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Abstract: mTOR is a central regulator of cell growth and metabolism in response to mitogenic and
nutrient signals. Notably, mTOR is not only found in the cytoplasm but also in the nucleus. This re-
view highlights direct involvement of nuclear mTOR in regulating transcription factors, orchestrating
epigenetic modifications, and facilitating chromatin remodeling. These effects intricately modulate
gene expression programs associated with growth and metabolic processes. Furthermore, the review
underscores the importance of nuclear mTOR in mediating the interplay between metabolism and epi-
genetic modifications. By integrating its functions in nutrient signaling and gene expression related
to growth and metabolism, nuclear mTOR emerges as a central hub governing cellular homeostasis,
malignant transformation, and cancer progression. Better understanding of nuclear mTOR signaling
has the potential to lead to novel therapies against cancer and other growth-related diseases.
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1. Overview of mTOR

Mechanistic target of rapamycin (mTOR) is a highly conserved protein serine/threonine
kinase. It is a member of the phosphatidylinositol-3-kinase-related kinase (PIKK) family.
mTOR plays a pivotal role in regulating cell growth and metabolism across eukaryotic
organisms [1–3]. mTOR is the core component of two distinct protein complexes, mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2) [1–3]. mTORC1 senses signals from
nutrients, growth factors, and hormones, controlling cellular growth and metabolism [1,2].
On the other hand, mTORC2 primarily responds to growth factors, thereby regulating
cell proliferation and survival [1,2]. mTORC2 also serves as a conserved regulator of
mechano-signaling homeostasis throughout evolution. Stretch tensions stimulate mTORC2-
dependent responses, leading to an increase in plasma membrane surface area, response
to shear stress, and changes in cytoskeletal programs, facilitating efficient coordination of
cellular shape and movement [4–6].

Dysregulation of the mTOR pathway is implicated in a spectrum of pathophysio-
logical conditions, ranging from premature aging and neurodegenerative diseases like
Alzheimer’s to metabolic disorders such as diabetes and obesity, as well as cancer [1–3].
This intricate involvement of mTOR dysregulation underscores its broad impact on human
health. Aberrant activation of mTOR signaling pathways can disrupt normal cellular
metabolic homeostasis, leading to accelerated aging processes, metabolic disorders like
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diabetes and obesity, and notably, the development and progression of cancer. It is esti-
mated that hyperactivation of mTOR signaling occurs in more than 50% of human tumors,
promoting uncontrolled cell growth, metabolism, and survival [1–3].

mTORC1 comprises three core components: mTOR, Raptor, and mLST8 (also known
as GβL) (Figure 1) [1,2]. Raptor is crucial for mTORC1 assembly and substrate recruitment.
It is exclusive to mTORC1. The interaction between Raptor and mTOR plays a regulatory
role in nutrient-stimulated signaling, enhancing mTORC1 kinase activity and substrate
specificity by binding to the TOR signaling motif (TOS). In contrast, mLST8 is a shared
component of both mTORC1 and mTORC2. mTORC2 consists of mTOR and mLST8,
but instead of Raptor, it includes two distinct core components: RICTOR and mSIN1
(Figure 1) [1–3]. RICTOR is essential for the assembly, substrate recognition, and stability
of mTORC2. mSIN1 is an integral component of mTORC2 necessary for the assembly of
the complex.
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downstream cellular events.

mTOR, as a crucial nexus governing cellular growth, metabolism, and proliferation,
is an established drug target, particularly in cancer. At the forefront of mTOR-targeted
therapy lies rapamycin and its analogs (rapalogs) [7,8]. Rapamycin is a macrolide antibiotic
that was originally developed as an immunosuppressant. It serves as the prototypical
mTOR inhibitor. Its mechanism of action (moa) involves binding to the immunophilin
FKBP12, forming a complex that allosterically inhibits mTORC1. It was also reported that
rapamycin could indirectly interfere with mTORC2 activity under certain situations [9,10].
Rapalogs, including temsirolimus and everolimus, are semi-synthetic analogs of rapamycin.
They utilize the same moa but possess improved pharmacokinetic properties. By selectively
targeting mTORC1, rapalogs impede aberrant cell growth and proliferation, thereby exhibit-
ing anticancer effects. Beyond oncology, rapalogs are clinically used as immunosupressants
for organ transplantation, treatment of Tuberous Sclerosis Complex (TSC)-associated disor-
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ders, and in drug-eluting stents to prevent restenosis. They also hold therapeutic potential
in a broad range of other diseases characterized by mTOR dysregulation, including neuro-
logical conditions.

2. Nuclear mTOR Signaling

mTOR is found in diverse subcellular localizations, including the endoplasmic reticu-
lum (ER), the Golgi apparatus, lysosomes, mitochondria, and the nucleus [11,12]. mTOR
has been predominantly perceived as a cytoplasmic signaling molecule, owing to early
focus on its role in mRNA translation and prevalent use of HEK293 cells as a model sys-
tem, wherein mTOR’s nuclear localization is relatively low [11]. More recently, however,
accumulating evidence has shed light on nuclear localization of mTOR and mTORC1 com-
ponents across a broad spectrum of organisms and various cell and tissue types [13–20].
The presence of mTOR in both cytoplasm and nuclei offers new avenues for exploring
the full scope of mTOR’s roles in cellular physiology and pathology (for recent reviews,
see [11,21,22]).

Due to the prominent nuclear localization of mTOR, considerable efforts have been
dedicated to characterizing possible interactions between nuclear mTOR and the chromatin.
In yeast, nuclear localization of TOR has been shown to play a crucial role in rRNA expres-
sion. Using chromatin immunoprecipitation (ChIP), it was demonstrated that TOR directly
associates with the promoter of ribosomal RNA (rRNA) genes in response to both starvation
and rapamycin [16]. Importantly, chromatin-binding is critical for TOR to regulate rRNA
transcription. This study provided the initial evidence of a functional role of TORC1 within
the nucleus. Similar investigations have revealed mTOR binding to a diverse array of Pol
I and Pol III transcribed genes, including those coding for 5S and 45S ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs), and U6 small nuclear RNA (snRNA) [23,24]. mTOR
occupancy on the promoter of Pol III-transcribed genes is highly sensitive to rapamycin
treatment across various cell lines (e.g., HEK293, HeLa, and C2C12), indicating a regulatory
role of mTOR chromatin binding during transcriptional modulation [23,24].

Subsequent studies have demonstrated that mTORC1 also binds to diverse gene
promoters transcribed by Pol II. For example, ChIP analysis revealed that both mTOR
and Raptor associate with the promoters of PGC-1α and certain mitochondrial genes,
modulating their expression through the transcription factor YY1 [25]. Additionally, mTOR
was found to bind to the dystrophin promoter, enhancing dystrophin expression [26].
Muscle-specific inactivation of mTOR results in diminished muscle dystrophin content
and severe myopathy [26]. Moreover, mTORC1 binds to the promoter of the long non-
coding RNA (lncRNA) NEAT1, regulating NEAT1 transcription crucial for the biogenesis of
nuclear paraspeckles [27]. Notably, ChIP-sequencing studies revealed that mTOR directly
engages with thousands of regulatory regions of Pol II-transcribed genes in both mouse
liver and human prostate cancer cells [28–30], suggesting profound regulatory roles of
mTOR across a plethora of transcriptional programs.

As discussed in subsequent sections, mTORC1’s canonical role as a protein kinase
is intricately involved in transcriptional regulation. For instance, mTORC1 binds to and
phosphorylates key transcription factors such as the androgen receptor (AR) [31] and the
estrogen receptor (ER) [32], modulating their transcriptional activities. Beyond its catalytic
functions, mTORC1 also exhibits non-catalytic roles in gene expression. An illustrative
example is its regulation of dystrophin transcription, which occurs in a cell-autonomous
manner and is resistant to rapamycin, indicating a kinase-independent mechanism [26].
This suggests that mTORC1 possesses an intrinsic transcriptional function that extends
beyond its classical kinase activity. Therefore, mTORC1 not only acts as a kinase, but also
plays a nuanced role in directly influencing gene expression, contributing significantly to
cellular regulatory networks.

Significant strides have been made in understanding how mitogenic and nutrient
signals regulate cytoplasmic mTORC1. However, the mechanisms governing nuclear
mTORC1 remain less clear. Recent studies have begun to shed light on this by using biosen-
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sors designed to specifically monitor mTORC1 kinase activity within the nucleus. These
biosensors utilize mTORC1 substrate-phosphorylation-dependent fluorescence, allowing
for the investigation of nuclear mTORC1 signaling dynamics in live cells [33,34]. Findings
from these studies reveal that both growth factors and amino acids can rapidly induce
nuclear mTORC1 substrate phosphorylation within minutes, showing kinetics comparable
to cytosolic mTORC1 activation [33,34]. This research confirms that nuclear mTORC1
functions as an active protein kinase, aligning with earlier observations of kinase activity
by mTORC1 isolated from the nuclear fraction towards 4E-BP1 in vitro [20]. These results
strongly support the functional presence of mTORC1 kinase activity in the nucleus.

In yeast, Tor1 quickly relocates from the cytoplasm to the nucleus upon nutrient
stimulation, which is blocked by rapamycin. This finding offers a clear mechanism for
nutrient-driven Torc1 signaling into the nucleus [16]. After serum-deprivation-induced
synchronization in IMR-90 lung fibroblasts, it was observed that nuclear mTOR became
enriched upon release from cell cycle arrest, as evidenced by subcellular fractionation [35].
This discovery implies that mitogenic stimuli can also regulate mTOR’s nuclear localization.
To thoroughly explore the localization of various components within mTOR complexes and
their upstream regulators under physiological conditions, more systematic methodologies
are required. Experiments using AKT, which localizes differently within cells, showed that
nuclear mTORC1 activity triggered by growth factors depends on nuclear AKT activity [36].
This process facilitates the nuclear translocation of Raptor, a crucial component of mTORC1.
Interestingly, Raptor’s nuclear localization seems adequate to sustain mTORC1 activity
within the nucleus, even without growth factor stimulation.

Several studies have explored additional regulators of mTORC1. The small GTPase
RHEB, which is essential for cytoplasmic mTORC1 activity, has also been observed in
the nucleus. This nuclear localization plays a crucial role in nuclear mTORC1 activity
independently of farnesylation [37]. Furthermore, nuclear RHEB is under the regulation of
TSC2 [37], an upstream negative regulator of both RHEB and mTORC1. Additionally, two
other mTORC1 regulators, Deptor and PRAS40, have been found in the nucleus, indicating
their involvement in regulating nuclear mTORC1 signaling as well [38–40]. These findings
indicate that mTORC1 is largely regulated by the same set of upstream signaling molecules.
It remains to be established how the signal transduction cascade is spatially organized into
the nucleus. Furthermore, it is crucial to determine whether these insights from engineered
systems reflect common regulatory mechanisms across various cell types and tissues within
their native cellular environments.

3. mTOR Governs Transcriptional Control of Cellular Growth Programs

mTORC1 integrates signals from growth factors, nutrients, and oncogenic signals to
promote cellular growth. Ribosomes are the cellular machinery responsible for synthesizing
proteins, which play an essential role in supporting cellular growth [41]. In particular,
rapidly growing cancer cells require a large number of ribosomes to support the high
demand for protein synthesis [42]. Ribosome biogenesis is the process by which ribosomes
are produced. It involves transcription of ribosomal RNAs (rRNAs) by Pol I and Pol III,
and ribosomal proteins by Pol II, processing of pre-rRNA into mature rRNA, and assembly
of ribosomal subunits [42]. It is estimated that ribosome biogenesis accounts for up to
90% of nuclear transcription, which is a high-energy-consuming event that requires tight
regulation in order to adapt to changing environmental conditions and cellular needs.
mTORC1 regulates Pol I transcription of the large rRNA precursor that is subsequently
processed into mature 28S, 18S, and 5.8S rRNAs [16,23,43–46], and Pol III transcription of
the 5S rRNA [23,24,46–53]. These rRNAs are core components of the ribosome. Additionally,
mTORC1 controls transcription of transfer RNAs (tRNAs) by Pol III [23,24,46–53], which
also plays an essential role in facilitating mRNA translation into polypeptides.

mTORC1 regulates Pol I activity through S6K1-mediated phosphorylation of the tran-
scription factor UBF (upstream binding factor) (Figure 2). Subsequently, UBF binds to the
rDNA promoter, recruiting Pol I and initiating transcription of rRNA genes [54]. Moreover,
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TORC1 signaling modulates condensin-mediated rDNA chromatin condensation, impact-
ing the stability of rDNA tandem arrays and Pol I transcription [43,45,55]. mTORC1 also
regulates MAF1, a repressor of Pol III-dependent transcription involving tRNAs, 5S rRNA,
and certain small nuclear RNAs [23,24,47–52] (Figure 2). mTORC1 directly phosphorylates
MAF1, inhibiting its repressor function on Pol III activity [24,49–52]. This post-translation
modification (PTM) also induces MAF1 sequestration in the cytoplasm, further promot-
ing Pol III transcription [56]. Additionally, mTOR interacts with TFIIIC, a DNA-binding
protein that recognizes the promoters of these genes. TFIIIC contains a TOS that facilitates
association with mTOR [24].

Cells 2024, 13, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. Nuclear mTORC1 regulates transcription by all three major RNA polymerases through 
diverse mechanisms. TF, transcription factor. 

4. mTOR Governs Transcriptional Control of Cellular Metabolism 
In support of cellular growth, mTORC1 facilitates anabolic processes such as 

transport of nutrients and synthesis of amino acids, lipids, and nucleotides [1,2]. Mean-
while, it inhibits catabolic activities by suppressing autophagy and lysosome-mediated 
degradation [1,2]. Conversely, nutrient deprivation dampens mTORC1 activity, leading 
to decreased anabolic processes to conserve energy and resources. Additionally, mTORC1 
inhibition upregulates autophagy, which recycles redundant cellular components (e.g., 
ribosomes and mitochondria) to liberate nutrients necessary for sustaining survival [1,2]. 
As described below, mTORC1 plays a major role in programming expression of genes 
related to cellular metabolism by regulating specific transcription factors and target genes. 

Glucose is a crucial nutrient that supports cellular metabolism. Glucose enhances flux 
through glycolysis, serves as a primary source of energy for cells, and generates many 
intermediates for biosynthetic pathways. Malignant cells exhibit enhanced glycolysis in 
the presence of oxygen. This phenomenon is called aerobic glycolysis or the Warburg ef-
fect [65,66]. mTORC1 stimulates glucose uptake and anerobic glycolysis in cancer cells by 
regulating hypoxia-inducible factor (HIF1𝛼𝛼) and MYC [67–71]. These structurally similar 
basic helix–loop–helix transcription factors, in turn, enhance expression of glucose trans-
porters (GLUT), Hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and lactate dehydro-
genase (LDH), which are key glucose transport and utilization enzymes. mTORC1 also 
mediates transcriptional repression of the long non-coding RNA (lncRNA) NEAT1 and 
NEAT1-mediated nuclear paraspeckle biogenesis [27]. Nuclear paraspeckles inhibit aero-
bic glycolysis via sequestration of NONO, which is needed for maturation of GLUT1, 
HK2, and LDH pre-mRNAs [27]. Upon oncogenic activation of mTORC1, NONO is re-
leased from nuclear paraspeckles, increasing expression of these key glucose transport 
and utilization enzymes and promoting aerobic glycolysis to support hyperactive cellular 
metabolism characteristic of cancer cells [27]. 

Lipids are important for the formation of cellular membranes and organelles. They 
also serve as signaling molecules and a means of energy storage. mTORC1 is a key regu-
lator of lipid synthesis through modulation of SREBP1, which is a basic helix–loop–helix, 
leucine zipper transcription factor that controls the expression of genes related to 

Figure 2. Nuclear mTORC1 regulates transcription by all three major RNA polymerases through
diverse mechanisms. TF, transcription factor.

mTOR plays a crucial role in phosphorylating various transcription factors associated
with Pol II, regulating cellular growth and metabolism (Figure 2). For example, mTORC1
interacts with and phosphorylates both the androgen receptor (AR) and the estrogen
receptor (ER), the male and female hormone receptor transcription factors, respectively.
In hepatocytes, mTORC1 interacts with AR and phosphorylates AR at S96 [31]. This
interaction and regulation enhance AR stability, nuclear localization, and transcriptional
activity towards multiple growth pathways, such as IGF1, PI3K-AKT, and β-Catenin,
thereby promoting hepatocyte growth, proliferation, and liver tumorigenesis [31,57,58].
Similarly, mTORC1 interacts with AR in prostate cancer cells and androgens reprogram
mTOR–chromatin associations in an AR-dependent manner [28,30,59,60]. mTOR also
directly phosphorylates S104/106 of ERα in breast cancer cell lines, resulting in its activation
and the upregulation of estrogenic gene transcription, thereby promoting growth and
proliferation [32].

Another instance is mTORC1 phosphorylation of STAT3 at S727. STAT3 is a tran-
scription factor crucial for embryonic development, tissue growth, and survival [61]. S727
phosphorylation yields maximal activation of STAT3 by CNTF in neuroblastoma cells.
mTOR also phosphorylates TFEB, resulting in its cytoplasmic retention and reduced expres-
sion of TFEB target genes [62], which are involved in lysosomal biogenesis, autophagosome
formation, and endocytosis. The mTORC1–MAF1 axis has recently been shown to regulate
genes transcribed by Pol II, including PTEN in hepatocytes [63], and CREB-associated
genes in the central nervous system (CNS) and retina neurons [47,64]. These genes are
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critical for promoting hepatocyte growth and CNS plasticity during neurodevelopment
and neural repair. Interestingly, MAF1 can serve as both a transcriptional activator and a
repressor of Pol II, depending on specific target genes.

4. mTOR Governs Transcriptional Control of Cellular Metabolism

In support of cellular growth, mTORC1 facilitates anabolic processes such as transport
of nutrients and synthesis of amino acids, lipids, and nucleotides [1,2]. Meanwhile, it
inhibits catabolic activities by suppressing autophagy and lysosome-mediated degrada-
tion [1,2]. Conversely, nutrient deprivation dampens mTORC1 activity, leading to decreased
anabolic processes to conserve energy and resources. Additionally, mTORC1 inhibition
upregulates autophagy, which recycles redundant cellular components (e.g., ribosomes and
mitochondria) to liberate nutrients necessary for sustaining survival [1,2]. As described
below, mTORC1 plays a major role in programming expression of genes related to cellular
metabolism by regulating specific transcription factors and target genes.

Glucose is a crucial nutrient that supports cellular metabolism. Glucose enhances flux
through glycolysis, serves as a primary source of energy for cells, and generates many
intermediates for biosynthetic pathways. Malignant cells exhibit enhanced glycolysis in
the presence of oxygen. This phenomenon is called aerobic glycolysis or the Warburg
effect [65,66]. mTORC1 stimulates glucose uptake and anerobic glycolysis in cancer cells
by regulating hypoxia-inducible factor (HIF1α) and MYC [67–71]. These structurally sim-
ilar basic helix–loop–helix transcription factors, in turn, enhance expression of glucose
transporters (GLUT), Hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), and lactate dehy-
drogenase (LDH), which are key glucose transport and utilization enzymes. mTORC1 also
mediates transcriptional repression of the long non-coding RNA (lncRNA) NEAT1 and
NEAT1-mediated nuclear paraspeckle biogenesis [27]. Nuclear paraspeckles inhibit aerobic
glycolysis via sequestration of NONO, which is needed for maturation of GLUT1, HK2, and
LDH pre-mRNAs [27]. Upon oncogenic activation of mTORC1, NONO is released from
nuclear paraspeckles, increasing expression of these key glucose transport and utilization
enzymes and promoting aerobic glycolysis to support hyperactive cellular metabolism
characteristic of cancer cells [27].

Lipids are important for the formation of cellular membranes and organelles. They
also serve as signaling molecules and a means of energy storage. mTORC1 is a key
regulator of lipid synthesis through modulation of SREBP1, which is a basic helix–loop–
helix, leucine zipper transcription factor that controls the expression of genes related to
cholesterol and fatty acid biosynthesis. mTORC1 regulates SREBP1 both transcriptionally
and post-translationally. In hepatocytes, insulin stimulates expression of SREBP1 in an
mTORC1-dependent manner [72]. Interestingly, four androgen response element (ARE)
sequence motifs occur in the SREPB1 promoter. AR phosphorylation by mTORC1 at S96
stimulates SREBP1 transcription and expression of SREBP1-dependent lipogenic genes [31].
Under conditions of low sterol levels, SREBP1 becomes activated. The mTORC1 signaling
cascade stimulates lipid synthesis in two distinct mechanisms. mTORC1 activates SREBP1
through S6K1-mediated phosphorylation, leading to translocation of active SREBP into the
nucleus for gene upregulation. Another relevant PTM involves mTORC1 phosphorylation
and inhibition of Lipin1, a negative regulator of SREBP1.

mTORC1 promotes nucleotide biosynthesis, particularly in proliferative cells, to
support DNA replication and ribosome biogenesis. mTORC1 upregulates expression
of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) through the basic leucine-zipper
transcription factor ATF-4 [73]. MTHFD2 is an important enzyme in mitochondrial folate
one-carbon metabolism, providing carbon units necessary for purine synthesis.

mTORC1 plays a key role in regulating amino acid transport and metabolism. The
mTOR–ATF4 axis also promotes serine/one-carbon metabolism [74], which supplies im-
portant metabolites, including NADPH and S-adenosylmethionine (SAM). mTOR phos-
phorylates TFEB, causing cytoplasmic retention of TFEB and reduced expression of TFEB
target genes, including those involved in lysosomal biogenesis, autophagosome formation,
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and endocytosis [62]. Conversely, repression of mTORC1 by starvation triggers activation
of TFEB, which enhances lysosomal biogenesis and autophagy. Activation of autophagy
leads to lysosomal degradation of ribosomes, recycling them into free amino acids and
ribonucleotides. Glutamine, an abundant non-essential amino acid, plays a crucial role in
replenishing tricarboxylic acid (TCA) cycle intermediates via glutaminolysis. mTORC1
stimulates glutamine metabolism by modulating MYC-dependent transcription of genes
related to glutaminolysis, including glutaminase 2 [75]. Additionally, mTORC1 promotes
glutaminolysis by facilitating CREB2-regulated transcription of SIRT4 [76].

Amino acids have recently been demonstrated to activate mTORC1 via a RAB1A-
dependent mechanism [77]. Intriguingly, branched-chain amino acids (BCAAs), acting
through the RAB1A–mTORC1 complex, enhance the stability and nuclear localization of
PDX1, a key transcription factor governing the growth, function, and identity of pancre-
atic β-cells [78,79]. Activation of PDX1 by mTORC1 enhances insulin transcription and
circulating insulin. This discovery unveils a novel role and the underlying mechanism
through which amino acids regulate the body’s glucose levels and insulin-stimulated tis-
sue metabolism via a beta-cell-specific function mediated by the RAB1A–mTORC1–PDX1
signaling axis.

5. mTOR Controls Epigenetic Modifications and Chromatin Remodeling

Histone modifications play a pivotal role in dynamically regulating gene expres-
sion [80,81]. Methylation of histone lysine and arginine residues is orchestrated by histone
methyltransferases (HMTs) and histone demethylases (KDMs) [82]. Emerging research
has identified mTOR as a direct regulator of the intricate network governing epigenetic
modifications and chromatin dynamics (Figure 3). Enhancer of Zester 2 (EZH2), a catalytic
component of the Polycomb repressive complex 2 (PRC2), is responsible for the di- and
tri-methylation of H3K27 (H3K27me2 and H3K27me3) via its SET-domain-containing lysine
HMT [83]. EZH2, the target of the anti-neoplastic agent tazemetostat, has been implicated
as an oncogenic driver, with its overexpression or amplification observed in various cancers,
including breast, prostate, and bladder cancers. Additionally, mTORC1 has been shown to
upregulate EZH2 protein expression, thereby promoting H3K27me3 and controlling cell
proliferation [83]. Furthermore, mTORC1 interacts with HMT G9a to suppress autophagy
by increasing the repressive histone modification H3K9me2 on promoter sites for genes
involved in autophagy [84].

The human Jumonji-C-domain-containing (JMJD) proteins possess both histone ly-
sine demethylase (KDM) and histone arginine demethylase activities [85]. Among these,
JMJD1C plays a crucial role in regulating transcription of genes associated with lipid
metabolism and synthesis in liver cells. JMJD1C is phosphorylated by mTORC1 at T505 [86].
This PTM enhances recruitment of JMJD1C to the promoters of genes associated with li-
pogenesis, where demethylation of H3K9me2 enhances the expression of these lipogenic
genes. These studies revealed how mTORC1 regulates lipid metabolism through histone
modifications.

Histone lysine acetylation stands as a pivotal epigenetic mechanism that profoundly
influences chromatin structure and function [87]. Histone acetylation is catalyzed by
histone acetyltransferases (HATs). Histone deacetylases (HDACs) counterbalance this
process by removing acetyl groups from histones [87]. In yeast, it was observed that
TORC1 regulates histone acetylation through the Esa1 HAT complex and Rpd3 HDAC [88].
Interestingly, mTORC1 phosphorylates S4 of the HAT p300, disrupting binding of its
catalytic HAT domain to the RING domain [89]. This PTM abolishes intra-molecular
inhibition, thereby altering p300 function to suppress autophagy induced by cell starvation
while simultaneously stimulating lipogenesis in cells [89]. Such interplay underscores how
mTORC1 signaling orchestrates epigenetic modifications to regulate key cellular processes.
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Chromatin remodeling complexes play a pivotal role in modulating the accessibility
of chromatin to transcriptional and coregulatory machineries by controlling opening of
nucleosomes [90]. ARID1A serves as a critical constituent of the canonical BAF (cBAF)
complex and functions as a tumor suppressor, one frequently lost through genomic muta-
tions [91]. In hepatocellular carcinoma (HCC), ARID1A is often inactivated by genomic
deletion or non-sense mutations. Inactivation of the ARID1A tumor suppressor can also
occur post-translationally. Recent work revealed that mTORC1 binds to ARID1A and regu-
lates ubiquitination and proteasomal degradation of ARID1A [92]. The mTORC1–ARID1A
axis promotes oncogenic chromatin remodeling and YAP-dependent transcription, thereby
facilitating liver cancer cell proliferation in vitro and tumor progression in vivo [92].

DNA methylation is another epigenetic mechanism that regulates chromatin structure
and gene expression. It often involves adding methyl groups to the cytosine residues
within CpG dinucleotides. This methylation can impact gene expression by influencing
DNA accessibility to transcription factors and other regulatory proteins. Promoter hy-
permethylation often leads to gene silencing, while hypomethylation can increase gene
expression [93]. Liver cancer patients with elevated DNA methylation levels and height-
ened mTOR signaling have the worst prognosis [94]. Subsequent investigations into DNA
methylation enzymes revealed that mTOR signaling upregulates both the expression and
activity of DNA methyltransferase 1 (DNMT1) [95]. Additionally, mTORC1 enhances
the translational efficacy of DNMT1 through a 4E-BP1-dependent mechanism. Notably,
concurrent inhibition of mTOR and DNMT synergistically suppresses HCC growth in both
in vitro and in vivo models [95]. This study showed that modulating DNA methylation by
mTORC1 is involved in hepatocarcinogenesis.
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6. mTOR Orchestrates the Interplay between Metabolism and Epigenetics

As previously discussed, mTOR controls metabolic pathways through epigenetic
mechanisms, influencing the level and flux of essential metabolites in both glycolysis and
the tricarboxylic acid (TCA) cycle. For example, SAM synthesis from methionine and ATP
is regulated by the mTORC1–Myc–MAT2A axis [96]. mTORC1 stimulates ACLY expres-
sion, facilitating synthesis of acetyl-CoA through the mTORC1–SREBP signaling axis [97].
Many metabolites, including acetyl-CoA, flavin adenine dinucleotide (FAD), fumarate,
α-ketoglutarate (α-KG), nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM),
and S-adenosylmethionine (SAM), can also impact histone and DNA modifications by
serving as either cofactors or substrates for epigenetic enzymes [98,99]. These metabolites,
through influencing the activity of mTORC1 signaling or epigenetic enzymes, can serve
as feedback mechanisms to finetune the expression programs in response to metabolic
demands (Figure 4).
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S-adenosylmethionine (SAM) plays a crucial role in histone methylation, a key epi-
genetic modification governing gene expression. SAM serves as a methyl group donor
for histone methyltransferases, enzymes that catalyze the addition of methyl groups to
specific lysine or arginine residues on histone proteins [100], as well as a methyl group
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donor for DNA methytransferases [94]. This methylation can either activate or repress
gene transcription, depending on the specific histone residue targeted and the extent of
methylation, by influencing chromatin structure and accessibility. It is intriguing to note
that SAMTOR, an SAM-binding protein, serves as a sensor for SAM, exerting a negative
regulatory effect on mTORC1 [101]. When SAM levels are low, SAMTOR interacts with
GATOR1, leading to the suppression of mTORC1 activity. Conversely, the binding of SAM
to SAMTOR disrupts its interaction with GATOR1, resulting in mTORC1 activation. This
discovery unveils a feedback regulatory mechanism linking one-carbon metabolism with its
upstream regulator, offering precise modulation of the interplay among mTORC1 signaling,
one-carbon metabolism, and the epigenetic control of gene expression.

Histone demethylation is an equally important counter process in epigenetic reg-
ulation, in which flavin adenine dinucleotide (FAD) plays a significant role. Enzymes,
such as KDM1A and KDM1B, facilitate histone demethylation through an FAD-dependent
amine oxidation reaction [102]. FAD serves as an electron carrier, facilitating transfer of
electrons during demethylation. α-KG functions as a co-substrate for enzymes involved
in demethylation of histones and DNA [103]. Specifically, α-KG-dependent dioxygenases,
including the Jumonji C (JmjC)-domain-containing histone demethylases (e.g., KDM4 and
KDM6), utilize α-KG as a co-substrate to catalyze methyl group removal from histone
lysine residues and DNA cytosine nucleotides, respectively [102]. Availability of SAM,
FAD, and α-KG is essential for proper functioning of these histone methyltransferases and
demethylases. Additionally, DNMT1 and DNMT3A were reported to be major methyl-
transferases that consume the excess SAM to change DNA methylation status in a lung
cancer model [104]. These findings highlight the interplay between cellular metabolism
and epigenetic regulation.

While the level of acetyl-CoA is regulated by mTORC1, acetyl-CoA itself also serves
as a co-substrate for histone acetylation. HATs utilize acetyl-CoA as the acetyl donor
for histone acetylation reactions. ATP citrate lyase (ACLY) converts citrate into acetyl-
CoA, which provides the acetyl groups necessary for histone acetylation [105]. Integrated
analyses demonstrated that mTORC1 increased the protein expression of EZH2, while
mTORC2 controlled the production of SAM in human glioblastoma (GBM). This resulted in
collaborative regulation of EZH2’s methytransferase activity and H3K27 hypermethylation,
subsequently enhancing tumor cell survival both in vitro and in vivo [106]. This finding
provides an example of the cooperativity of mTORC1 and mTORC2 in promoting tumor
progression through interplay between epigenetics and metabolism. Disruptions in these
interplays can have implications in human diseases, particularly cancer.

7. Future Perspectives

mTOR signaling plays crucial roles in cellular growth and metabolism by controlling
gene expression programs through various molecular mechanisms, including direct mod-
ulation of transcription factors, epigenetic enzymes, and chromatin remodelers. mTOR
directly influences epigenetic/chromatin regulation and mediates the intricate interplay
between metabolism and epigenetic processes. The regulatory pathway of mTOR in tran-
scriptional machinery and epigenetics is not a simple linear progression. Instead, it is a
complex network, akin to a vast and intricate roadmap with multiple interconnected routes
and feedback loops.

Despite recent strides in understanding nuclear mTOR signaling, our grasp of the
intricate mechanisms by which mTOR influences nuclear processes remains limited. Several
key questions persist. Firstly, while cytoplasmic and nuclear mTORC1 are largely regulated
by the same upstream factors, the spatial and temporal organization of the nuclear mTORC1
signaling pathway in response to nutrient stimuli requires further elucidation. Secondly,
although there is some indication of mTORC1’s non-catalytic involvement in transcriptional
control, a comprehensive mechanism has yet to emerge. Thirdly, the reasons behind
mTORC1 kinase’s binding to specific chromatin regions, such as enhancers and promoters,
remain unclear. One hypothesis posits that mTORC1 may serve as a scaffold, facilitating
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the proximity of transcription factors, epigenetic enzymes, and chromatin remodelers to
enhance the co-regulation of these substrates via phosphorylation. This scaffolding function
could lead to more robust responses to both extracellular and intracellular cues.

Finally, the role of nuclear mTORC1 signaling in the context of human diseases such
as cancer, remains to be better defined. Considerable efforts will be needed to deconvo-
lute detailed molecular mechanisms. Activation of mTOR promotes tumorigenesis and
metastasis. mTOR inhibitors, such as rapamycin analogs like everolimus and temsirolimus,
are anti-cancer drugs, approved by US FDA for various indications. However, the clinical
efficacy of rapalogs remains limited due to the broad role of mTORC1 in normal physiology
of many vital organs and lack of reliable predictive biomarkers. In this regard, target-
ing specific mTORC1-specific nuclear processes may offer better efficacy/toxicity profiles.
Enhanced understanding of how nuclear mTOR orchestrates growth/metabolic reprogram-
ming and transcription within the cancer microenvironment will facilitate discovery and
development of more selective therapeutic strategies.
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