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Abstract: Modern medicine has allowed for many advances in neurological and neurodegenerative
disease (ND). However, the number of patients suffering from brain diseases is ever increasing
and the treatment of brain diseases remains an issue, as drug efficacy is dramatically reduced due
to the existence of the unique vascular structure, namely the blood–brain barrier (BBB). Several
approaches to enhance drug delivery to the brain have been investigated but many have proven to
be unsuccessful due to limited transport or damage induced in the BBB. Alternative approaches to
enhance molecular delivery to the brain have been revealed in recent studies through the existence of
molecular delivery pathways that regulate the passage of peripheral molecules. In this review, we
present recent advancements of the basic research for these delivery pathways as well as examples of
promising ventures to overcome the molecular hurdles that will enhance therapeutic interventions in
the brain and potentially save the lives of millions of patients.

Keywords: neurodegenerative disease; blood–brain barrier; drug delivery

1. Introduction

The brain is the most crucial organ involved in controlling the physiological and
cognitive functions of the body. Of importance, these physiological functions of the brain are
sophisticated and well maintained through the electrophysiological buffering system that
preserves neuronal function. This system is maintained by the unique vascular structure,
namely the blood–brain barrier (BBB). The BBB selectively allows the entry of molecules
from the peripheral system and protects the brain from any insult from the peripheral
system such as infection, as well as maintaining the microenvironment of the brain [1].
Leakages of vascular factors, such as circulating immune cells and coagulation factors, into
the brain were observed in the brains with neurological disorders indicating the loss of
barrier roles of BBB [2,3]. The entry of circulating factors into the brain parenchyma causes
neuroinflammation and neurodegeneration [1]. Therefore, damage to the BBB is most
often related to the development of neurological disorders such as multiple sclerosis (MS)
or neurodegenerative diseases (ND) such as Alzheimer’s disease (AD) and Parkinson’s
Disease (PD) [4–6]. Thus, the importance of maintaining the BBB integrity is emphasized
to preserve the disease progress. The barrier role of BBB is a hurdle for the delivery of
therapeutics against neurological diseases into the central nervous system (CNS). Only
molecules that are selected by brain endothelial cells can pass through BBB. The fate
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of drug delivery was destined by the transport system on brain endothelial cells. For
example, transferrin receptor delivers transferrin from the blood to the brain through
receptor-mediated transcytosis (RMT) [7]. However, efflux pumps, such as multidrug
resistance protein 1 (MDR1), expressed in brain endothelial cells are able to return the
drug to the blood [8]. So, the delivery of therapeutic agents to the brain presents another
hurdle due to the existence of transporters and/or junctional proteins that are highly
expressed on the brain endothelial cells that line the BBB, dramatically reducing the delivery
of pharmaceutical reagents to the brain. Hence, effectively increasing the delivery of
therapeutic reagents to the brain is one of the most important themes in drug development
for neurological and neurodegenerative diseases [9,10].

Multiple approaches have been implemented to increase the permeability of the drugs,
including manipulating the BBB’s integrity through utilizing chemical insults, modulating
signaling pathways and the modifications of drugs [11]. Some of these approaches have
proven to be successful but the majority demonstrated limited success in increasing drug
delivery while some even show severe side effects including irreversible damage to the BBB
integrity. Issues stem from a lack of understanding of the underlying mechanisms of how
the BBB increases permeability to the peripheral molecules and how one may manipulate
these pathways to enhance the molecular delivery to the brain. In this review, we aim to
present the structure and basic physiology of the BBB, existing approaches to enhancing
BBB permeability, as well as the recent advances in BBB research that can be applied to
increase drug delivery to the central nervous system (CNS). Finally, we are going to suggest
future recommendations that might enable the efficient delivery of molecules to the brain.

2. Structure and Function of the BBB

To reiterate the most important function of the BBB, the system blocks the entry of
unwanted molecules into the brain, thus acting as a gate keeper for the maintenance of
the normal physiology of the brain. To achieve this, the BBB has a unique structure. First,
brain endothelial cells construct the vascular wall to divide the blood luminal side and
brain parenchyma. The gaps between brain endothelial cells are sealed with tight and
adherens junction proteins; these include claudins, occludin and accessory proteins such
as Zonula occludens (ZO) [12,13]. These junctional proteins synergistically increase the
physical resistance of the BBB to block the movement of large molecules across the BBB [13].
Moreover, cellular components, including pericytes and astrocytes, are enclosed in the
vascular wall and can notably enhance the resistance of the BBB [14–16] so that it reaches
mega angstrom levels. Figure 1 below demonstrates the basic structure of the BBB.

Structural changes in the BBB are related to autoimmune diseases such as MS and
microvascular injuries such as strokes [17]. Junctional loss in the BBB is a marker of BBB
disruption [18], which leads to microbleeding. Pericyte loss was observed in brains with
neurological diseases including MS showing BBB disruption [19]. Pericyte loss is related to
BBB damage. Pericyte depletion causes a loss of BBB function, resulting in an increase in
permeability blood factor [20]. In addition, astrocytes that construct the BBB also changed
in brains with MS. The experimental autoimmune encephalomyelitis (EAE) animal model
showed a reduction in astrocyte endfeet in the brain [21].

Brain endothelial cells select the molecules to transport across the BBB. The selection
is regulated by diverse receptors, channels, efflux pumps and transporters expressed on
brain endothelial cells. These transport systems are divided as described below.
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Figure 1. Schematic representation of the basic structure of the BBB, cross-sectionally and cell struc-
ture including astrocytes, pericytes, endothelial cells, TJs and associated neurons. TJs—tight junc-
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weights can cross the barrier through tight junctions, but even in such cases, many small 
molecules are substrates for the drug transporters. To regulate this process, the existence 
of tight junction proteins blocks the entry of molecules through the paracellular pathway 
[24–26]. The process is more prominent in the case of pathological conditions, where mol-
ecules are delivered through the paracellular pathway where the BBB can provide protec-
tion against toxic molecules and peripheral factors such as fibrinogen, immunoglobulin, 
and complements that are known to be immunogenic in the brain [1]. Additionally, in the 
cases of severe pathological conditions, the entry of peripheral molecules that can elicit 
immune responses has been confirmed through several studies. For example, in cases of 
multiple sclerosis, the damage to the paracellular pathway that is mediated by the activa-
tion of immune responses induces the entry of peripheral immune cells, including CD-4 
T cells and macrophages, into the brain [27,28]. The consistent entry of peripheral mole-
cules, such as fibrinogen, exacerbates the damage to the tight junctions [29]. These pro-
cesses are mediated by the activation of matrix metalloproteinases (MMP), which degrade 
the junctional molecules, and secretion of cytokines that result in junction disruption by 
the activation of Rho-GTPase [30,31]. It is also well known that the activation of Rho-
GTPase through cytokine release can disrupt the barrier integrity via the activation of Rho-
GTPase, thereby enhancing the cell-to-cell junction damage [32]. Once the cell-to-cell junc-
tions are disrupted, several mechanisms are implemented to alleviate the damage through 
the reversal of junctional gaps by inducing the formation of cortical actin (e.g., sphingo-
myelin-induced recovery of the cell-to-cell junction). 

Figure 1. Schematic representation of the basic structure of the BBB, cross-sectionally and cell structure
including astrocytes, pericytes, endothelial cells, TJs and associated neurons. TJs—tight junctions.

2.1. The Paracellular Pathway

Traditionally, it has been believed that the molecular passage through the cell-to-cell
junction is not viable due to the existence of the tight junction proteins. Indeed, it is well
known that the BBB does not allow the entry of small molecules that are polar or molecules
that are larger than 500 Da [22,23]. Some molecules that have smaller molecular weights
can cross the barrier through tight junctions, but even in such cases, many small molecules
are substrates for the drug transporters. To regulate this process, the existence of tight
junction proteins blocks the entry of molecules through the paracellular pathway [24–26].
The process is more prominent in the case of pathological conditions, where molecules
are delivered through the paracellular pathway where the BBB can provide protection
against toxic molecules and peripheral factors such as fibrinogen, immunoglobulin, and
complements that are known to be immunogenic in the brain [1]. Additionally, in the cases
of severe pathological conditions, the entry of peripheral molecules that can elicit immune
responses has been confirmed through several studies. For example, in cases of multiple
sclerosis, the damage to the paracellular pathway that is mediated by the activation of
immune responses induces the entry of peripheral immune cells, including CD-4 T cells
and macrophages, into the brain [27,28]. The consistent entry of peripheral molecules,
such as fibrinogen, exacerbates the damage to the tight junctions [29]. These processes
are mediated by the activation of matrix metalloproteinases (MMP), which degrade the
junctional molecules, and secretion of cytokines that result in junction disruption by the
activation of Rho-GTPase [30,31]. It is also well known that the activation of Rho-GTPase
through cytokine release can disrupt the barrier integrity via the activation of Rho-GTPase,
thereby enhancing the cell-to-cell junction damage [32]. Once the cell-to-cell junctions
are disrupted, several mechanisms are implemented to alleviate the damage through the
reversal of junctional gaps by inducing the formation of cortical actin (e.g., sphingomyelin-
induced recovery of the cell-to-cell junction).
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2.2. The Transcellular Pathway

Brain endothelial cells can inhibit the transport of peripheral molecules into the brain.
It is commonly believed that transport is mediated through the blockade of the entry of
molecules by the formation of cell-to-cell junctions. However, recent studies have demon-
strated that these pathways are mediated through the activation of the endo-lysosomal
degradation pathway that selectively recognizes the molecules that can cross the BBB
and molecules that should be degraded before their entry into the brain [33–35]. Con-
ventionally, brain endothelial cells allow the entry of molecules through RMT or through
fluid-phase-dependent molecular pathways [36–38]. For RMT, molecules are internalized
via clathrin-mediated endocytosis (CME) that encompasses 95% of cells [39,40]. Brain
endothelial cells consist of abundant coated pits that are structurally characteristic for the
CME, where examples of RMT include transferrin receptors and insulin receptors [41,42].
For the fluid-phase transport, it has been reported that the caveolae have important roles
in the delivery of molecules across the barrier, where one of the regulators for this system
is known as major-facilitator-superfamily-domain-containing protein 2 (MFSD2A) [33,43].
An experimental example of this factor is the MFSD2A mice that showed suppression of
caveolae pathways and, as a result, reduced uptake of dextran in the brain, indicating a
crucial role of the fluid-phase transporting system for the non-receptor-mediated transport-
ing system [44]. It is still unclear whether caveolae can independently mediate transcytosis
or if they simply deliver molecules to endosomes to mediate further delivery pathways
that require further study.

Molecules that enter the early endosome pathway have been shown to diverge into the
early endosomal trafficking pathway or the late endosome–lysosome degradation pathway,
where non-essential molecules are readily degraded [45]. This is a crucial mechanism
for the RMT system. One of the main uncertainties in this context, however, is how
internalized molecules can be sorted and determined to be transported into the brain. For
example, even with a similar molecular structure, antibodies binding to the transferrin
receptor showed varying capabilities to cross the BBB [46], an indication that specific
molecular structure is a key determinant for the fate of a molecule. Subsequently, this fate
occurring through the endosomal trafficking pathway delivery is determined by sorting
tubules, demonstrating that the interaction with proteins in the cytoplasm may determine
the capability of a molecule to go through transcytosis [34]. Sorting tubules consist of
multiple proteins including sorting nexins with the BAR domain (Bin/Amphiphysin/Rvs
domain) and additional proteins, including Arf6GAP [47–49]. However, the mechanistic
understanding of how this machinery can differentiate the molecules that can cross the
barrier is still elusive. The utilization of sorting tubules in the molecular delivery process
and sorting process has been reported in multiple molecules including cation-dependent
mannose-6-phosphate receptor (CD-MPR) and single-domain llama antibodies (FC5) that
form part of the camelid antibody construct [50,51]. Molecules that have passed the security
check at this point of the process will then pass through the basolateral side of the brain
endothelial cells, going through exocytosis steps. Despite existing knowledge, how this
process is mediated and final secretions from the membrane are under investigation [52,53].
Moreover, the transcytosis mechanism for molecular delivery across the brain endothelial
cells is yet to be elucidated. The foundational information that is still missing for these
delivery systems would be particularly enlightening in the development of technologies
and therapeutic delivery mechanisms to the brain that may be the starting point for future
topics of study in the field of drug delivery to the CNS system.

2.3. Transporters of the BBB

While a wide variety of lipid-soluble molecules can diffuse passively through the
BBB, molecules such as xenobiotics and endogenous metabolites rely on active efflux to
be transported across the BBB into the brain. This process involves the working of efflux
pumps with specific transporters which actively move substrates into the brain. Figure 2
illustrates the various methods of BBB transport. Of importance are the efflux transporters,
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namely the adenosine triphosphate (ATP)-binding cassette (ABC) transporters and solute
carrier (SLC) transporters of the BBB. This review will focus more on ABC transporters,
which consist of a molecular pump on the cellular membrane with two transmembrane
domains and two cytosolic domains, existing at the ATP binding site [54].
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2.3.1. Solute Carriers

SLC transporters, which include facilitative transporters and secondary active trans-
porters, are responsible for the transport of both charged and uncharged molecules. Cur-
rently, there are over 400 members of the SLC transporter family and they are divided
into 66 families [55,56], which regulate the transport of amino acids, neurotransmitters,
inorganic ions, vitamins, organic anions, energy sources and lipids [57]. Large neutral
amino acid transporter 1 (LAT1), also known as SLC7A5, interacts with SLC3A2 to form
CD98. LAT1 is expressed in diverse tissues, including those in the BBB, and it facilitates
the exchange of intracellular amino acids and large neutral amino acids across the cell
membrane. A crucial member of the SLC2A family is known as the glucose transporter
(GLUT). Glucose, an energy source as a substrate for glycolysis, is transported by the
SLC transporters across the plasma membrane. GLUT1, also known as SLC2A1, regulates
glucose uptake into the brain endothelial cells and is widely expressed in these cells as
well as the brain capillaries. Throughout glucose metabolism, some internalized glucose
is utilized for glycolysis and in the brain endothelial cells, while some leak into the brain
parenchyma. Glucose effluxes are therefore controlled by GLUT density in the basolateral
membrane and the gradient of glucose concentration between endothelial cells and brain
parenchyma [58–60] and GLUT1 expression in brain capillary is evidently essential for
brain homeostasis. Veys and colleagues reported that GLUT1 inhibition by endothelial cells
showed impairment of glucose metabolism in vitro and endothelial cell-specific GLUT1
deficiency led to loss of angiogenic properties in the neonatal mouse brain in vivo [61]. In
addition, endothelial cell-specific GLUT1 knock-out in adult mice showed neuronal loss
and neuroinflammation [61]. Moreover, the expression of glucose transporter (GLUT1)
and transferrin receptor (TrfR) expressed on the brain endothelial cells can allow entry of
peripheral nutrients into the brain. In several studies, it has been demonstrated that the
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dysfunction of these transporters is related to the progression of brain diseases, including
AD and PD [62,63].

2.3.2. ABC Transporters
Basic Biology of ABC Transporters

The ABC transporter family includes P-glycoprotein (P-gp), breast cancer resistance
protein (BCRP) and organic anion transporting polypeptide (OATP). These proteins utilize
the energy of ATP hydrolysis to translocate solutes across the BBB [64,65]. P-gp and BCRP,
which are expressed on the luminal side of the brain endothelial cells, are responsible for the
active pumping of compounds out of the endothelial cells back into the blood. P-gp, also
known as multi-drug resistant protein 1 (MDR1) or ABC sub-family B member 1 (ABCB1),
is a representative ABC transporter protein and is involved in cellular multidrug resistance
by acting as an efflux pump to interrupt drug accumulation accompanying anti-cancer
resistance [66]. P-gp is highly expressed in brain endothelial cells and acts as an efflux
pump in the BBB to restrict the invasion of circulating factors [67]. One of the widely
accepted views regarding its mode of action is its role as flippase utilizing ATP as its energy
source before its entry into the cytoplasms of the brain endothelial cells [68]. To evaluate the
role of P-gp in the efflux of drugs into the brain endothelial cells, drugs such as ivermectin,
which is an anti-parasitic drug, have been shown to increase the expression of the MDR1
gene in the mouse brain model„ which is a transcript for P-gp [69]. Its activity has thus
been targeted for a potential increase in medicinal effects and is considered a major hurdle
for drug delivery into the brain [70]. Many chemotherapeutic agents (e.g., Gemcitabine and
Doxorubicin) that are effective in in vitro culture systems for brain cancers are not effective
in vivo, since these drugs are transporter substrates for P-gp [71,72]. Figure 3 illustrates the
basic structure of ABC transporters.
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Mechanisms to Increase Function and Expression Level of ABC Transporters

It is important to regulate the expression level of P-gp to enhance the delivery of drugs
to the brain. P-gp is known to be regulated by various signaling pathways, e.g., (1) it is
activated by the nuclear receptor expressed in the brain endothelial cells, (2) ligand binding
to the transporter that consequently activates signaling pathway mainly mediated by
nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) nuclear translocation,
and (3) modulation of basal activity of transporters.

For nuclear-receptor-mediated upregulation of P-gp, metabolites or drugs that can
bind to the DNA binding motif induce the translocation of nuclear receptors to the nucleus
and consequently induce the binding of receptors to its partners and form the heterodimer
that can bind to DNA for transcription initiation [73]. It is widely accepted that activation
of these receptors can be induced by various types of chemicals that are binding to the
pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon
receptor (AhR), vitamin D receptor (VDR) and glucocorticoid receptor (GR). For receptor-
signaling-mediated regulation of the modulation of P-gp expression, inflammation is one
of the key drivers inducing increased expression of P-gp [74]. Receptor signaling of tumor
necrosis factor-α (TNFα), a well-known cytokine, is one of the examples that can induce
overexpression of P-gp in the brain endothelial cells [75]. Activation of TNFR1 induces the
release of endothelin 1 (ET-1), thereby activating protein kinase C, which is responsible
for the translocation of NF-κB, subsequently triggering enhanced expression levels of P-
gp [76]. Oxidative stress is another regulator for the expression level of P-gp. Increased
oxidative stress triggers activation of nuclear factor (erythroid derived 2)-like 2 (Nrf2) [77].
Furthermore, rats exposed to sulforaphane (SFN), which is an activator for oxidative stress,
showed activation of Nrf2, and sulforaphane could cause an increased expression of P-gp
in the brain endothelial cells [78].

Mechanisms Which Decrease Function and Expression Level of ABC

There are multiple pathways that reduce the function of the ABC transporters without
affecting their expression level, and this is one of the major modulating methods to enhance
the drug delivery to the brain for ABC transporter substrates. For example, at low doses,
vascular endothelial growth factors (VEGF) decrease the activity of P-gp through its regula-
tion of fetal liver kinase 1 (flk-1) and Src kinases both in vitro and in vivo and enhance the
accumulation of P-gp substrates such as verapamil without causing damage to junctions
of the brain endothelial cells [79]. At higher doses, VEGF can disrupt the junction of the
BBB and proves to not be a useful tool to modulate the P-gp activity [80]. However, finding
the downstream targets of VEGF that regulate the function of P-gp would be a valuable
avenue for P-gp modulation. According to more recent studies, it has been shown that
inhibition of the mammalian target of rapamycin (mTOR) can induce the downregulation
of P-gp, transiently mediated by activation of the Akt-dependent pathway. Although this
pathway has shown promise in downregulating the function P-gp, it has selectivity issues,
and safety concerns that need further study to fine tune its applicability. This includes
the application of Estradiol (E2), as it has been known to downmodulate the expression
level of BCRP [81,82]. In following mechanistic studies, it was shown that Estradiol (E2)
blocks association with the plasma membrane that would reduce its capacity to pump
out drugs from cells at an early time point in treatment. In longer-term experiments (6 h
post-treatment), the expression level of BCRP was been decreased, which is mediated
by estrogen receptor β (ERβ) that signals by phosphoinositide 3-kinase (PI3-K), Akt [83].
Alternatively, E2 can induce the activation of Wnt/β-catenin pathways, which play a role
in adult tissue homeostasis that further degrades the BCRP protein [84,85]. Overall, we
could conclude several molecular pathways are closely associated with the regulation
of the expression and function of these cell surface associated transporters in the brain
endothelial cells.
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Attenuation of Drug Efficiency by ABC Transporters

The efficiency at which drugs are delivered to the brain and the rest of the body is
determined by pharmacokinetics and pharmacodynamics. Pharmacokinetics is described
as the absorption, metabolism, and excretion of drugs in the body, and these processes
are controlled by transporters expressed on the cellular membrane. For brain disorders,
drug entry into the brain from the circulatory blood is the first hurdle in drug efficiency.
As mentioned above, some ABC transporters (e.g., P-gp) act as efflux pumps to inhibit
the accumulation of substrates in cells and are expressed in various cells including brain
endothelial cells [86,87]. These transporters recognize many drug chemicals as potential
transport substrates and inhibit their delivery into the brain [88]. For example, Irinotecan is
an anti-cancer drug for the treatment of glioblastoma, a type of brain tumor observed in the
adult brain. A difference was found in the efficiency of the delivery of Irinotecan into the
brains of mice that lacked MDR1. The detection of Irinotecan was shown to be higher in the
group that lacked MDR1 in the brain as compared to the littermate control [89]. In addition,
drug delivery is also regulated by the activity of ABCG2, also known as BCRP. When
co-treated with MBL-II 141, an inhibitor against ABCG2 [90], studies detected the enhanced
delivery of Irinotecan into the brain [90]. Another example, namely Dasatinib, a common
treatment for leukemia, shows its anti-cancer effects via the inhibition of Akt and ERK1/2
signaling pathways in neuroblastoma cell lines [91]. Dasatinib also acts as a substrate for
MDR1, where MDR1-expressing cells exhibited the limitation of Dasatinib accumulation in
cells [92]. Moreover, the detection of Dasatinib in the brain is very poor, as demonstrated
within 3 h following a tail vein injection of Dasatinib. In MDR1a/b and BCRP1 triple-
knockout mice, however, the group showed a much higher brain concentration of Dasatinib
than the wild-type mice [92]. Milciclib, a CDK inhibitor with potential neoplastic activity,
can affect brain tumor growth in vivo and in vitro [93]. Despite evidence of anti-tumor
efficacy in the brains of wild-type mice [93], Milciclib delivery can be enhanced into the
brain in MDR1a/b and BCRP1 triple-knockout mice [94], suggesting that the anti-tumor
efficacy of Milciclib in brain tumors can be enhanced by the regulation of ABC transporter
activity. Evidently, there are many reports demonstrating that drug chemical delivery
for brain tumors could be induced through the regulation of ABC transporter activity,
thus suggesting the potential for the control of ABC transporter activity to control drug
efficiency. This is a crucial point of consideration for the development of drug treatments
for brain disorders.

3. Current Approaches to Increasing the Permeability of the BBB

Recently, evidence has been provided that brain endothelial cells are activated by
receptors that are expressed on the cell surface. This knowledge has been applied in
attempts to increase BBB permeability and ultimately enhance the delivery of molecules
from the peripheral system. Figure 4 demonstrates current approaches to increasing the
permeability of the BBB, which will be discussed in detail in the literature to follow.

3.1. Activation of Receptors on the Brain Endothelial Cells

Most of the receptors that are expressed on the brain endothelial cells are G-protein-
coupled receptors (GPCR). Activation of these receptors induces the influx of calcium into
the brain endothelial cells, which can potentially increase the junctional gaps that lead to
the increased permeability of molecules from the peripheral system [95]. Several studies
have shown that GPCR activation can induce the reorganization of the F-actin, thereby
following the restructuring of junctional molecules. For example, adenosine receptor ac-
tivation has demonstrated the formation of polymerized actin in the brain endothelial
cells [96]. Moreover, multiple studies have shown the disruptive effect of tight junctions in
the brain endothelial cells, leading to the increased permeability of peripherally injected
therapeutic drugs into the brain [97,98]. It was also shown that the increased permeability
was mediated by the activation of Rho-GTPase and the subsequent activation of myosin-
light chain kinase (MLCK) [99,100]. Moreover, the application of the FDA-approved drug
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Regadenoson (Lexiscan, Northbrook, IL: Astellas Pharma US, Inc) has shown promise
for the activation of receptor signaling to increase the permeability of large molecules
to the brain [101]. In contrast, the inhibition of this receptor and the upstream molecule
that generates adenosine (CD73) could potentially block the entry of immune cells into
the brain [102]. The activation of adenosine receptors (AR) causes the suppression of the
expression and activity of multi-drug resistant (MDR) genes, including P-gp, resulting in
the blocking of entry of anti-cancer drugs into the brain [103]. This demonstrates that the
activation of AR can induce the suppression of P-gp expression by activating ubiquitination
and migration to the insoluble fraction of this protein and subsequently induce increased
accumulation of epirubicin, which is the substrate for P-glycoprotein [103]. These findings
therefore additionally indicate that AR activation can induce paracellular and transcellular
permeability enhancement. Brain endothelial cells also express receptors for neurotrans-
mitters. Recent studies have shown that the activation of NMDA receptors on the brain
endothelial cells can induce disruption of the cell’s barrier integrity in the brain, possibly
suggesting increased permeability mediated by the activation of this receptor [104,105].
More recent studies have demonstrated that the activation of NMDA receptors in the brain
endothelial cells could induce this increased permeability through the mediation of protein
kinase C (PKC) activation and Rho-GTPase that downmodulates the function of lysosomal
activity and potentially enhance the permeability of molecules that are readily transferred
through RMT delivery [106]. It is yet to be elucidated which subtypes of NMDA receptors
in the brain endothelial cells are affecting these changes, and how rapidly these responses
are elicited.

Cells 2024, 13, x FOR PEER REVIEW 9 of 31 
 

 

suggesting that the anti-tumor efficacy of Milciclib in brain tumors can be enhanced by 
the regulation of ABC transporter activity. Evidently, there are many reports demonstrat-
ing that drug chemical delivery for brain tumors could be induced through the regulation 
of ABC transporter activity, thus suggesting the potential for the control of ABC trans-
porter activity to control drug efficiency. This is a crucial point of consideration for the 
development of drug treatments for brain disorders. 

3. Current Approaches to Increasing the Permeability of the BBB 
Recently, evidence has been provided that brain endothelial cells are activated by 

receptors that are expressed on the cell surface. This knowledge has been applied in at-
tempts to increase BBB permeability and ultimately enhance the delivery of molecules 
from the peripheral system. Figure 4 demonstrates current approaches to increasing the 
permeability of the BBB, which will be discussed in detail in the literature to follow. 

 
Figure 4. Schematic representation for approaches to increase BBB permeability, including the acti-
vation of AR and NMDA receptors, the increasing of junctional gaps and drug treatment such as 
Regadenoson. GPCR—G-protein-coupled receptor; TJs—tight junctions; NMDA—N-methyl-D-as-
partate; PKC—protein kinase C; MLCK—myosin light chain kinase; Pgp—P-glycoprotein; AR—
adenosine receptor; MDR—multi-drug resistance protein. 

3.1. Activation of Receptors on the Brain Endothelial Cells 
Most of the receptors that are expressed on the brain endothelial cells are G-protein-

coupled receptors (GPCR). Activation of these receptors induces the influx of calcium into 
the brain endothelial cells, which can potentially increase the junctional gaps that lead to 
the increased permeability of molecules from the peripheral system [95]. Several studies 
have shown that GPCR activation can induce the reorganization of the F-actin, thereby 
following the restructuring of junctional molecules. For example, adenosine receptor acti-
vation has demonstrated the formation of polymerized actin in the brain endothelial cells 
[96]. Moreover, multiple studies have shown the disruptive effect of tight junctions in the 
brain endothelial cells, leading to the increased permeability of peripherally injected ther-
apeutic drugs into the brain [97,98]. It was also shown that the increased permeability was 
mediated by the activation of Rho-GTPase and the subsequent activation of myosin-light 

Figure 4. Schematic representation for approaches to increase BBB permeability, including the ac-
tivation of AR and NMDA receptors, the increasing of junctional gaps and drug treatment such
as Regadenoson. GPCR—G-protein-coupled receptor; TJs—tight junctions; NMDA—N-methyl-
D-aspartate; PKC—protein kinase C; MLCK—myosin light chain kinase; Pgp—P-glycoprotein;
AR—adenosine receptor; MDR—multi-drug resistance protein.

3.2. Types of Carrier Systems to Increase Drug Delivery to the Brain

Brain endothelial cells selectively allow the delivery of molecules into the brain, which
is mostly carried out through RMT or CMT [6]. Varieties of drug carriers including brain
shuttles utilize these innate delivery systems of the brain endothelial cells to enhance
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the delivery of molecules to the brain by the application of bioengineering techniques
incorporating the ligand or molecules with high affinity for the target receptors or carriers.
There are multiple successful examples of these approaches to enhance molecular delivery
including small molecules, therapeutics, and so on, including transferrin receptor (TfR)
associated brain shuttles. In this section, we present various types of drug delivery systems
and summarize recent advancements in methods aimed at enhancing the delivery of
molecules through these pathways. Figure 5 summarizes the following systems in place to
increase drug delivery across the BBB and into the brain as discussed below.
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3.2.1. Metal Nanoparticle (MNP)

MNPs possess physical (magnetic-active, optical-active) and chemical (functionaliza-
tion, enzymatic reduction) properties, and are powerfully capable, despite their small size.
MNPs are being investigated as a fascinating bio-medical platform, with their examined
possibility for various clinical uses exceeding 50 years [107]. It is therefore no surprise
that using MNPs for BBB penetration is a promising avenue for future studies, focusing
on optimizing physicochemical properties for targeted therapeutic delivery to the brain.
Unraveling the complexities and potential challenges, such as toxicity, associated with
MNPs will assist in the accelerating focus on MNPs and the exhibition of variations in
materials, sizes, and characteristics. MNPs can be made of gold, silver, zinc oxide, and iron
oxide. Furthermore, when mixed with two different metal MNPs, or following the intro-
duction of polymers into MNPs, they are called Janus particles and have highly dynamic
potential in bio-medical applications [108]. They are speculated to be a ‘micro-swimmer’
with self-propelling motions and dual-target strategies by many types of fabrications.
Among MNPs, gold nanoparticles (GNPs) have notably demonstrated less immune toxicity
and safe biodistribution. Thus, GNPs are being thoroughly investigated for therapeutic
diagnosis, anti-cancer properties, and antiviral uses in research and clinical fields [109,110].

GNPs can react with many functional groups (i.e., thiol groups) via ligand exchange
and are decorated with cell-penetrating peptides, receptor-binding peptides, antibodies,
and DNA [111,112]. Table 1 summarizes various studies on the utilization of MNPs and
the corresponding strategies for BBB penetration in each study. In addition, as the diameter
of the GNP can also be controlled from 1 nm to 100 nm based on chemical reactions, this
provides promise that the synthesis of GNPs of a desired size to fulfill a specific purpose is
possible. Therefore, various works in the literature have indicated size-dependent thera-
peutic effects, circulation time, bio-distribution and BBB penetration [113,114]. Research
on developing safe and effective neurotherapeutic strategies is crucial. Overall, ongoing
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investigations aim to advance our understanding and applications of metal nanoparticles
in addressing neurological disorders.

Table 1. Recent research in utilizing MNPs for BBB penetration in the treatment of brain diseases.

MNPs Target
Diseases

Strategies for
BBB

Penetration
Animal ECs Biological Effects Ref.

AuNPs AD - - bEnd.3
Reduced amyloid aggregation,

minimized cellular damage,
Alzheimer’s therapeutic potential.

[115]

AuNPs - FUS O bEnd.3

Nanoparticle delivery through
widened BBB. Size-dependent

permeation, optimal size for brain
delivery determined.

[116]

IONPs GBM - - bEnd.3

Enhanced GBM treatment using
magnetic nanoparticles. Improved

drug permeability, targeted
cytotoxicity, apoptosis induction.

[117]

AuPdNPs AD P80 - bEnd.3

Quercetin-modified nanoparticles
induce autophagy, accelerate Aβ

clearance, and protect against
cytotoxicity in AD.

[118]

IONPs AD - O
(APP/PS1) bEnd.3

Sialic acid-coated NPs detect Aβ

plaques noninvasively. Overcome
BBB, high selectivity, promising for

in vivo detection.

[119]

IONPs - magnetic field - bEnd.3

AMF-induced hyperthermia enhances
nanoparticle BBB association and flux,

involving
temperature-related mechanisms.

[120]

IONPs Glioma - O -
Multifunctional NPs enhance drug

delivery, BBB penetration, and
therapeutic efficacy against glioma.

[121]

AuNPs Glioma TAT peptide O -

TAT-Au NPs cross BBB, deliver
anticancer drugs, enhance glioma

therapy, and improve brain
tumor imaging.

[122]

AuNRs AD angiopep-2
peptide - hCMEC/D3

BBB-oC with neurovascular network
facilitates GNR-PEG-Ang2/D1 entry,

showing potential for enhanced
drug delivery.

[123]

AuNPs/
AuNRs ND

Transferrin
peptide, NIR

irradiation
O CD34+ cells

AuNRs efficiently cross BBB and
accumulate in neurogenic niches,
promoting targeted neurogenesis.

[124]

AuNPs AD - O
(APP/PS1) -

Chiral gold nanoparticles inhibit Aβ

aggregation, cross BBB, and show
therapeutic potential for AD.

[125]

Abbreviations: BBB—blood–brain barrier; ECs—endothelial cells; AuNPs—gold nanoparticles; AD—Alzheimer’s
disease; IONPs—iron oxide nanoparticles; GBM—glioblastoma; PdNPs—palladium nanoparticles;
AuNRs—gold nanorods.

3.2.2. Quantum Dots (QDs)

QDs are emerging chemo-physical nanoparticles in the bio-medical field and are
also becoming increasingly popular in nano-semiconductors in the electrical engineering
industry. The particles can emit self-fluorescence following UV excitation, while their
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emission wavelengths are varied depending on their sizes [126]. As they have desirable
characteristics, QDs are being administrated in bio-imaging, clinical diagnosis, and pho-
todynamic therapy (PDT) [127]. Regarding their photodynamic properties, QDs act as a
photosensitizer, absorbing UV emittance and synthesizing reactive oxygen species (ROS).
It subsequently causes the activation of receptors, thereby followed by caspase release, and
finally the induction of cellular apoptosis [128,129].

Table 2. Recent research in utilizing QDs for BBB penetration in the treatment of brain diseases.

QDs Target
Diseases

Strategies for
BBB

Penetration
Animal ECs Biological Effects Ref.

CQDs AD
NIR

photothermal
effect

O
(APP/PS1) bEnd.3

CQD-based nanosystem mitigates Aβ

neurotoxicity, enhances BBB permeability,
and reduces Aβ deposition in AD.

[130]

CdSe/ZnS
QDs - Mpr1 protein - hCMEC/D3

Mpr1-functionalized QD nanoparticles
enhance BBB penetration, showing
potential for drug delivery technology.

[131]

MoS2 QDs AD
NIR

photothermal
effect

O
(APP/PS1) bEnd.3

MoS2 QDs exhibit targeted multi-effect
therapy for AD, addressing ROS
elimination and Aβ deposition.

[132]

CQDs AD - O -
SeCQDs offer multi-target therapy for AD
by inhibiting Aβ aggregation and acting as
a broad-spectrum antioxidant.

[133]

CQDs GBM LINTT1 pep-
tide/Transferrin O -

ICG-derived CQDs enable red imaging of
GBM cells, exhibit low toxicity, and
demonstrate BBB penetration in
zebrafish models.

[134]

GQDs GBM RVG peptide O bEnd.3
RVG-GQDs enhance brain tumor drug
delivery, improve distribution, and achieve
synergistic therapy potential.

[135]

SeQDs AD - O bEnd.3
SeQDs penetrate BBB, inhibit Aβ

aggregation, reduce oxidative stress, and
improve memory in AD mice.

[136]

GQDs AD Intranasal
Delivery O -

CS/GQD NPs enhance memory recovery,
target brain, and exhibit neuroprotective
and anti-inflammatory effects in AD rats.

[137]

GQDs AD - O
(APP/PS1) -

GQDs improve memory, reduce Aβ

plaques, enhance neuron generation, and
modulate inflammation in AD mice.

[138]

CQDs AD - O -

CQDs-MH inhibits tau aggregation,
enhances delivery across the BBB, and
holds therapeutic potential for
AD treatment.

[139]

Abbreviations: CQDs—carbon quantum dots; AD—Alzheimer’s disease; MoS2 QDs—molybdenum disulfide
quantum dots; GBM—glioblastoma; GQDs—graphene quantum dots; SeQDs—selenium quantum dots.

QDs are emerging chemo-physical nanoparticles in the bio-medical field and are
also becoming increasingly popular in nano-semiconductors in the electrical engineering
industry. The particles can emit self-fluorescence following UV excitation, while their
emission wavelengths are varied depending on their sizes [126]. As they have desirable
characteristics, QDs are being administrated in bio-imaging, clinical diagnosis, and pho-
todynamic therapy (PDT) [127]. Regarding their photodynamic properties, QDs act as a
photosensitizer, absorbing UV emittance and synthesizing reactive oxygen species (ROS).
It subsequently causes the activation of receptors followed by caspase release and finally
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the induction of cellular apoptosis [128,129]. Despite the gravity of this novel process,
ROS could be a major problem in terms of toxic side-effects to mammalian cells. QDs
must therefore be validated with clinical data including distributions, circulation time,
and excretion [140]. As is the case with MNPs, various conjugations between QDs with
biomolecules and ligands are also observed [141]. Additionally, transferrin is adopted on
the surface of QDs; hence, through in vitro models, their ability for transport and cellular
uptake into endothelial cells has been demonstrated [142].

Table 2 presents an assortment of examples of QDs along with detailed descriptions of
the respective studies. The future of research into QDs for BBB penetration is promising,
focusing on optimizing their unique properties for targeted drug delivery to the brain. Es-
sential considerations include investigating potential challenges like toxicity and long-term
effects to ensure the development of safe and effective therapeutic applications. Overall,
QDs hold the potential to revolutionize drug delivery and diagnostics in neurotherapeutics.

3.2.3. Lipid Composites

Lipid composites are considered highly potent carriers due to the use of several natural
and synthesized phospholipids postulates. For example, the COVID-19 RNA vaccines were
also manufactured based on lipid composites, bio-safe capsulation of RNAs and stealth
properties [143]. Extracellular vesicles (EVs) are cell-derived lipid composites with a lipid
bilayer as well as exosomes, micro-vesicles, exosomes and apoptotic bodies. EVs play an
integral role in cell communication and signal conduction in all cell types [144]. Exosomes
have been focused on as the third generation of drug delivery platforms since they are
cell-derived and can communicate with other cells with ligands on their surfaces. Notably,
they are internalized into cells, and excrete signaling molecules as part of a conventional
drug delivery system [145]. For example, exosomes were dissected within a targeting
glioma tumor, successfully engineering ligands on exosomes [146,147].

Liposomes are common artificial lipid composites, which are composed of various
functional phospholipids. As liposomes are easily synthesized, they have been researched
as platforms of drug delivery systems for many years [148]. Liposomes are also manipu-
lated with tunable phospholipids, expanding the collaboration with biomolecules. Specifi-
cally, transferrin-embedding liposomes were evaluated with regard to BBB penetration and
subsequent therapeutic effects [149].

Solid lipid nanoparticles (SLNs) also form a part of the usual lipid composites such
as liposomes; however, they are named differently as they have a lipid crystal lattice core
in their lipid monolayers. Oligonucleotides, which are negatively charged, are usually
contained in SLNs due to their interactions with cationic lipids. The first RNA-SLN
drug, Patisiran, was approved by the FDA in 2018 [150]. Additionally, both consisting of
amphiphilic characteristics, hydrophobic and hydrophilic drugs can be capsulated. This
may indicate that lipid composites, especially SLNs, are candidates for universal drug
carriers [151]. In a study [152] using transferrin (Tf) as a brain-targeting ligand, both in vitro
and in vivo protein coronas had distinct effects on receptor targeting, lysosomal escape,
and BBB transcytosis. The study suggests a potential role of apolipoproteins, particularly
apolipoprotein A-I, in aiding NPs to traverse the BBB, providing valuable insights for brain-
targeted delivery development. Collectively, our results confirm the pivotal involvement of
the protein corona in the BBB transcytosis of Tf-NPs, opening up new avenues for the future
development of brain targeting strategies. Furthermore, ongoing investigations involve the
modification of numerous BBB-permeating peptides on SLN surfaces using diverse linkers.
This approach broadens the spectrum of research within this domain. The diverse range
of linkers utilized adds a layer of complexity, reflecting the nuanced strategies employed
to enhance BBB penetration. This collective effort signifies a significant expansion in the
depth and breadth of research aimed at advancing our understanding of brain-targeted
drug delivery.
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3.2.4. Protein Nanoparticles

Many researchers have tried to develop new therapeutic interventions for brain injuries
such as small chemotherapeutic molecules and RNAs. While many of these interventions
have shown promise, being able to bypass the BBB to target specific brain regions where
disease or injury has occurred is the most arduous aspect for any researcher. Artificial com-
posites are highly unstable in physiological conditions (such as in vivo) and may potentially
cause severe immune responses in patients as well as interfere with alternative therapeutic
modalities such as chemotherapy [153]. For these reasons, human- or animal-derived
protein-based nanoparticles can be an effective way to reduce tumor activity [154,155].
Serum albumin makes up approximately 55% of plasma in the blood, has been shown to
interact with transcellular proteins, such as secreted protein acidic, and is rich in cysteine
(SPARC) and gp60 in endothelial cells around tumor vessels [156,157]. It implies that
albumin nanoparticles can stay for a long time without interacting and interfering with
other blood cells.

Table 3. Recent research in utilizing protein nanoparticles for BBB penetration in the treatment of
brain diseases.

Protein
Nanoparticles

Target
Diseases

Strategies for
BBB

Penetration
Animal ECs Biological Effects Ref.

Albumin NPs Glioma LMWP
peptide O bEnd.3

Albumin nanoparticles enable
enhanced brain-targeted drug
delivery, exhibiting synergistic
therapeutic effects in glioma.

[158]

GS NPs - SynB peptide O BCECs

SynB-PEG-GS nanoparticles
enhance BBB penetration, exhibiting
superior brain delivery compared to
PEG-GS.

[159]

M-CA NPs Glioma menthol O BCECs

Menthol-modified casein
nanoparticles enhance
glioma-targeted drug delivery,
improving therapeutic
efficacy safely.

[155]

Ferritin NPs Glioma
HFn and HFn

receptor
binding

O bEnd.3

Ferritin NPs cross BBB, selectively
target glioma cells, and induce
lysosomal-mediated glioma
cell death.

[160]

Lipoprotein
NPs AD

ApoE and
LDLR

binding
O (SAMP8) -

ApoE3–rHDL nano medicine
accelerates Aβ clearance, reduces
deposition, and mitigates
AD-associated pathology.

[161]

Abbreviations: GS NPs—gelatin-siloxane nanoparticles; BCECs—brain capillary endothelial cells; M-CA
NPs—menthol-modified casein nanoparticles.

Lipoproteins, nanoparticles that naturally exist in the human body, possess various
advantages due to their small size. Furthermore, through fusion with apolipoprotein,
lipoproteins can bypass the BBB and be delivered to the brain. High-density lipoprotein
(HDL) is known to bind to amyloid-β protein, its aggregation a known hallmark of demen-
tia, and can thereby be used as a drug delivery system [161]. Human H-ferritin (HFn) has
the capability to cross the BBB by binding to transferrin receptor 1 (TfR1), which is plentiful
in endothelial cells and commonly upregulated in tumors. This interaction facilitates the
entry of HFn into cells through the process of endocytosis. The tumor-targeting capacity of
HFn-based nanoparticles was found to double after traversing the blood–brain barrier (BBB)
in both an in vitro transcytosis assay and an in vivo orthotopic glioma model. Additionally,
a reduction in tumor growth was observed in the mouse model [162]. In addition, various
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studies on protein nanoparticles of diverse types have been conducted, and examples
along with the mechanisms for BBB penetration are systematically arranged in Table 3.
Future research on protein nanoparticles for BBB penetration focuses on optimizing size
and surface characteristics to enhance targeted drug delivery to the brain. Addressing
challenges like immunogenicity and biodistribution is crucial for ensuring safe and effective
therapeutic applications. These advancements not only offer promise for innovative drug
delivery in neurotherapeutics but also hold the potential for revolutionizing the treatment
of neurological disorders.

3.2.5. Antibodies as Drugs

Antibody–peptide conjugates (APCs) are similar to antibody–drug conjugates (ADCs)
but are different in concept. Peptides are used as tools to target cancer cells to cross
the BBB; however, drugs implicated in ADCs are used as cargo to kill tumors. ADCs,
comprising recombinant monoclonal antibodies covalently linked to cytotoxic chemicals
via synthetic linkers, are effective treatments. However, brain treatment is limited due to the
blood–brain barrier obstruction. In addition, the breakdown of the BBB that is initiated by
neurodegenerative diseases such as amyloid deposition in AD is less heterogeneous. Such
immunoconjugates combine the antitumor potency of highly cytotoxic small-molecule
drugs (300–1000 Da) with the high selectivity, stability and favorable pharmacokinetic
profile of monoclonal antibodies. As mentioned previously, among the many methods for
crossing the BBB, there are studies using peptides that can be easily linked to antibodies. A
case exists in which viral COVID-derived peptides were linked to antibodies to increase
BBB penetration [163].

RMT entails several steps that are initiated by ligand–receptor binding and endocytosis
and subsequently guided by intracellular trafficking and vesicle fusion to arrive at a targeted
location. RMT through the LRP family has been applied in treating brain metastatic tumors.
The receptor, particularly low-density-lipoprotein-receptor-related protein 1, is highly
expressed on the surface of the BBB and pre-clinical research has shown angiopep-2 as a
key facilitator in this transcytosis process. Angiopep-2, widely known as a BBB-crossing
peptide, is conjugated to an antibody, and it was found that antibodies with angiopep-2
accumulate in the brain in mice [164]. One of the most well-known examples of RMT-
mediated antibody therapeutics is the TfR ligand-based brain shuttle. Various works in the
literature investigating TfR ligand-based antibody therapeutic development and application
and its effectiveness in enhancing drug delivery have been introduced. Currently, it is also
being used as one of the tools for studying the role of the endosomal trafficking pathways
in determining the penetration level of antibody therapeutics into the brain. According to
the recent study by Villasenor et al., it was suggested that the mode of action of this brain
shuttle is mediated by the regulation of endosomal sorting tubule that can selectively allow
the entry of this therapeutic shuttle, which has not been previously explored [34].

One of the most recent applications of this brain shuttle is TREM2-specific antibody
therapeutics, which are incorporated into this brain shuttle. In Ads, TREM2, a receptor
found on microglia, plays a pivotal role in AD by regulating immune responses and
facilitating the clearance of amyloid-beta plaques. Mutations in the TREM2 gene are linked
to an elevated risk of Alzheimer’s, highlighting its significance in neuroinflammation
modulation. Exploring TREM2’s impact may offer promising avenues for developing
novel therapies for AD. The study [165] introduces ATV:TREM2, a high-affinity antibody
designed to activate human TREM2, with a monovalent TfR binding site for blood–brain
barrier transcytosis. Administered in mice peripherally, ATV:TREM2 shows enhanced
brain biodistribution and signaling compared to a standard anti-TREM2 antibody. In
iPSC-derived microglia and an Alzheimer’s mouse model, ATV:TREM2 has the potential
to induce microglial proliferation, improve mitochondrial metabolism, and boost brain
microglial activity, presenting a promising strategy for addressing Alzheimer’s-related
brain hypometabolism.
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One of the recently developed brain shuttles is the insulin-like growth factor 1 receptor
(IGF1R) binding motif conjugated brain shuttle [166]. IGF1R has an essential role in the
formation of the synapses in the brain that is mediated by its receptor tyrosine kinase-
dependent signaling pathway. This receptor is highly expressed in the brain endothelial
cells. A recent study has shown an antibody-based shuttle that was engineered to express
the IGF1R binding motif. In a study that was performed in vitro and in vivo, it was
demonstrated that this brain shuttle can cross the BBB effectively and its delivery can be
increased in the animal models of Parkinson’s Disease (PD) showing its promise as an
alternative antibody-based brain shuttle [166]. However, more detailed mechanisms of its
increase in deliverability would be required to broaden its application [166].

The majority of existing studies have not adequately elucidated the process of BBB
penetration, which requires further in-depth study to be utilized for the development
of a better antibody-based brain shuttle. Effective utilization of APCs holds promise for
enhancing BBB permeability, providing a potential avenue for advancing our understanding
and therapeutic strategies for AD. Future studies on antibody drugs and blood–brain
barrier (BBB) penetration aim to enhance their ability for targeted drug delivery to the brain.
Overcoming challenges in antibody design, specificity, and potential side effects is essential
for developing safe and effective therapeutic applications. These endeavors mark the
forefront of advancing neurotherapeutics and addressing diverse neurological disorders.

3.2.6. Serum Albumin and RBC Coated Nanoparticles

In drug delivery systems, the use of externally artificial substances not naturally
present in the body has been common, leading to typical challenges of elimination by vari-
ous immune cells in the bloodstream. This has often resulted in significant inflammatory
responses and adverse effects. To overcome this challenge, the utilization of bovine or
human serum albumin (SA) and red blood cell (RBC) coated particles in drug delivery
enables evasion of immune cells within the bloodstream. Consequently, this approach
diminishes the probability of immune recognition and clearance, thereby optimizing drug
delivery efficiency. Many studies have used biologically derived proteins and when avoid-
ing the immune system, have reduced the inflammation from capsules of a drug [167]. In
this case, the most promising protein is SA, as designed nanoparticles with albumin have
interestingly yielded promising results. Using a BSA coating on the surface of drug-loaded
nanoparticles has been confirmed to increase survival in the blood [168,169]. In addition,
studies have shown an attempt to mimic the red blood cell membrane and use it as a drug
delivery system. This technique allows for the drug carrier to evade the immune response
and stay in the blood for a prolonged duration [170]. Table 4 summarizes studies utilizing
nanoparticles encapsulated by albumin and RBC membranes.

Those drug delivery systems showed various efficiencies of their permeable effect
through the BBB. The summary of increased BBB penetration efficiency in various systems
is presented in Table 5.

Table 4. Recent research in utilizing albumin- and RBC-coated nanoparticles for BBB penetration in
the treatment of brain diseases.

Coating Type Strategies for BBB
Penetration Biological Effects Ref.

Albumin SPARC and gp60 binding

Novel albumin-coated NPs enhance GBM therapy with
improved BBB permeation and reduced hemolytic toxicity. [171]

Albumin-coated NPs deliver the TRAIL gene, inducing
glioma apoptosis and inhibiting tumor growth. [172]

Cationic BSA-conjugated NPs efficiently deliver
neuroprotective effects in ischemic stroke by modulating
inflammatory pathways.

[173]
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Table 4. Cont.

Coating Type Strategies for BBB
Penetration Biological Effects Ref.

RBC membrane

- RBC-membrane-coated NPs reprogram the GBM
microenvironment for enhanced immunotherapy. [174]

CDX peptide BBB-targeted drug delivery system utilizes
RBC-membrane-coated NPs for enhanced therapeutic efficacy. [175]

RGD peptide
A biomimetic nanodevice co-encapsulates chemotherapeutic
drugs, demonstrating superior tumor growth inhibition with
reduced side effects.

[176]

Abbreviations: GBM—glioblastoma; TRAIL—tumor necrosis factor-related apoptosis-inducing ligand.

Table 5. Quantitative analysis of BBB penetration enhancement based on carrier types.

Types of
Carrier Systems

Strategies for BBB
Penetration

ECs/
Animals Fold Increases Ref.

MNPs

FUS bEnd.3 9.5 [158]

P80 bEnd.3 2.5 [159]

TAT peptide Mouse 4.8 [155]

QDs NIR photothermal effect Mouse 1.6 [160]

Protein NPs
LMWP peptide bEnd.3 2.5 [161]

SynB peptide BCECs 2.0 [161]

Abbreviations: BBB—blood–brain barrier; ECs—endothelial cells; fold increases—BBB penetration efficiency
increases after decoration of NPs; BCECs—brain capillary endothelial cells.

4. Novel Strategies of Drug Carrier Design

In the domain of drug carrier design, recent endeavors have introduced innovative
strategies to enhance drug delivery effectiveness. These approaches encompass a multi-
faceted exploration including the extension of circulation time, considerations of size and
shape dependencies, utilization for diagnostic and imaging purposes, investigations em-
ploying molecular dynamics simulations to understand blood–brain barrier (BBB) crossing,
and critical assessments of existing methodologies’ constraints. Such comprehensive efforts
underline the dynamic landscape of drug carrier design, integrating diverse disciplines to
tackle challenges and optimize therapeutic outcomes. Figure 6 illustrates ABC transporters
and the impediment of drug delivery to the brain.
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In addition, Table 6 summarizes the current ABC transporters with the known sub-
strates and inhibitors that are expressed on the BBB and are under study for modification.

Table 6. Transporters that are expressed on the BBB with their substrates and inhibitors.

ABC Transporter Substrates Inhibitors

P-glycoprotein

Anticancer drugs
Doxorubicin, Daunorubicin,
Vinblastine, Vincristine, Etoposide,
Teniposide, Paclitaxel, Methotrexate

Verapamil, Cyclosporin A,
Quinidine, Quinine,
Amiodarone

PSC-833, Elacridar, VX-710,
Dexverapamil

ONT-093, Zosuquidar,
Tariquidar, Laniquidar

Immunosuppressive agents Cyclosporine A

Analgesics Morphine

Cytokines IL-2, IL-4, IFN-y

Antiepileptic drugs
Phenytoin, Carbamazepine,
Lamotrigine, Phenobarbital, Felbamate,
Gabapentin, Topiramate

Antibiotics Erythromycin, Valinomycin,
Tetracyclines, Fluoroquinolones

Antidepressants Amitryptiline, Nortryptiline, Doxepin,
Venlafaxine, Paroxetine

Calcium channel blocker Verapamil

MRP1 Anticancer drugs

Etoposide, Teniposide, Doxorubicin,
Leukotriene C4, D4, E4, Daunorubicin,
Methotrexate
Glutathione, Glucuronide, sulfate
conjugates

Sulfinpyrazone, Probenecid,
MK571, LTC4, some P-gp
inhibitors

MRP2 Same as above

MRP3 Organic anion transporter with considerable overlap in substrates of
MRP1 and MRP2 Sulfinpyrazone, Probenecid,

Indomethacin
MRP4 Anticancer drugs Methotrexate, 6-mercaptopurine,

thioguanine

MRP5 cGMP, cAMP, 6-mercaptopurine, Thioguanine, Fluorescein Probenecid, Trequensin,
Sildenafil

BQ-123

BCRP Anticancer drugs

Overlap with P-gp, MRP1 and MRP2
Anthracyclines, Mitoxantrone,
Bisantrene, Camptpthecins topotecan,
SN-38, Prazosin

GF120918, Fumitremorgin C
(FTC)

Abbreviations: IL—interleukin; IFN-y—interferon gamma; LTC4—leukotriene 4; MRP—multidrug resistance
protein; BCRP—breast cancer resistance protein; cGMP—cyclic guanosine monophosphate; cAMP—cyclic adeno-
sine monophosphate.

4.1. Increased Circulation Time

The clearance of nanoparticles is primarily influenced by the patient’s immune system.
Moreover, macrophages are recruited to handle foreign bodies in the reticuloendothelial
system, inadvertently leading to the opsonization of nanomedicine. One significant param-
eter recognized by macrophages is charge interaction [178]; hence, managing the surface
charge of nanoparticles to be around zero is imperative [179–181]. This is because a zeta
potential close to zero prevents nonspecific binding, allowing structures to remain intact
for extended periods. However, when the zeta potential of nanoparticles in drug deliv-
ery systems becomes positive, challenges regarding circulation time may arise [182,183].
Nanoparticles with positive zeta potentials tend to interact more with negatively charged
components in the bloodstream, such as erythrocytes and plasma proteins, accelerating
their clearance [184]. Additionally, aggregated nanoparticles with positive zeta potentials
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may block blood vessels, leading to the formation of emboli and causing adverse effects
such as ischemia or thrombosis [185]. Nonetheless, positive zeta potentials may also confer
advantages in drug delivery to the brain, as nanoparticles with a positive surface charge can
cross the blood–brain barrier through adsorptive-mediated transcytosis (AMT) [186]. Thus,
assessing the zeta potential of nanoparticles is crucial for understanding their interaction
with biological systems and optimizing their applications in drug delivery.

The absorption of nanoparticles varies across different tissues and organs, with size
playing a crucial role in this process. Larger nanoparticles tend to be efficiently absorbed
by the liver, owing to their specialized filtration mechanisms and fenestrated endothe-
lium [113]. In contrast, smaller nanoparticles exhibit prolonged circulation times in the
bloodstream, enhancing their potential for systemic delivery to target tissues, especially
the brain [187]. The renal clearance of nanoparticles is influenced by their size, with
smaller particles being more readily excreted via the kidneys [188]. The lymphatic system
plays a crucial role in the absorption of nanoparticles, particularly those of larger sizes,
which are more likely to be transported via lymphatic vessels to systemic circulation. The
blood–brain barrier presents a challenge for nanoparticle delivery, with smaller particles
showing potential for crossing this barrier and accessing the central nervous system [189].
Nanoparticle size significantly influences their uptake by tumor tissues, with smaller par-
ticles often demonstrating enhanced penetration and accumulation due to the enhanced
permeability and retention (EPR) effect [190–192]. Larger nanoparticles may face challenges
in penetrating the dense extracellular matrix of tumors, limiting their uptake and therapeu-
tic efficacy [193]. Tailoring nanoparticle size to exploit tumor-specific characteristics can
improve their uptake and retention within tumor tissues, ultimately enhancing the effec-
tiveness of cancer therapeutics. Understanding the size-dependent absorption kinetics of
nanoparticles in various tissues and organs is essential for designing targeted and efficient
nanoparticle-based drug delivery systems.

The lipidization of drugs to enhance brain uptake is very nonspecific; therefore, a
carrier system developed for organ selectivity and increased circulation time is of great
interest. Such a delivery system, using transferrin, for example, would take advantage of
the high-density receptors as well as the ability of these receptors to shuttle molecules across
the BBB. Research has demonstrated that in rats, the anti-transferrin receptor antibody
OX-26 and antibody-methotrexate (MTX) conjugates bind to capillary endothelial cells in a
dose and time-dependent manner [194].

4.2. Size and Shape Dependence

As previously mentioned, the shape and size of nanoparticles have been shown to
significantly affect their biodistribution and pharmacokinetic profile [195]. RNA nan-
otechnology, in which ligands and scaffolds can be composed solely of RNA, has become
increasingly popular due to promising advancements in overcoming the current challenges
in nanotechnology. RNA nanoparticles can be engineered to a unique size and shape while
retaining the high thermostability required for in vivo applications [196]. This is of impor-
tance in the optimization of drug delivery, where nanoparticles have to be consistent in
assembly to ensure the pharmacokinetics and biodistribution in vivo. The study conducted
by Jasinski et al. showed that there is a strong association between increased size and
increased circulation time using RNA nanosquares that were 5, 10 and 20 nm along each
edge. In addition, increasing the nanoparticle size increases its hydrodynamic viscosity;
therefore, increased interactions of larger squares with the surrounding environment, water,
for example, will slow down its diffusion and contribute to the increase in circulation
time [196].

The targeting of nanoparticles to the endothelium specifically is limited by several
factors. The target size, namely the area of diseased endothelium, is often much smaller
than healthy endothelium. Moreover, the ability of particles to avoid immune clearance
and accumulate at a region of interest depends on parameters such as size, shape, surface
chemistry and flexibility. In vivo biodistribution research has demonstrated the benefits of
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elongated particles in targeting the endothelium and endothelial cells. For example, greater
specific attachment exhibited by rod-shaped particles offers several advantages in the field
of drug delivery [196,197]. Specifically, it has become evident that nanoparticle shape
significantly influences biodistribution, intravascular and transvascular transport, and
ultimately, their efficacy in targeting elusive cancer sites. This underscores the importance
of shaping nanoparticles to optimize their potential as cancer-targeting agents [198].

4.3. Diagnosis and Imaging

There are different ways to bypass the BBB. The presence of specific transport systems
within the capillary endothelial cells, such as those for amino acids, transferrin, glucose
and insulin ensures that the brain receives all compounds required for maintenance [194].
In chemotherapeutic examples, iatrogenic agents or intrathecal drug administration are
also capable of crossing the BBB. Other methods used to penetrate the BBB may involve
intracerebral implantation, convection-enhanced distribution, Mannitol and the endoge-
nous transport systems, namely CMT and RMT. However, mechanisms for BBB delivery
are not sufficient for targeting and treatment of malignant gliomas, which are the most
aggressive and lethal primary brain tumors in adults. Nanotechnology-based delivery
systems are being studied for the effective treatment of various brain tumors and the
reduction of side effects, therefore enabling the combination of targeting, drug loading and
drug release in a large capacity. A nanomaterial that can potentially be used for both the
treatment and imaging of a disease would be of great interest. For example, magnetically
responsive magnetite (Fe3O4) and maghemite (Fe2O3)-based crystalline particles can be
readily prepared as nanoscale-sized formulatio1ns (3.0–100.0 nm).

Techniques to deliver drugs across the BBB include magnetic methods such as the
use of iron oxide nanoparticles (IONPs). Moreover, a study described a method that
applied a radio frequency field to cause the heating of commercial IONPs which had
been administered via the middle cerebral artery using a catheter. The technique enabled
large dye molecules which were injected prior to IONPs to cross the BBB. As mentioned
before, common receptors for BBB transcytosis are the TfR, which is expressed by brain
capillary ECs and serves as RMT of iron-bound transferrin through the BBB. In another
study, magnetite-coupled dextran-spermine coated NPs were conjugated to transferrin and
facilitated the crossing of the BBB. Common magnetic imaging methods include magnetic
resonance imaging (MRI), magnetic particle imaging (MPI) as well as multimodal imaging
which combines these two techniques [199].

4.4. Molecular Dynamics Simulation of BBB Crossing

Utilizing molecular dynamics (MD) simulation for BBB crossing is essential for com-
prehending the nuanced processes involved. Through MD simulation, researchers can
dissect the intricate molecular interactions between nanoparticles and BBB components,
offering detailed insights into their dynamic behavior [200,201]. This method facilitates
the prediction and refinement of nanoparticle properties, thus optimizing their ability
to penetrate the BBB and informing the development of more efficacious drug delivery
systems tailored for neurological disorders.

Studies have demonstrated the use of molecular dynamics (MD) for crossing magnetic
nanoparticles through the BBB. A prominent example includes putting insulin receptors
on the BBB for the transport of nanocapsules. The first simulation conducted to elucidate
the crossing of gold nanoparticles through the BBB was carried out for an uncoated 2 nm
diameter nanoparticle crossing a 100A × 100A membrane using the SMD method. The
study indicated that an alternative magnetic field is required to make an equivalent force for
the process to be successful [202]. Following initial research, magnetic nanoparticles have
been utilized for crossing through a simplified BBB model for glioblastoma multiforme
treatment. A study conducted by Gkountas et al. demonstrated a 45% increase in BBB
permeability for magnetic nanoparticles (MNPs) of up to 100 nm with an applied magnetic
field. This was achieved using 3D Navier–Stokes equations that are solved in the margin
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of a blood vessel along with a discrete model of MNPs with various acting forces. These
results are then compared with experimental measurements that could ultimately predict
the flow behavior [203]. In addition, studies have developed a physiologically based
pharmacokinetic (PBPK) model for intraperitoneal (IP) injected superparamagnetic iron
oxide nanoparticles coated by gold and conjugated with poly (ethylene glycol) (PEG) (SPIO-
Au-PEG NPs) in mice. The model was able to predict the in vivo biodistribution of SPIO-
Au-PEG NPs under the exposure of an external static magnetic field and demonstrated
that modifications with insulin showed an improvement in brain bioavailability by 24.47%
in comparison to control groups that were not insulin-treated. This provides promise for
future in vivo studies for non-invasive targeted drug delivery to the brain [204].

4.5. Limitations of Current Methods

While current methods show great promise for the future of drug delivery into the
brain, there are still various limitations that may impede techniques’ capabilities of being
deemed completely successful. For example, for magnetic field research, high area ratios of
the BBB show an unchanged permeability when the magnetic field is applied, indicating
that magnetic force alone cannot drive the MNPs towards the BBB, but that they are driven
by blood flow instead. In the same light, the small size of the magnetic core is a limitation
for the magnetic targeting efficiency. With regard to RMT, this process might face challenges
related to designing appropriate drug carriers that can effectively target specific receptors
and navigate a complex cellular environment. Approved drugs such as aducanumab
and lecanemab, as well as drugs that are ongoing trials, aim to prevent the buildup of
neurodegenerative proteotoxicty and eventually slow disease progression [205]. Moreover,
there is the long-standing issue that most optimization for brain research is limited to
non-invasive resources outside of the living body. It is therefore crucial that strategies to
enhance molecular drug delivery to the brain be further explored.
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