion, function, and respiration, as well as ATP production during HF [9,10]. Leucine has
also been demonstrated to lower arrhythmia [11] and myocardial damage [12]. Interestingly,
lower L-leucine levels predict increased cardiovascular death in HFpEF, and the authors
proposed that supplementary leucine could be used as an additional treatment in HF-
pEF [13]. Furthermore, leucine supplementation inhibited doxorubicin-induced ventricular
dilatation, increased collagen fiber content, and pathological cardiac remodeling [12].

HDACs are an enzyme family that removes N-acetyl lysine from histone and non-
histone proteins. Class II HDACs (HDAC4, HDAC5, HDAC7, and HDAC9) are highly
expressed in the heart [14,15]. Recently, it was demonstrated that activation of HDAC4 in-
creased cardiac dysfunction by inducing cardiac hypertrophy and fibrosis [16]. Additionally,
the same authors demonstrated that, in myocardial infarction, overexpression of HDAC4
exacerbated cardiac dysfunction and augmented cardiac remodeling and fibrosis [17].

Furthermore, we recently demonstrated for the first time that leucine supplementa-
tion significantly reduces HDAC4 expression and positive nuclear localization induced
by hindlimb immobilization [18]. These findings imply that HDAC4 inhibition may be
involved in leucine’s anti-atrophic effect.

Despite these encouraging results, the mechanisms by which leucine supplementation
protects the myocardium remain unclear. Thus, the purpose of this study was to investigate
the impact of leucine supplementation on myocardial function in an established HFpEF rat
model. Furthermore, we assessed leucine’s effect on important key signaling pathways that
control myocardial function, examined mitochondrial respiratory capacity, stress, anabolic,
catabolic, and fibrotic markers, as well as HDAC4 protein expression and tissue localization.

2. Materials and Methods
2.1. Study Design

In total, 34 female ZSF1 rats (Charles River Laboratories, Wilmington, MA, USA)
were used in this study, taking into account that HFpEF is predominantly reported in the
female phenotype. Obese rats carrying two leptin receptor mutations (fa: facp) develop
HFpEF. Single or no mutation leads to a healthy, lean phenotype [19]. The animals were
randomized into three groups: Control (n = 10, untreated lean rats receiving standard chow
throughout the experiment); HFpEF (n = 12, untreated obese rats receiving standard chow
throughout the experiment), and HFpEF_Leu (n = 12, obese rats receiving standard chow
enriched with 3% leucine) (Figure 1). All animals were housed under regular conditions
including controlled temperature (24 ± 1 ◦C, 12-h light-dark cycle), and food and water
provided ad libitum.
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Figure 1. Study design. A total number of 34 ZSF1 female rats was included. At the age of 20 weeks,
echocardiography was performed to confirm the development of HFpEF in the ZSF1 obese animals.
Thereafter, the ZSF1-obese animals were randomized either into a placebo group (HFpEF n = 12,
standard chow) or a treatment group (HFpEF_Leu n = 12, standard chow enriched with 3% leucine).
ZSF1-lean animals served as a healthy control group receiving standard chow (Control, n = 10).
Follow-up and final echocardiography were performed at the age of 24 and 32 weeks, respectively.
Left ventricular hemodynamics were measured prior to organ harvest. The myocardium and other
organs were collected for histological and molecular analyses. E = echocardiography.

Leucine supplementation started at 20 weeks of age, after HFpEF was established in
obese animals [19–22], and the dose was adapted from previous studies [11,12]. Echocar-
diography was performed at 20, 24, and 32 weeks of age. All animals underwent invasive
left ventricular and aortic hemodynamic measurement at the age of 32 weeks prior to organ
harvest (Figure 1).

This study was approved by the local animal research council, TU Dresden, and the
Landesbehörde Sachsen (TVV 26/2022).

2.2. NT-proBNP

Blood serum was separated by centrifugation, and NT-proBNP levels were measured
using RatNT-proBNP ELISA (Biomedica Immunoassays, Vienna, Austria) according to the
manufacturer’s protocol.

2.3. Echocardiography

Rats were anesthetized with isoflurane (1.5–2%) and placed on a controlled warming
pad with electrodes that continuously recorded breathing frequency, heart rate, and body
temperature. Transthoracic echocardiography was performed using a Vevo 3100 system
and a 21-MHz transducer (FUJIFILM VisualSonics Inc., Amsterdam, Netherlands) to assess
cardiac function as recently described [19–22]. For systolic function, B- and M-mode of the
parasternal long and short axis were measured. LV wall thickness and cavity diameters
were measured in short axis view, both in end-diastole and end-systole, with the M-mode
cursor perpendicular to the LV anterior and posterior walls at the level of the papillary
muscles. LV structural parameters measured from the short axis view in B-mode were
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used in the calculation of LVEF. Left ventricle mass was calculated in mg using the formula
1.053 × ((LVID;d + LVPW;d + IVS;d)3 − LVID;d3) and corrected by the factor 0.8.

Diastolic function was assessed in the apical 4-chamber view using pulse wave
Doppler (for measurement of early (E) and atrial (A) waves of the mitral valve veloc-
ity) and tissue Doppler (for measurement of myocardial velocity (é and á)) at the level of
the basal septal segment in the septal wall of the left ventricle.

Functional parameters (i.e., LV ejection fraction (LVEF) and stroke volume (SV)) and
ratios of E/é and E/A) were computed by the Vevo LAB 3.1.1 software.

2.4. Invasive Hemodynamics

Prior to organ harvest, invasive hemodynamic measurements were performed as re-
cently described [19]. In anesthetized (i.p. injection of ketamine (105 mg/kg) and xylazine
(7 mg/kg)) but spontaneously breathing rats, the right carotid artery was cannulated with
a Rat PV catheter (SPR-838, ADInstruments Ltd, Oxford, UK) which was gently placed
in the middle of the left ventricle. Pressure-volume loops were recorded under baseline
conditions and during transient occlusion of the inferior vena cava by external compression
of the vessel to obtain load-independent indexes of contractility and chamber stiffness. The
obtained end-systolic and end-diastolic pressure–volume relationships (ESPVR, EDPVR)
were fitted to linear and exponential functions, respectively, with the slope Ees indicating
contractility and the chamber stiffness constant β displaying the grade of diastolic compli-
ance. To take account of potentially different heart sizes, the left ventricular wall volume
(Vw) was used as a normalization factor (β * Vw = βw). Data were recorded and analyzed
with LabChart 8 software (ADInstruments Ltd., Oxford, UK).

2.5. Left Ventricular Mitochondrial Respiration

The respiratory parameters of the total mitochondrial population were studied in
saponin-skinned fibers of myocardial tissue. Respiratory rates were determined by using a
Clark electrode (Strathkelvin Instruments, Motherwell, UK) in an oxygraphic cell at 25 ◦C
with continuous stirring. To avoid oxygen diffusion limitation, the oxygen concentration
was increased to ~400 µmol/L by adding pure oxygen and was kept above 270 µmol/L
throughout the experiment. Left ventricular muscle fibers were isolated in permeabiliza-
tion solution (SolP) containing, in mmol/L: 2.77 CaK2EGTA, 7.23 K2EGTA, 6.56 MgCl2,
5.7 Na2ATP, 15 phosphocreatin (PCr), 20 taurine, 0.5 DTT, 50 K methane sulfonate, and
20 imidazole (pH 7.1) and incubated for 30 min in SolP with 50 µg/mL saponin. Per-
meabilized fibers were transferred to respiration solution (SolR) (in mmol/L: 20 taurine,
20 HEPES, 10 KH2PO4, 0.5 EGTA, 3 MgCl2, 0.11 sucrose, and 60 K-lactobionate (pH 7.4))
for 10 min to wash out adenine nucleotides and PCr. All steps were carried out at 4 ◦C
under continuous stirring. Respiration rates of 1–5 mg of skinned fibers were measured
at 25 ◦C in 1 mL of SolR containing 1 mg/mL bovine serum albumin. The following
substrates were added sequentially and oxygen consumption was monitored: (I) glutamate
(10 mmol/L), malate (2.0 mmol/L), (complex I state 2 respiration); (II) adenosine diphos-
phate (5.0 mmol/L; measure of complex I oxidative phosphorylation); (III) octanoylcarni-
tine (0.2 mmol/L; measure complex I activated by fatty acid oxidation); (IV) cytochrome C
(10 µmol/L; test for membrane integrity); (V) succinate (10 mmol/L; oxidative phosphory-
lation of complex I + II); (VI) rotenone (0.5 mmol/L; oxidative phosphorylation of complex
II); (VII) FCCP (0.5 µmol/L, maximal uncoupled complex II respiration); (VIII) antimycin
A (2.5 µmol/L, complex III inhibitor). After the experiment, fiber bundles were blotted
dry and weighed. Rates of respiration are given in nanomoles O2 per second per mg
wet weight.
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2.6. Enzymes Activity

Left ventricular tissue was homogenized in Relax buffer (90 mmol/L HEPES,
126 mmol/L potassium chloride, 36 mmol/L sodium chloride, 1 mmol/L magnesium
chloride, 50 mmol/L EGTA, 8 mmol/L ATP, 10 mmol/L phosphocreatin, pH 7.4) and
aliquots were used for enzyme activity measurements. Enzyme activities for citrate syn-
thase (EC 2.3.3.1), pyruvate kinase (EC 2.7.1.40), and lactate dehydrogenase (EC 1.1.1.27)
were measured spectrophotometrically as recently described [23–27].

2.7. Western Blotting

Snap-frozen left ventricular tissue was homogenized in Relax buffer containing a
protease inhibitor mix (Inhibitor mix M, Serva, Heidelberg, Germany) and sonicated.
Protein concentration was determined (BCA assay, Pierce, Bonn, Germany), and aliquots
(10–40 µg) were separated by SDS-polyacrylamide gel electrophoresis.

Proteins were transferred to a polyvinylidene difluoride membrane. To verify a homo-
geneous loading, membranes were stained with Ponceau S. Next, membranes were blocked
with 5% non-fat dry milk in Tris-buffered saline with Tween (TBS-T, 0.5 M NaCl, 50 mM
Tris-HCl pH 7.4, 0.1% Tween 20) for 1 h at room temperature, followed by overnight incuba-
tion at 4 ◦C with primary antibody. Primary antibodies were as follows: rabbit anti-MAFbx
(1:1000; Abcam, #ab168372), mouse anti-total OXPHOS (1:250; Abcam, # ab110413), rabbit
anti-AKT (1:1000; Proteintech, #10176-2-AP), rabbit anti-AMPKα (1:1000; Cell Signaling,
#2532), rabbit anti-pAMPKα (1:1000; Cell Signaling, #2531), rabbit anti-PKA (1:1000; Cell
Signaling, #4782), rabbit anti-pPKA (1:1000; Sigma, #SAB4503969), mouse anti-MuRF1
(1:250; Santa Cruz, #sc-398608), mouse anti-myogenin (1:250; Santa Cruz, #sc-12732), mouse
anti-eIF2Bδ (1:250; Santa Cruz, #sc 9981), rabbit anti-myostatin (1:1000; Proteintech, #19142-
1-AP), rabbit anti-HDAC4 (1:1000; Cell Signaling, #7628) and rabbit anti-GAPDH (1/30,000;
HyTest Ltd., Turku, Finland). After washing (3 times for 5 min, TBS-T), the membranes
were incubated with a horseradish peroxidase-conjugated secondary antibody, and spe-
cific bands were visualized using enzymatic chemiluminescence (Super Signal West Pico,
Thermo Fisher Scientific Inc., Bonn, Germany). Densitometry analyses were performed
using a 1D scan software package (Bio-1D version 15.08b, Vilber Lourmat, Eberhardzell,
Germany), and the GAPDH signal was used to normalize variations in loading.

2.8. RNA Extraction and Quantitative Real-Time PCR

Total RNA was isolated from LV tissue using Qiazol reagent and the miRNeasy Mini
Kit (Qiagen, Hilden, Germany) following the standard protocols. cDNA was synthesized
with the Revert AID™ H Minus First Strand Synthesis Kit (Thermo Scientific, Braunschweig,
Germany) using oligo-dT primers. Real-time PCR was performed using the CFX384TM
Real-Time PCR System (Bio-Rad Laboratories GmbH, Feldkirchen, Germany) and Maxima
SYBR Green qPCR Kit (Thermo Scientific, Braunschweig, Germany). The PCR program
for all primer sets was as follows: 95 ◦C for 8 min prior to 40 amplification cycles, each
consisting of 95 ◦C for 10 s, 58 ◦C for 15 s, and 72 ◦C for 30 s, with a final extension step
at 72 ◦C for 2 min. Melting point analysis was performed to prove the identity of the
PCR products. Relative quantification of gene expression was calculated using the ∆∆CT
method with Polr2a and Rpl-32 as housekeeping genes using BioRad CFX Maestro 1.1
version 4.1.2433.1219 (Bio-Rad Laboratories GmbH, Feldkirchen, Germany). Specific primer
sequences are listed in Supplementary Table S1.
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2.9. Immunohistochemistry

Heart cryo-sections (10 µm) were fixed at room temperature in 4% PFA (Paraformalde-
hyde) for 10 min, washed (3 times for 5 min) with phosphate-buffered saline (PBS), and
then permeabilized with PBS-T (PBS with 0.1% Triton X-100) for 30 min. Subsequently,
the sections were incubated with blocking solution (DAKO, #X0909) for 1 h at room tem-
perature and incubated at 4 ◦C with primary antibody rabbit anti-HDAC4 (1:100; Cell
Signaling, #7628) in diluent solution (DAKO, #S3022) overnight. Thereafter, slides were
washed with PBS (3 times for 5 min), incubated with the secondary antibody (1:500 Alexa
568 Donkey Anti-Rabbit, Invitrogen, #A10042) in diluent solution for 1 h and subsequently
washed (3 times for 5 min) in PBS. The slides were incubated with DAPI (4′,6-diamidino-2-
phenylindole) for 5 min and mounted with coverslips using Mount Fluor (Protaqs, Potsdam,
Germany). Digital acquisitions and the nuclear colocalization analysis were performed
using microscopy equipment (Echo RVL-100-M Revolve Fluorescence Microscopy). For
cross-sectional area measurements (CSA), the myocardial heart sections were stained with
Collagen IV (#AB756P, Millipore, Darmstadt, Germany), and ImageJ (v. 1.45s, National Insti-
tutes of Health, Bethesda, MD, USA) was used to measure the heart fibers. Approximately
1000 fibers per group were analyzed.

For fibrosis measurements, paraffin-embedded heart sections (3 µm) were stained with
picrosirius red, and perivascular fibrosis around arteries, expressed as perivascular fibrosis
ratio (PFR), was quantified as described by Dai and colleagues [28]. PFR was calculated by
dividing the area of perivascular fibrosis by the area of the vascular wall and averaging it
over all measurable pictures of arteries acquired from a segment.

2.10. Data Analysis

Data analyses were performed using Prism Software (GraphPad Prism 7.0). Multiple
comparisons were performed using either one-way ANOVA followed by Tukey’s posthoc
test (for parametric data) or the Kruskal–Wallis test of one-way ANOVA followed by
Dunn’s post hoc test (for non-parametric data). Data are presented as mean ± SEM, and
p < 0.05 was considered significant.

3. Results
3.1. Impact of Leucine Supplementation on Biometric Features, Myocardial Function
and Hemodynamics

Table 1 shows the overall data of biometric features, echocardiography, and hemody-
namic measurements. At 32 weeks, both HFpEF groups presented higher body, heart, and
kidney weight compared to the lean control. The lung wet weight was significantly higher
(a sign of congestion) in HFpEF but not HFpEF_Leu, as were plasma levels of NT-proBNP.
The lactate serum levels were increased in both HFpEF groups compared to the control
(Table 1).

Indicators of myocardial hypertrophy LV mass and septum thickness were decreased
in HFpEF_Leu compared to HFpEF (Table 1). Left ventricular anterior and posterior wall
thickness, as well as the inner diameter, were increased in both HFpEF groups compared to
the control group (Table 1).

Systolic function was preserved in all groups at all times, as indicated by the similar
ejection fraction (Table 1). Systolic blood pressure (LVESP) was increased in both HF-
pEF groups, but diastolic blood pressure (LVEDP), which was enhanced in HFpEF, was
normalized by leucine supplementation.

Diastolic function was significantly improved after four weeks of leucine supplemen-
tation (E/é: 11% reduction vs. HFpEF) and normalized after 12 weeks of treatment (E/é:
20% reduction vs. HFpEF) (Table 1 and Figure 2). LV stiffness was significantly decreased
in HFpEF_Leu compared to HFpEF (Table 1).
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Table 1. ZSF1 rat features at 32 weeks of age.

Biometric Feature

Parameter Control (n = 10) HFpEF (n = 12) HFpEF_Leu (n = 12)

Body Weight (g) 259.6 ± 2.81 522.5 ± 11.85 *** 485.8 ± 5.47 ***##

Tibia Length (TL, mm) 35.31 ± 0.07 35.50 ± 0.08 35.38 ± 0.17
Heart Weight/TL (mg/mm) 26.52 ± 0.35 37.78 ± 0.74 *** 37.68 ± 1.03 ***
Lung Wet Weight/TL (mg/mm) 11.07 ± 0.21 12.63 ± 0.28 ** 11.88 ± 0.29
Kidney Weight/TL (mg/mm) 27.71 ± 0.75 45.50 ± 1.49 *** 46.75 ± 1.38 ***

Serum and blood parameter
Lactate 1.36 ± 0.10 2.67 ± 0.17 *** 2.55 ± 0.13 ***
Serum NT-proBNP (pg/mL) 89.88 ± 8.02 203 ± 25.11 ** 108.9 ± 26.2 #

Echocardiography
LV mass (mg) 818.6 ± 38.32 1274 ± 50.95 *** 1110 ± 37.05 ***#

LVEF (%) 69.02 ± 1.40 67.87 ± 0.97 71.06 ± 0.96
LVFS (%) 24.19 ± 0.16 25.01 ± 0.36 23.95 ± 0.21 #

LVSV (µL) 290.1 ± 12.41 424.4 ± 21.3 *** 393.6 ± 12.56 ***
LVEDV (µL) 419.4 ± 13.06 627.3 ± 34.38 *** 554.7 ± 18.48 **
E/é 17.59 ± 0.74 24.62 ± 0.25 *** 19.69 ± 1.04 ###

E/A 1.15 ± 0.02 1.14 ± 0.02 1.41 ± 0.13
LVAW; d (mm) 1.70 ± 0.03 2.12 ± 0.03 *** 2.17 ± 0.09 ***
LVPW; d (mm) 1.52 ± 0.04 2.01 ± 0.06 *** 2.08 ± 0.10 ***
LVID; d (mm) 6.79 ± 0.09 7.73 ± 0.19 ** 7.97 ± 0.18 ***
Septum; d (mm) 1.67 ± 0.05 2.25 ± 0.04 *** 1.94 ± 0.05 **###

Invasive Hemodynamics
LVEDP (mmHg) 5.18 ± 0.56 10.54 ± 1.81 * 6.55 ± 1.19 #

LVESP (mmHg) 100.3 ± 4.88 158.4 ± 6.06 *** 154 ± 5.68 ***
MAP in asc. Aorta (mmHg) 80.13 ± 3.09 107.3 ± 3.50 *** 110.6 ± 3.30 ***
LVEDV(µL) 379 ± 14.48 516 ± 33.30 ** 462.8 ± 29.79
LVESV (µL) 164.2 ± 13.22 239.4 ± 21.29 * 189.6 ± 15.07
SW (mmHg x µL) 24,480 ± 1654 47,800 ± 2887 *** 47,933 ± 2974 ***
PVA (mmHg x µL) 97,767 ± 14,838 105,725 ± 16,540 97,767 ± 14,838
dV/dt max (µL/s) 5474 ± 447.7 5049 ± 524.4 5388 ± 791.8
dV/dt min (µL/s) −5228 ± 430.5 −5551 ± 505.1 −6486 ± 551.3
Tau (ms) 19 ± 0.66 17.8 ± 0.55 18.37 ± 0.58
Slope LV-Ees (mmHg/µL) 0.17 ± 0.03 0.33 ± 0.07 0.36 ± 0.09
LV-stiffness constant βw 0.29 ± 0.08 0.74 ± 0.13 * 0.43 ± 0.07 #

LV: left ventricle; NT-proBNP: N-terminal brain natriuretic peptide; LVEF: left ventricular ejection fraction; LVFS:
left ventricular fractional shortening; LVSV: left ventricular stroke volume; LVEDV: left ventricular end-diastolic
volume; LVAW;d: end diastolic left ventricular anterior wall thickness; LVPW;d: end diastolic left ventricular
posterior wall thickness; LVID;d: end diastolic left ventricular inner diameter; LVEDP: left ventricular end diastolic
pressure; LVESP: left ventricular end systolic pressure; MAP: mean arterial pressure; LVEDV: left ventricular
end diastolic volume; LVESV: left ventricular end systolic volume; SW: stroke work; PVA: pressure-volume area;
slope LV-Ees: left ventricular end-systolic elastance. * p < 0.05, ** p < 0.005, *** p < 0.001 vs. Control and # p < 0.05,
## p < 0.005, ### p < 0.001 vs. HFpEF.

3.2. Impact of Leucine Supplementation on Myocardial Fibrosis and Fiber Size

Given that the hemodynamics assay revealed a decrease in LV stiffness in HFpEF_Leu
compared to HFpEF, we proceeded to histology analysis. Perivascular fibrosis was compa-
rable between all groups, as shown in Figure 3B.
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E/é 17.59 ± 0.74 24.62 ± 0.25 *** 19.69 ± 1.04 ### 

E/A 1.15 ± 0.02 1.14 ± 0.02 1.41 ± 0.13 

LVAW; d (mm) 1.70 ± 0.03 2.12 ± 0.03 *** 2.17 ± 0.09 *** 

LVPW; d (mm) 1.52 ± 0.04 2.01 ± 0.06 *** 2.08 ± 0.10 *** 

LVID; d (mm) 6.79 ± 0.09 7.73 ± 0.19 ** 7.97 ± 0.18 *** 

Septum; d (mm) 1.67 ± 0.05 2.25 ± 0.04 *** 1.94 ± 0.05 **### 

Invasive Hemodynamics 

LVEDP (mmHg) 5.18 ± 0.56 10.54 ± 1.81 * 6.55 ± 1.19 # 

LVESP (mmHg) 100.3 ± 4.88 158.4 ± 6.06 *** 154 ± 5.68 *** 

MAP in asc. Aorta (mmHg) 80.13 ± 3.09 107.3 ± 3.50 *** 110.6 ± 3.30 *** 

LVEDV(µL) 379 ± 14.48 516 ± 33.30 ** 462.8 ± 29.79 

LVESV (µL) 164.2 ± 13.22 239.4 ± 21.29 * 189.6 ± 15.07 

SW (mmHg x µL) 24,480 ± 1654 47,800 ± 2887 *** 47,933 ± 2974 *** 

PVA (mmHg x µL) 97,767 ± 14,838 105,725 ± 16540 97,767 ± 14,838 

dV/dt max (µL/s) 5474 ± 447.7 5049 ± 524.4 5388 ± 791.8 

dV/dt min (µL/s) −5228 ± 430.5 −5551 ± 505.1 −6486 ± 551.3 

Tau (ms) 19 ± 0.66 17.8 ± 0.55 18.37 ± 0.58 

Slope LV-Ees (mmHg/µL) 0.17 ± 0.03 0.33 ± 0.07 0.36 ± 0.09 

LV-stiffness constant βw 0.29 ± 0.08 0.74 ± 0.13* 0.43 ± 0.07# 

LV: left ventricle; NT-proBNP: N-terminal brain natriuretic peptide; LVEF: left ventricular ejection 

fraction; LVFS: left ventricular fractional shortening; LVSV: left ventricular stroke volume; LVEDV: 

left ventricular end-diastolic volume; LVAW;d: end diastolic left ventricular anterior wall thickness; 

LVPW;d: end diastolic left ventricular posterior wall thickness; LVID;d: end diastolic left ventricular 

inner diameter; LVEDP: left ventricular end diastolic pressure; LVESP: left ventricular end systolic 

pressure; MAP: mean arterial pressure; LVEDV: left ventricular end diastolic volume; LVESV: left 

ventricular end systolic volume; SW: stroke work; PVA: pressure-volume area; slope LV-Ees: left 

ventricular end-systolic elastance. * p < 0.05, ** p < 0.005, *** p < 0.001 vs. Control and # p < 0.05, ## p < 
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Figure 2. Time course of diastolic function showing a decreased E/é ratio after 4 and 12 weeks of
leucine supplementation. *** p < 0.001 vs. Control and ## p < 0.005 and ### p < 0.001 vs. HFpEF.
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Figure 3. Impact of leucine supplementation on myocardial fibrosis and fiber size. Representative
picrosirius staining photomicrographs in LV (A). Perivascular fibrosis was comparable between
all groups (B). Fiber cross-sectional areas were significantly increased in HFpEF and reduced in
HFpEF_Leu (C). The fiber CSA distribution of control, HFpEF, and HFpEF_Leu indicated a high
frequency of large fibers in HFpEF, while HFpEF_Leu fiber size is comparable to the control (D).
* p < 0.05 and ** p < 0.005.
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In addition, we assessed the LV fiber cross-sectional area and found a significant
increase in HFpEF when compared to the control, which was reduced by leucine sup-
plementation (Figure 3C), confirming the decrease in septum thickness observed in the
hemodynamics assay. These findings are supported by fiber CSA distribution, which shows
a high frequency of large fibers in untreated HFpEF, while HFpEF_Leu fiber size is in line
with the control (Figure 3D).

3.3. Impact of Leucine Supplementation on Myocardial Stress and Fibrosis

Compared to the control, the expression of ANP mRNA was upregulated in HFpEF
and tendentially reduced in HFpEF_Leu (p = 0.098, Figure 4A). BNP mRNA levels were
upregulated in both HFpEF groups (Figure 4B). The expressions of Nox2 were comparable
between all groups (Figure 4C).

Transforming Growth Factor Beta 1 (TGF-β1) expression levels were tendentially in-
creased in HFpEF (p = 0.077) but back to the control in the leucine-treated group (Figure 4D).
Expression of Collagen Type I a1 (Col1a1, Figure 4E) and Collagen Type III a1 mRNA
(Col3a1, Figure 4F) were increased in HFpEF and significantly reduced in HFpEF_Leu.

Accordingly, the expression of lysyl oxidase (LOX), a key mediator of collagen matura-
tion, was tendentially decreased in HFpEF_Leu compared to untreated HFpEF (p = 0.061)
(Figure 4G).

3.4. Impact of Leucine Supplementation on Mitochondrial Respiratory Function

The sequential addition of complex I and II substrates/inhibitors enabled complex-
and substrate-specific monitoring of oxygen consumption (Figure 5).

Basal respiration (only substrate and no ADP added, state 2) did not differ between all
three groups (Control: 0.066 ± 0.004 nmol/s/mg, HFpEF: 0.057 ± 0.004 nmol/s/mg and
HFpEF_Leu: 0.051 ± 0.004 nmol/s/mg, n.s., Figure 5A). Measurement of complex I state 3
(glutamate/malate) showed a significantly decreased respiration rate in HFpEF compared
to the control (Control: 0.163 ± 0.009 nmol/s/mg, HFpEF: 0.123 ± 0.003 nmol/s/mg
and HFpEF_Leu: 0.154 ± 0.017 nmol/s/mg, ** p < 0.005 vs. Control, Figure 5B); like-
wise, the same effect was observed following the addition of octanoyl-carnitine (Control:
0.165 ± 0.011 nmol/s/mg, HFpEF: 0.127 ± 0.006 nmol/s/mg and HFpEF_Leu:
0.156 ± 0.019 nmol/s/mg, * p < 0.05 vs. Control, Figure 5C).

Subsequent addition of succinate and rotenone (state 3 of complex II, Figure 5D)
resulted in decreased oxygen consumption in HFpEF compared to the control. Leucine nor-
malized oxygen consumption (Control: 0.132 ± 0.007 nmol/s/mg, ** HFpEF:
0.101 ± 0.004 nmol/s/mg vs. Control and * HFpEF_Leu: 0.126 ± 0.009 nmol/s/mg
vs. HFpEF).

Respiratory control ratio (RCR) was increased in HFpEF_Leu compared to HFpEF
(Control: 2.29 ± 0.12 nmol/s/mg, HFpEF: 2.08 ± 0.13 nmol/s/mg and HFpEF_Leu:
2.94 ± 0.21 nmol/s/mg, * p < 0.05 vs. HFpEF, Figure 5E). These findings suggest improved
cardiac mitochondrial respiratory performance in HFpEF after leucine supplementation.

3.5. Impact of Leucine Supplementation on Protein Expression of Mitochondrial Complexes

In order to analyze whether the improved mitochondrial respiratory function in
HFpEF_Leu was due to an altered mitochondrial complex amount, we analyzed the protein
expression of complex I-V (Figure 6).
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Figure 4. Impact of leucine supplementation on left ventricular stress and fibrosis. mRNA levels
of atrial natriuretic peptide (ANP), (A) were significantly increased in HFpEF. Expression of brain
natriuretic peptide (BNP), (B) was increased in both HFpEF groups compared to the control. mRNA
levels of NOX2 (C) were comparable between all groups. TGF-β1 (D) expression was reduced in
HFpEF_Leu compared to HFpEF. Collagenase 1 (Col1a1), (E) and Collagenase 3 (Col3a1), (F) expres-
sion levels were increased in HFpEF and decreased in HFpEF_Leu. LOX expression (G) was not
significantly altered between all groups. * p < 0.05, ** p < 0.005 and *** p < 0.001.
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Figure 5. Effect of leucine supplementation on mitochondrial respiratory function. Basal respira-
tory state 2 (A) was similar between all groups. Stimulation of complex I with glutamate/malate
(Glut/Mal), (B) and with octanoyl-carnitine (Glut-Mal-Octa), (C) resulted in a significant decrease in
oxygen consumption in HFpEF. Following, stimulation of complex II with succinate (D) revealed
a significant decrease in oxygen consumption in HFpEF, while leucine treatment normalized it.
The respiratory control ratio was increased in HFpEF_Leu compared to HFpEF (E). * p < 0.05 and
** p < 0.005.
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Figure 6. Effect of leucine supplementation on cardiac mitochondrial complex protein expression
of HFpEF animals. Protein levels of complex I (A), II (B), III (C), IV (D), and V (E) were unaltered
between all groups. A representative Western blot is depicted (F).

As shown in Figure 6, there were no significant differences in protein expression of
mitochondrial complexes between all groups.

3.6. Impact of Leucine Supplementation on Myocardial Metabolism

Specific marker enzymes were analyzed in left ventricular tissue to gain insight into
whether leucine supplementation changed metabolic pathways (Table 2).
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Table 2. Effect of leucine supplementation on specific enzyme activities in HFpEF animals.

Enzyme Control (n = 10) HFpEF (n = 12) HFpEF_Leu (n = 12)

Citrate synthase (CS;
mU/mg) 254.2 ± 4.28 252.7 ± 6.56 260.1 ± 8.76

Lactate dehydrogenase
(LDH; mU/mg) 877.9 ± 23.81 792.5 ± 19.18 * 890.8 ± 27.97 #

Pyruvate kinase (PK;
mU/mg) 35.77 ± 0.95 32.26 ± 0.67 * 31.54 ± 1.20 *

* p < 0.05 vs. Control and # p < 0.05 vs. HFpEF.

The activities of citrate synthase were comparable between all groups. Lactate dehy-
drogenase was decreased in HFpEF compared to control. Pyruvate kinase was decreased
in both HFpEF groups compared to the control.

3.7. Impact of Leucine Supplementation on Catabolic and Anabolic Markers

It has been described that leucine supplementation promotes protein synthesis in the
skeletal muscle by increasing mTOR signaling while simultaneously inhibiting protein
degradation (by E3 ligases inhibition/MAFbx and MuRF1) [18,29,30]. Therefore, the main
catabolic and anabolic signaling indicators were measured in the left ventricle of all three
groups (Figure 7).

Regarding the catabolic pathway, myogenin, a transcription factor of MAFbx and
MuRF1, was downregulated in both HFpEF groups (Figure 7A). The expression of myo-
statin, an alternative upstream inducer of MAFbx and MuRF1, showed no differences
between the groups (Figure 7B). In addition, neither MAFbx nor MuRF1 expression was
altered between the groups (Figure 7C and D, respectively).

Concerning the anabolic pathway, we analyzed the expression of one upstream marker
(AKT, Figure 7E) and one downstream marker (eIF2Bδ, Figure 7F) of mTOR. AKT and
eIF2Bδ expression were decreased in HFpEF compared to the control and even lower in
HFpEF_Leu compared to both the control and HFpEF groups.

3.8. Impact of Leucine Supplementation on HDAC4 Modulation

Looking for the underlying mechanisms of the beneficial effect on diastolic function
mediated by leucine supplementation, HDAC4, a protein highly expressed in the heart and
involved in cardiac dysfunction [16,17,31], was investigated.

HDAC4 is inactivated by phosphorylation, and two important kinases mediating
the inactivation of HDAC4 are AMPKα and PKA (Figure 8A and B, respectively). While
overall PKA expression was comparable between all groups, we observed phosphorylated
PKA upregulation in HFpEF_Leu (Figure 8B). HDAC4 protein expression was upregu-
lated in HFpEF and normalized in HFpEF_Leu (Figure 8C). These results suggest that
HDAC4 is responsive to leucine, and PKA-HDAC4 signaling might mediate improved
diastolic function.
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Figure 7. Impact of leucine supplementation on the left ventricular protein turnover. Protein levels
of myogenin (A) were decreased in both HFpEF and HFpEF_Leu. Myostatin (B), MAFbx (C), and
MuRF1 (D) were unaltered between all groups. Protein levels of AKT (E) and eIF2Bδ (F) were
decreased in both HFpEF and HFpEF_Leu. Representative Western blots are depicted (G). * p < 0.05
and *** p < 0.001.
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Figure 8. Effect of leucine supplementation on HDAC4 expression and upstream kinases. Protein
levels of 5’ AMP-activated protein kinase alfa (AMPKα), (A) were unaltered between groups. Pro-
tein kinase A (PKA) (B) protein levels were increased in HFpEF_Leu, while histone deacetylase 4
(HDAC4) (C) was decreased in the same group. Representative bands are depicted (D). * p < 0.05 and
** p < 0.005.

HDAC4 inactivation is accompanied by nuclear exportation, which reduces its action
on target genes. Histological analysis of HDAC4 distribution in left ventricular tissue
revealed a significantly increased number of HDAC4-positive nuclei in HFpEF that were
reduced by leucine supplementation (Figure 9B), strengthening the impression that HDAC4
might be involved in the observed beneficial effects.
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Figure 9. Effect of leucine supplementation on HDAC4 positive nuclei. (A) Representative im-
munofluorescence photomicrographs of HDAC4 in left ventricular tissue, HDAC4 (red), DAPI (blue,
used for nuclei identification), and colocalization (merged, pink). (B) Percentage of HDAC4 posi-
tive nuclei per total nuclei (approximately 300 nuclei per animal were counted) (n = 6 per group).
** p < 0.005 and *** p < 0.001.

4. Discussion

The present study demonstrates that leucine supplementation improves diastolic
function in a rat model of HFpEF. This was accompanied by reduced left ventricular
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stiffness, fibrosis, and hypertrophy (Figure 10). As potentially underlying mechanisms of
the observed beneficial effects, leucine improved cardiac mitochondrial respiratory function
and suppressed cardiac HDAC4 activation (Figure 10).
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Figure 10. A summary of the beneficial impacts of leucine supplementation on the pathophysiology
of HFpEF—mode of action and possible underlying mechanisms in the myocardium.

Treatment of HFpEF remains challenging. Apart from SGLT2i [4] and exercise train-
ing [5,6], most efforts to improve morbidity and mortality in HFpEF have failed so far
(for review, see [32]). In this context, we propose an important approach for leucine sup-



Cells 2023, 12, 2561 18 of 24

plementation in order to analyze whether a nutritional strategy might be beneficial for
treating HFpEF.

It is important to highlight that leucine supplementation improved diastolic function
and was accompanied by reduced cardiac remodeling, indicating that an established HFpEF
responds to the supplementary treatment. Since most patients are diagnosed after the
disease has already developed, these findings encourage the use of leucine as a potential
therapeutic treatment for HFpEF.

In the literature, several benefits of leucine supplementation in HF conditions are docu-
mented, including atherosclerosis development prevention, decreased damage induced by
myocardial ischemia/reperfusion (I/R) injury, and inhibited doxorubicin-induced patho-
logical cardiac remodeling [9–13]. However, underlying molecular mechanisms are not
fully understood.

Tissue remodeling and the presence of fibrosis disrupt the architecture of the my-
ocardium and increase the development of cardiac dysfunction, affecting patients’ clinical
outcomes [33–35]. Thus, addressing fibrotic pathways might help to improve the therapy
of heart failure patients. Impaired passive myocardial relaxation in HFpEF has mainly
been attributed to concentric remodeling and fibrosis [20]. Previously, Fidale et al. reported
a significant impact of leucine supplementation on cardiac remodeling in heart failure
induced by doxorubicin [12]. While extracellular matrix remodeling was increased in the
doxorubicin group, supplementation with leucine prevented it. In line with these findings,
we found that leucine supplementation had significantly beneficial effects on LV remodel-
ing. Improved diastolic function was accompanied by decreased left ventricular stiffness,
which might be related to the downregulation of main markers involved in cardiac fibrosis
(Col1a1, Col3a1, and TGF-β1). Since we found no differences in perivascular fibrosis, we
speculate that the remodeling impact of leucine supplementation and the increased fibrosis
revealed by PCR (Figure 4) may be restricted to the interstitial cardiac tissue, as represented
in the interstitial pictures (Figure 3).

The mechanism underlying leucine’s effect on fibrosis and hypertrophy might likewise
be linked to HDAC4 suppression [16]. TGF-β binds and thereby activates the TGF-β
receptor, which phosphorylates Smad2 and Smad3. These interact with Smad4, which
translocates into the nucleus to induce the expression of fibrotic targeted genes [36,37],
including collagen 1 and 3 [38–40]. The essential role of Smad3 in fibrotic remodeling
has been confirmed by a study using Smad3-null mice. Bujak et al. found that mice with
Smad3 deficiency had reduced fibrotic remodeling after myocardial infarction [41]. HDAC4
has been shown to be involved in several TGF-β/Smad pathway activities in a variety of
cells, including osteoblasts [42], fibroblasts [43], and skeletal muscle [44]. In fact, HDAC4
is required for TGF-β1-induced myofibroblastic differentiation [43]. Interestingly, TGF-β
regulates HDAC4 via TGF-β1- Smad3 signaling [42,45]. Thus, the TGF-β1/Smad3 axis
and HDAC4 might act together in the fibrotic molecular mechanism, which might also be
related to leucine’s antifibrotic effect observed in this study.

Morio and collaborators [10] recently demonstrated that leucine increases mitochon-
drial fusion, size, and volume in the cardiac tissue of high-fat diet-induced obese animals
submitted to ischemia/reperfusion injury. However, the authors did not investigate molec-
ular mechanisms of leucine-induced mitochondrial fusion. In the present study, leucine
supplementation improved cardiac mitochondrial respiration, as the oxygen consumption
of complex II was restored by leucine supplementation. Regarding complex I, the wide
variety of respiratory capacity in the leucine-treated group did not lead to statistical dif-
ferences compared to untreated HFpEF and might reflect the heterogeneous response to
leucine. This result was not accompanied by alterations in the overall cardiac mitochon-
drial respiratory complex amount. However, cardiac levels of HDAC4 were significantly
downregulated by leucine supplementation. HDAC4 has been described as a key protein
promoting myocardial damage [16,17,46–48], and HDAC inhibition has demonstrated
protective effects on mitochondrial homeostasis and performance [47]. Thus, enhanced
mitochondrial respiratory function might have been a result of HDAC4 inhibition. Al-
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though not addressed in the present study, leucine supplementation has been demonstrated
to enhance the mitochondrial energetic status of macrophages by boosting ATP produc-
tion, which might be another manner in which leucine improves mitochondrial cardiac
performance [9].

We also measured specific enzyme activities that are modulated by HFpEF. CS is a
marker for mitochondria content, and no significant differences were observed between
groups, correlating with no changes in mitochondrial respiratory complex protein expres-
sion as determined by Western blot (Figure 6). Concerning LDH activity, we observed a
decrease in HFpEF in untreated animals, which might be attributed to negative feedback
by an increase in blood serum lactate levels (Table 1). In fact, LDH is responsible for the
production of lactate, and several studies have demonstrated its role in maintaining the
metabolic energy balance in HFpEF [49]. Finally, we measured PK activity, which catalyzes
the last step of glycolysis by converting phosphoenolpyruvate into pyruvate, and it is an
important regulator of glycolytic flux in a failing heart. Both HFpEF groups showed lower
levels of PK, indicating a metabolic imbalance in the model, which might be associated
with the accumulation of pyruvate and other glycolytic intermediates commonly observed
in myocardial from patients with heart failure [50].

The main mechanism of action postulated for leucine is a stimulation of the mam-
malian target of rapamycin (mTOR), which is also known as a potent activator of muscle
protein synthesis [51]. In HF patients, a metabolic imbalance between the rates of protein
synthesis (anabolic pathway) and protein degradation (catabolic pathway) has been de-
scribed, with the latter prevailing over anabolic hormones [52]. In fact, when we looked at
cardiac protein levels of key players of the mTOR pathway (AKT and eIF2Bδ), we found
a downregulation in HFpEF, which was not altered by leucine supplementation. This
suggests that the pro-trophic mTOR activation pathway by leucine is not operating in
this model.

Myogenin protein levels were reduced in both HFpEF groups compared to the control.
The mechanisms involved in myogenin reduction during heart failure are not completely
understood. However, our findings support previous work performed in cell culture, where
doxorubicin-induced cardiotoxicity was associated with suppressed myogenin expres-
sion [53]. Although myogenin plays an important role in muscle atrophy, as a transcription
factor of MAFbx and MuRF1, it also acts as a myogenic regulatory factor, assisting the dif-
ferentiation of satellite cells and myotubes formation [54,55]. In response to a muscle injury
and inflammation, myogenic differentiation is part of the muscle regenerative process and
is negatively affected by myogenin reduction, contributing to the progression of muscle
damage [54–56]. In this regard, the current study’s findings of decreased myogenin protein
levels in both HFpEF groups might be associated with the HFpEF muscle inflammatory
burden.

Since HFpEF is a highly clinically relevant disease, it is important to point out how
leucine supplementation has been evaluated as a translational treatment. Leucine supple-
mentation has long been used as a therapeutic option, mostly for skeletal muscle [57–60].
In discussions about the optimal dose response, difficulties in measuring the intended
outcomes and timing of leucine supplementation are among the barriers that have slowed
down its application in the clinical setting [57–61]. On the other hand, leucine supplemen-
tation can be a feasible strategy for treating patients with HFpEF because it is regularly
consumed by individuals to increase muscle mass and improve exercise performance. It
is easily delivered, and no significant adverse effects have been documented when taken
at recommended doses. The International Society of Sports Nutrition recommends that
a healthy adult ingest 1–3 g of leucine evenly distributed every 3–4 h across the day [62].
However, a recent study with older adults indicates that elderly persons may require more
than double the current levels [63].

To put a comparison involving rodents and humans into context, high dosages of
leucine (2.5 g/kg) have traditionally been employed in rodent studies, either by gav-
age or by adding to the food [11,12,64,65]. The dose employed in this study is around
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0.7 g/animal/day, which is equivalent to around 100 g/person/day for a 70 kg human. We
recognize that more study is required to better relate rodent and human contexts, starting
with lowering the leucine curve dose. In fact, studies have demonstrated that low dosages
of leucine may lead to increases in muscle protein synthesis (MPS) comparable to high
doses [66,67]. In older women, for example, 1.5 g of LEU-enriched EAA (essential amino
acids) (0.6 g LEU) produced equivalent increases in MPS as 6 g LEU-enriched EAA (2.4 g
LEU) [66]. Ultimately, as mentioned above, evidence on the leucine optimal dose is unclear
and remains a research challenge, particularly in HF and older patients.

Takata et al. proposed a protocol for testing the efficacy and safety of a BCAA
(branched-chain amino acids) preparation used in combination with cardiac rehabilitation
for patients with chronic heart failure [68]. The authors plan to give the patients a BCAA
cocktail containing 1144 mg of L-valine, 1904 mg of L-leucine, and 952 mg of L-isoleucine,
twice a day and to analyze a series of parameters, including peak VO2, left ventricular
EF in the echocardiogram, muscle strength and absolute values of interleukin-6 (IL-6),
and tumor necrosis factor (TNF-α) [68]. This investigation will be useful in getting a
better understanding of BCAA dosage in humans. However, another study had already
supplemented humans with leucine (5 g/d for three weeks) and discovered that leucine
inhibited macrophage foam-cell formation through mechanisms related to the metabolism
of cholesterol, triglycerides, and energy production [69]. Although recent promising studies
associating BCAA and HF disease are emerging [70,71], further research addressing the
leucine dose-curve and mechanism will be necessary to gain a deeper understanding.

Limitations

Several limitations of this study have to be mentioned. First, the limited number of
experimental animals led to a high distribution regarding several parameters. This partly
resulted in statistical insignificance or only tendencies, although a direction was apparent.
Second, we have not addressed all of the components involved in the various pathways
discussed, such as Smad3 in the panel of fibrotic markers. Further analyses (for example,
using cell culture models on ventricular cardiomyocytes and fibroblasts) will be necessary
to deepen our understanding of underlying pathways regarding the effects of leucine.

5. Conclusions

Our data demonstrate that leucine improves diastolic function in HFpEF. This was
accompanied by reduced remodeling and involved HDAC4/TGF-β1/Collagenases down-
regulation.
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