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Abstract: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of
birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W
sex chromosome is a unique karyological member of this heteromorphic pair, which has been
extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex
chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral
trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the
principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging
hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that
sex chromosomes share varied genomic blocks across several amniote lineages. This implies the
possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the
major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an
ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex
chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and
present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance
of major repeats, and identifies the expansion of certain transposable elements. The latest revolution
in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the
evolutionary origin of sex chromosomes.

Keywords: chromosomal rearrangements; evolution; genome; next-generation sequencing;
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1. Introduction

A fundamental aspect of the life history of sexually reproducing organisms is the fusion of
haploid gametes produced by meiosis through the mechanisms of independent assortment and genetic
recombination of chromosomes from two parental genomes to form a zygote. This contributes to the
phenotypic diversity at population and species levels arising from natural selection during the course
of evolution. Sex determination is the process by which organisms develop as either male or female,
and it exhibits remarkable mechanistic diversity and turnover among species. The mechanisms range
from environmental sex determination (ESD), where sexes do not differ in genotype, to genotypic
sex determination (GSD) resulting from homomorphic to highly differentiated heteromorphic sex
chromosomes as either male heterogametic (XX/XY) or female heterogametic (ZZ/ZW) [1-3].

Amniotes diverged into two major lineages comprising Synapsida, including all living mammals,
and Sauropsida, including all extant non-avian reptilian and avian species, with substantial variation in
sex determination mode [4,5]. Sex chromosomes classically evolve from a pair of autosomes (proto sex
chromosomes) after one autosome acquires a sex-determining locus [6]. This locus is located on the
Y or W sex chromosome and is restricted to a single sex, which affects subsequent processes in the
adjacent region as sexually antagonistic genes. To produce a novel allele or gene, a genetic variant must
gain control over the sex determination cascade, which is subject to a master sex-determining gene [6,7].
This might have occurred through a point mutation causing gene knockout and loss-of-function,
or creating a novel function and regulatory change [8-13]. The master sex-determining gene can act in
a dominant fashion on the Y or W sex chromosomes, where one copy is needed to determine maleness
(on a Y sex chromosome) or femaleness (on a W sex chromosome), such as SRY in mammals or in a
dose-dependent manner on the X or Z sex chromosomes, where two functional copies are needed for
femaleness (on the X sex chromosome) or maleness (on the Z sex chromosome) [6,7]. Regions around
this master sex-determining locus progressively stop recombination with their respective homologous
regions on the X/Z counterparts [6,7]. This suppression of recombination might be involved with the
selective advantage and preservation of linkage disequilibrium between sex-determining and sexually
antagonistic genes, leading to multiple formations of evolutionary strata in sex chromosome evolution
and differentiation [6,14-19].

Cessation of recombination triggers structural changes, predominantly on the Y or W sex
chromosomes, including accumulation of deleterious mutations, degradation of gene content,
accumulation of repeats, heterochromatinization, and changes in gene expression [20-32].
Deleterious mutations might accumulate in the nonrecombining region through Muller’s ratchet
or genetic drift, causing Y or W genes to lose their function or disappear altogether [33].
Simultaneously, strong selection acting on the sex-determining region can induce background selection,
genetic hitchhiking, and selective sweeps that reduce genetic variability in the adjacent regions [34].
Chromosomal inversions surrounding the master sex-determining region probably occurred on the Y or
W chromosomes, thereby preventing chromosome pairing and crossing over with the homologous X- or
Z-linked inverted regions, as observed in chicken and Japanese quail [35-38]. The degree of divergence
between X and Y or Z and W sex chromosomes is independently observed across amniote lineages
with remarkable variation [39]. Synonymous substitution rates of XY (or ZW) gametologous genes,
which are homologous genes located in the nonrecombining region of differentiated sex chromosomes,
can be used to trace the evolutionary history of sex chromosomes [14,16,32,40-48].

Despite considerable research efforts and recent advances in omic technologies, prediction of the
ancestral and transition states between particular sex determination modes and sex chromosomes
in amniotes remains uncertain [18,49-51]. The ancestral state might be ESD or polygenic sex
determination, changing to GSD later on [18,52-55]. By contrast, it might include the presence
of multiple transitions from GSD to ESD. Sex chromosomes evolved independently multiple times
within amniotes and remained notably stable after their emergence in mammals, birds, and many
lineages of reptiles [16-18,56,57]. This scenario is supported by evidence of the same linkage homology
blocks that perform the role of sex chromosomes in several amniote lineages, or by unrelated sex
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chromosomes sharing partial linkage homologies across distantly related groups [18,25,27,28,30-32,58].
This was probably caused by multiple random selections from a limited number of linkage homologies,
or a stronger tendency for a linkage homology to be co-opted owing to its gene content, particularly as
a result of enrichment of the genes involved in gonad differentiation, and the possibility of homologous
sex-determining systems [7]. The molecular machinery of the sex determination pathway is observed
across ESD amniote lineages, which concurs with independent co-option of the same epigenetic
process [59]. Interestingly, recent comparative genomic analyses indicate that the majority of the
squamate reptile chromosome 2 (SR2) and the snake W sex chromosomes share partial sex chromosomal
linkage homologies with sex-related elements of other amniotes, despite their apparent diversity
of sex-determining mechanisms [18,25,27,28,30-32,58]. Hypothetically, the SR2 and snake W sex
chromosomes may have been part of a larger ancestral amniote super-sex chromosome with a GSD
system that subsequently split into many sex chromosomes across several amniote lineages by multiple
chromosomal rearrangements such as fission [27,28,30]. This hypothesis suggests an incredible
diversity of sex-determining systems, raising questions for many models, including: (i) whether
several lineages co-opted the same chromosome pair, or at least parts of them, to function as sex
chromosomes?; (ii) whether these co-options resulted from the lack of alternatives, with only a limited
number of chromosomes in the ancestral karyotype to form sex chromosomes, or certain unique
characteristics of these chromosomes found in SR2 and snake W sex chromosomes, and particularly if
the content of genes involved in gonad differentiation predisposed certain chromosomes to become
sex chromosomes?; and (iii) what drives some sex chromosomes to be maintained over millions of
years and differentiate fully, while others are replaced by new sex-determining chromosomes before
differentiation has occurred?

Here, we review evidence pertaining to different sex chromosomal profiles in amniotes obtained
from chromosomics and show that correlation with snake W sex chromosomes is a relict of an ancestral
super-sex chromosome. Using data sourced from a recent near-complete chromosome-level assembly of
the Indian cobra (Naja naja) genome [60], we also report the comparative repeatomic landscape of Z and
W chromosomes and highlight the genomic abundance of major repeated elements on sex chromosomes.
Evolutionary dynamics of repeat-mediated sex chromosome formation are also discussed.

2. Turnover of Sex Chromosomes in Amniotes

Sex chromosomes carry important sex-determining genes and/or genes that specifically influence
male or female fitness, and may have facilitated their recruitment for sex determination [6,7].
Sex chromosome turnover occurs when the existing master sex-determining gene physically moves onto
an autosome and retains its control over sex determination [61]. Sex determination systems and/or sex
chromosomes have evolved independently numerous times, with frequent turnover from one system to
another, exhibiting both inter- and intra-specific variation across many species of amniotes, whereas the
Xand Y (or Z and W) chromosomes of mammals and birds are conserved [2,40,51,56,58,62—68]. There are
two possible explanations for the emergence of new sex-determining genes and sex chromosomes
across amniote species [2,69]. First, when a new sex-determining locus arises on an autosome,
it converts the autosome into a ‘proto-sex-chromosome’, and the ancestral sex chromosome reverts
to an autosome (Figure 1) [70,71]. Turnover can occur when a new master sex-determining gene
arises de novo on an autosome (termed ‘non-homologous turnover’) [61,72,73]. The emergence
of a new master sex-determining locus can have very different consequences depending on how
it interacts with the previous sex determination system [61,73]. If the new sex-determining locus
was associated with a gain in fitness, turnover is more likely to result in different sex chromosomal
linkages between species. By contrast, when a new sex-determining gene arises on the existing sex
chromosome (termed "homologous turnover’) [61,73], turnover between XY and ZW determination
systems on the same chromosome arises in the course of evolution. Caenophidian snakes share the
same ancestral ZW chromosomes, with varying degrees of W degeneration; however, pythons have an
XY system, leading to the emergence of a new sex-determining locus, although only a few specimens
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have been examined [41,47]. The question of how and why these turnovers arise remains unclear but
is assumed to result from sexual conflict, genetic drift, and mutation accumulation [73-80]. Second,
autosomes can translocate (by simple translocation, centric fusion, or insertion) to sex chromosomes
and create ‘neo-sex-chromosomes’ as observed in stickleback and black muntjac [6,81,82]. In the fusion
process between sex chromosomes and autosomes, chromosomes harboring such genes may often be
involved in the formation and turnover of sex chromosomes, forming neo-sex-chromosomes [6,83]. It is
likely that sex-specific selection pressures (including sexual antagonism) are the primary evolutionary
contributors to sex determination pathways, evolutionary turnover in sex chromosomes, and the
fixation of neo-sex-chromosomes [18,75,76,84-89].

Ancestral autosomes
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Figure 1. Schematic diagram of different phases in ZW sex chromosome evolution. We propose a
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hypothetical evolutionary model to illustrate the origin and evolution of ZW sex chromosomes. First,
owing to strong selection of an evolutionary hotspot region, an ancestral autosomal pair undergoes
mutation to become a sex determination region, and transformation into homomorphic proto-sex
chromosomes. This is followed by heteromorphic differentiation resulting in formation of a proto-W
chromosome with cessation of recombination and gain of female beneficial sequences for fitness
and adaptation. The proto-W chromosome subsequently undergoes structural changes, such as
rearrangements, gene degradation, repeat accumulations, and heterochromatinization, to form a
neo-ZW chromosome system with limited differentiation. In some cases, during this stage turnover
cycles might convert the partially differentiated heteromorphic sex chromosomes into homomorphic
sex chromosomes, as in certain snake species, such as Ptyas species. To achieve full heteromorphy
the neo-ZW chromosomes escape this evolutionary trap, and the young W chromosome undergoes
severe degeneration with lineage-specific sequence variation and evolves into a mature and stable
sex chromosome.

Key questions include ‘why do some lineages maintain and conserve sex chromosome/sex
determination?” and ‘why do other lineages show frequent recurrent turnover?” The answers might be
informed by the mechanism of the ‘evolutionary trap” hypothesis [54]. Sex chromosomes may undergo
cycles of turnover by default unless a tipping point of differentiation is crossed. Sex chromosomes
then are stably maintained and fully differentiate, which prevents frequent transition from GSD to
TSD or turnover to different GSD systems [40,54]. The transition between GSD and TSD requires
traversing a group of fitness-related genes, where individuals are produced carrying suboptimal or
lethal WW or YY genotypes. Sex chromosome turnover involves the fixation of a new sex-determining
locus in the population, varying the effective population size of the species [73,79,90,91]. By contrast,
reptiles possess homomorphic sex chromosomes that appear to be evolutionarily young, owing to
frequent turnover [3,92]. The transition from GSD to ESD, as well as turnover of sex chromosomes
within GSD, requires an intermediate step of sex reversal, producing individuals with a mismatch
between phenotypic and ancestral genotypic sex [51]. Sex-reversed individuals should lack a specialized
sex-specific combination of sex chromosomes in lineages with differentiated sex chromosomes and thus
show lower fitness. Such sex-reversed amniotes with differentiated sex chromosomes are infertile or
possess atypical sex-specific phenotypes [93-95]. Homomorphic sex chromosomes are maintained by
occasional XY or ZW recombination in sex-reversed XY females or ZW males, known as the ‘fountain of
youth” hypothesis. This is possible if recombination suppression is independent of phenotypic
sex assignment [96-98]. This might enable escape from the trap and independent evolution in the
lineage. Pleurodonts and the sister group corytophanids, a family of iguanian lizards, harbor different
partial sex chromosomal linkage groups within each lineage [99-101]. However, the tendency
for recurrence of sex chromosomal groups might result in homoplasy. New data emerging from
non-model sex chromosome systems may provide interesting exceptions to the hypothesis on how sex
chromosomes originate and evolve, and suggest diversity in the process not previously acknowledged.
Systematic differences between amniote lineages and their frequency of acquisition of stable sex
chromosome/sex determination require further investigation to obtain more conclusive evidence.

3. Sex Chromosomal Linkage Homology in Relation to SR2 and Snake W Sex Chromosome

Comparison of genome assemblies and chromosome maps among amniotes have revealed a
high degree of linkage homology and elucidated the process of chromosomal rearrangement over
millions of years [20,21,25,27,28,30,102-114]. In a few cases, sex chromosomes share homology
among some amniote lineages; however, genome sequence analyses and cross-species chromosome
mapping have revealed that unrelated sex chromosomes share linkage homologies across distantly
related taxa, and might involve genomic regions orthologous to SR2 and the snake W sex
chromosome [18,25,27,28,30,58,60]. These overlaps of partial sex chromosomal linkage homology may
be part of a hypothetical ancestral super-sex chromosome (Box 1). Portions of an ancestral super-sex
chromosome probably exist in amniotes, with multiple chromosomal rearrangements, such as fissions
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or insertions, as evolutionary sources of various sex chromosomal linkages [18,25,27,28,30-32,58,115].
Under this concept of a super-sex chromosome, sex-specific nonrecombining regions of Y or W
sex chromosomes are likely to be ‘super-segments’, enabling adaptation to sex-specific functions or
sex-biased expression [33,116]. Co-localization of these genes/regions might reflect the co-option of
particularly favorable genes/segments. The same sex-determining genes, as orthologous or paralogous
states, have been used repeatedly in distantly related amniotes, such as DMRT1, SOX3, or AMH
in a sex-determining function [16,117]. Particular linkage homology is often associated with sexual
development in distantly related amniote lineages because of genetic hitchhiking [118].

Alternatively, the occurrence of a super-sex chromosome might reflect group sex-determining
gene interactions. The majority of sex-determining genes in one species are part of the conserved
sex-determining network in all amniote lineages. Several genes have been independently recruited to
the first step of the sex-determining pathway in different species, where each is probably necessary and
sufficient for sex determination [2,119]. Their physical proximity may facilitate biochemical interaction
of the products of these genes to bring about sex determination. In some cases, such as Drosophila,
sex is determined according to the ratio of X chromosomes to autosome sets. Key genes involved in
the sex-determining pathway include SxI, tra, and dsx, and expression of these genes is regulated by
several transcription factors encoded on the X chromosome [120-122]. Another plausible hypothesis
concerns chromosome territory, which could make their physical translocation more likely, as in
the case of translocations between chromosomes bearing nucleolus organizing regions (NORs) [123].
Chromosomes occupy highly conserved territories in somatic cells of mammals, birds [124-126],
and mammalian germ cells [127]. The positions of these territories are associated with the gene
content of chromosomes; sex chromosomes with a low gene density are more frequently located at
the periphery [128,129]. In addition to several models for the origin of a super-sex chromosome,
an underlying principle of sex determination in amniote lineages is the sharing of linkage homology.
Sequences such as repeats were once linked in a super-sex chromosome that was broken up by
different means. Many changes to genomic content occur once an autosomal pair becomes a sex
chromosome pair. As well as deletion, selection of sex-specific traits on the sex-specific chromosome
(Y or W) and changes in the genomic content of the partner sex chromosome (X or Z) reflect the
hemizygous state in one sex [6,130,131]. Particular sequences, such as 185-28S ribosomal RNA
genes, may play roles in sex chromosome regulation or create novel sex chromosomes [18,58,132].
Opossum and kangaroo sex chromosome pairs have independently fused with a segment carrying the
NOR, whereas platypus sex chromosomes are frequently arrayed around the nucleolus during meiosis,
which brings them into close proximity to the NOR-bearing chromosome 6 that shows homology
with the human X-conserved region [133,134]. Proximity to the site of RNA synthesis might facilitate
epigenetic processes involving long noncoding RNAs [135]. Minimally differentiated XY chromosomes
are observed in three cryptodiran turtles (Staurotypus crassicollis, S. triporcatus, and S. salvinii), in which
the Y chromosomes are smaller than the X chromosomes owing to a difference in copy number of
185-28S rRNA genes [136,137]. SR2 is highly conserved among squamate reptiles [58,102,103,132,138],
and NORs are generally located on a pair of microchromosomes or chromosome 2 in iguanas and
some snakes [139,140]. The NORs are located on the ZW microchromosomes in the bearded dragon
(Pogona vitticeps), which share a common ancestry with SR2 [3,58,109,115,132,141].

From a different perspective, recent studies of many amniotes have revealed a striking difference
of the gene and repeat content of their Y/W sex chromosomes, with substantial disparity even between
closely related species [16,17,47,51,142-150]. This is despite the prolonged stability of sex determination
systems in these lineages and the extensive between-species homology of their X/Z-specific gene
contents [17,42,151]. However, genomic regions of snake W sex chromosomes show substantial
homology with sex chromosomal linkage homologies and repeat content in amniotes [25,27,28].
Singchat et al. [25,27,28] asserted that 16 bacterial artificial chromosomes (BACs) showing partial
homology with sex chromosomes of several amniotes were mapped on the heterochromatic W
sex chromosomes of different species, including Siamese cobra (Naja kaouthia), Russell’s viper
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(Daboia russelii), and the common tiger snake (Telescopus semiannulatus), based on hybridization
signals such as repeats. In comparison, two chicken BACs located on Gallus gallus chromosome
Z (GGAZ) that showed a high abundance of the long interspersed nuclear element (LINE) and
long terminal repeat (LTR) transposable elements (TEs) were mapped on SR2 and the snake W sex
chromosome [25,27,28]. This suggests that repeats on the snake W sex chromosome also share sex
chromosomal linkage homology to SR2 and GGAZ, and the snake W sex chromosome might include a
genomic region involving sex chromosome conformation in amniotes. The Y or W sex chromosomes
showing accumulation of satellites and amplification of telomeric or microsatellite repeats [(GATA),,
(AAGG)y, (AATC),, and (ACAG), ] are commonly observed in snake W chromosomes and in other
amniotes [20,22-25,29,115,152-155]. One microsatellite amplified on the W sex chromosome in several
caenophidian snakes is the banded krait minor satellite (Bkm), which consists of a microsatellite repeat
motif (AGAT), or (GACA), sequence, and is associated with the degree of ZW differentiation [156].
This might result from rapid and independent amplification of repeats on W sex chromosomes,
and suggests that frequent amplification of the repeats has a structural role in heterochromatinization
and promotes further sex chromosome differentiation [25,27-30]. Amplification of repeats has occurred
independently in each lineage and might represent convergent sex chromosomal differentiation among
amniotes [18,25,30]. Interestingly, bird and snake W sex chromosomes share blocks of three repeats
(Bkm repeats, 185-28S rRNA-related repeats, and DMRT-related repeats) [23]. This suggests that
repeats are shared partially between the sex chromosomes of chicken and snakes, and supports the
hypothesis that SR2 and the snake W sex chromosome were associated with a larger ancestral amniote
super-sex chromosome [18,25,27,28,30,58]. Many studies have identified convergent genomic patterns
in independently formed sex chromosomes [34,157], and causes of the repeated origins of these unique
regions of the genome have been suggested [6]. Amplified repeats were possibly retained in the sex
chromosomes of an amniote common ancestor, and subsequent reshuffling led to the appearance
of sex chromosomes in each lineage. Convergent evolution of sex chromosomes across distantly
related taxa might lead to genomic elements, such as repeats, which are particularly adept in a
sex-determining role. However, the majority of repeats or genomic regions are more likely to be
associated with snake W sex chromosomes [25,27,28]. Most of these explored orthologous regions
have been cytogenetically mapped to better understand candidate sequences such as BACs or other
repeats; however, further chromosomic level studies will elucidate the possible occurrence of linked
genes in shared chromosomal regions [30-32,49].

4. Repeats: A Driver for Sex Chromosome Conformation after the Split of an Ancestral Amniote
Super-Sex Chromosome

During the process of sex chromosome differentiation, heterochromatin is enriched at repeats
(TEs and satellites), and its loss can result in de-repression and mobilization of silenced TEs. The number
of repeats can differ substantially between sexes owing to the presence of a highly repeated (and normally
poorly assembled) Y or W sex chromosome in the heterogametic sex individual [29,92,155,158].
Transposable elements are located at the boundaries of recombining and nonrecombining regions,
which suggests their causal role [159,160]. Insertion of TEs near the sex-determining locus can act to
suppress recombination by creating a divergence between sex chromosomes, and TEs are often assumed
to accumulate following suppression of recombination. This would invoke host mechanisms to silence
TEs, resulting in suppressed recombination at hotspots adjacent to TE insertions [161]. Weaker selection
against the insertion of additional TEs leads to their accumulation under a lack of recombination.
Moreover, TEs can promote ectopic recombination, facilitating genomic rearrangement to further
suppress recombination [162]. The heterochromatic regions in amniotes are also predominantly
accumulated by satellite DNA, in a class of repeats characterized by a tandem arrangement with highly
repeated monomeric units longer than 100 bp, or simple repeats, such as mini- (>10 and <100 bp) and
microsatellites (usually <10 bp) [163,164]. These satellites are often abundant on sex chromosomes in
amniotes [25,27-30,115,165-168]. Lacertid lizards have highly differentiated ZZ/ZW sex chromosomes,



Cells 2020, 9, 2386 8 of 26

and the W sex chromosome is indicated to be enriched in satellite motifs in Acanthodactylus lineomaculatus,
Eremias velox, and several species from the genera Lacerta and Timon [169-174]. The primary function
of the satellites is unknown; however, they may contribute to the suppression of recombination,
heterochromatinization, and changes in gene expression. Different types of these repeats are randomly
accumulated on sex chromosomes and largely reflect historical contingency [175-178]. The important
functional role of such sequences implies that the pattern of the distribution of their accumulation
should be relatively well conserved across species of the same lineage. In snake, PBI-Ddel (196 bp)
satellite DNA is located in the centromeric region of the Burmese python [168]. Interestingly,
PBI-Ddel satellites are frequently localized to the W sex chromosome of Siamese cobra. Localization of
high copy numbers in female rather than male individuals suggests that PBI-Ddel might act as
an evolutionary driver with several repeats, facilitating W sex chromosome differentiation and
heterochromatinization [29]. Transposable elements and satellites may play a critical role in the early
stages of recombination suppression, with the ability to shuffle genes and alter expression patterns.
Repeats may simultaneously promote the turnover of sex chromosomes and sex-determining genes,
initiating suppression of recombination, chromosomal rearrangements, and eventual recruitment of
sex chromosomes [38].

A well-known example is the genome of the Indian cobra, which is closely related to the Siamese
cobra [179]. This genome encompasses a total size of 1.79 Gb with W and Z chromosomes spanning
52.1 Mb and 154.6 Mb, respectively [60]. This shows that the Z sex chromosome is almost three times
larger than the W sex chromosome in genomic content. Ideally, the genes occurring on the W sex
chromosome might play a different role in determining female-associated phenotypes, while changing
female-biased selective forces might strongly affect the evolution of the W sex chromosome [180].
Although several predictions have been proposed, the W sex chromosome’s functional role is unknown,
except for a few W-linked genes that have been studied mostly in birds [180]. Here, we present a
functional view of the W sex chromosome of Indian cobra to corroborate the hypothesis that the
W sex chromosome might be involved in multiple functions of cellular processes in addition to
sex determination. The W sex chromosome harbors a diverse set of genes and, based on a gene
ontology enrichment analysis (Supplementary Note 1), the W sex chromosome is enriched with genes
coding for brain development, microtubule organization, histone deacetylation, DNA repair, signaling,
and transport (Figure 2 and Supplementary Dataset 1). In addition, the repeat contents of Indian cobra
sex chromosomes are presented (see Supplementary Note 1). The comparative repeatomic landscape
of the highly repeated Indian cobra Z and W assembled chromosomes showed remarkable differences
between TE abundance and the overall higher enrichment of repeats; with total repeats of 22.57% on
Z chromosomes compared with 15.39% on W chromosomes. A similar pattern might be observed
in other snakes with a smaller W sex chromosome [181]. The majority of TEs such as retroelements
(LINEs and short interspersed nuclear elements) and DNA transposons are highly abundant on the Z
sex chromosome. The most abundant elements are L.2/CR1/Rex, which constitute 9.99% and 7.44%
of Z and W sex chromosomes, respectively, with certain elements (CRE/SLACS, PiggyBac, Mirage,
and P-elements) completely absent on the W sex chromosome (Figure 3 and Table 1). Did the Z sex
chromosome become larger as the result of insertions of specific repeat elements, or did the W sex
chromosome experience depletion of these elements? Chromosome mapping has indicated a high
accumulation of repeats as telomeric repeats, microsatellites, satellites, and TEs on the snake W sex
chromosome, with none or fewer on the Z sex chromosome [25,27-29]. Chicken BAC sequences mapped
on the snake W sex chromosome show nonhomology to the Indian cobra W sex chromosome-level
genome assembly [25,27,28,60]. Comparative repeatomic analysis supports our hypothesis that the
Z sex chromosome of Indian cobra might have experienced a recent explosion of TEs that could
have contributed to further gain in genetic contents. The Kimura substitution landscape TE model
also indicated that the W sex chromosome contained many ancient/degenerated copies of LINEs,
whereas the Z sex chromosome accumulated many recent or less divergent copies of these elements
with two peaks/rounds of TE insertions (Figure 3). Collectively, these results suggest that repeats on
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the snake W sex chromosome might be inherited from an ancestral amniote sex chromosome with high
differentiation via nonhomologous recombination, which has resulted in the evolution of heteromorphic
Z and W sex chromosomes in advanced snakes [30,32]. This finding agrees with the results of BAC
fluorescent in situ hybridization (FISH) mapping on the Siamese cobra, Russell’s viper, and common
tiger snake [25,27,28]. These TEs may have undergone molecular degeneration, rending their identities
senescent in the Indian cobra genome. A time estimation model and molecular evolutionary analyses
of TE insertions could further advance our understanding and solve the complex issue of whether
a recent new explosion of TEs occurred in the Indian cobra genome. Comparison of Siamese cobra
and Indian cobra genomes would provide further insights into the possible occurrence of repeated
elements in closely related species, and allow in-depth comparisons of repeat element density and
distribution of autosomes versus sex chromosomes.
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cobra. Clustering heatmap plot with logyy (p-value) from functional enrichment tests and information
content (IC). A higher logyg (p-value) represents a more enriched function. The results show that
W chromosomes carry an enriched set of genes associated with development, histone deacetylation,
signaling, and transport.
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Figure 3. Comparative genomic characterization of repeated DNA contents between the W and Z sex
chromosomes. Repeat landscape of (a) W and (b) Z sex chromosomes. Histogram plots show the degree
of sequence divergence of each transposable element (TE) derived from its consensus (X-axis) in relation
to the percentage of its copies in the total genetic contents of the chromosome (Y-axis). Peaks represent
waves of insertion (black arrows) of elements into the sex chromosome. Older insertions of TEs are
shown as a peak wave on the right side (K-value > 25) of the plot, whereas younger elements are
depicted on the left side (K-value < 25). Different colors show distinct element types, as described on
the right. A higher abundance of LTRs (green) of the Z sex chromosome landscape as indicated by a
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green arrow, is evident. The Y-axis percentage difference and a recent wave of expansion on the Z
chromosome are evident. (c¢) Comparative analysis of Z and W localized repeat contents. Each column
represents the copy number percentage stacked for the repeated element. Different proportions
for Z and W sex chromosomes are indicated in blue and red, respectively. Elements with higher
proportions (in blue) show expansion; those TEs present exclusively on Z chromosomes, and absent on
W chromosomes are highlighted in blue text on the X-axis.

Table 1. Comparative list of repeat contents localized on the Indian cobra Z and W sex chromosomes
and the relative abundance of each identified element. Note: For certain TEs (PiggyBac and Mirage,
P-element), the percentage was considered negligible and rounded to 0 (less than 0.01%).

Repeat Type Number of Number of Size of Size of Percentage of Percentage of
’ CopiesonZ  Copies on W RepeatsonZ  Repeats on W Repeats on Z Repeats on W
SINEs 12,030 1914 29,685,560 232,635 0.74 0.45%
Penelope 3544 2 1,145,026 313 0.32 0.00%
LINEs 50,308 8362 501,803 4,470,348 14.52 8.57%
CRE/SLACS 1 0 22,445,088 0 0.015 0
L2/CR1/Rex 35,523 7545 73 3,881,653 9.99 7.44%
R1/LOA/Jockey 545 7 15,451,390 2287 0.04 0.00%
R2/R4/NeSL 1168 27 67,375 14,578 0.35 0.03%
RTE/Bov-B 2715 435 544,043 216,332 0.61 0.41%
L1/CIN4 6313 318 936,854 351,501 3.07 0.67%
LTR elements 9461 784 4,741,345 1,335,868 3.94 2.56%
BEL/Pao 491 10 132,589 9918 0.09 0.02%
Ty1/Copia 688 40 352,463 44,578 0.23 0.09%
Gypsy/DIRS1 5955 691 5,156,575 1,248,483 3.34 2.39%
Retroviral 1563 40 335,396 31,056 0.22 0.06%
hobo-Activator 10,245 333 865,452 48,804 0.56 0.09%
Tc1-1S630-Pogo 4840 400 1,335,823 327,229 0.86 0.63%
PiggyBac 41 0 1673 0 0 0
Tourist/Harbinger 306 4 26,218 715 0.02 0.00%
Other (Mirage,
P-elements, Transib) %3 0 4670 0 0 0
Unknown 888 27 95,802 6798 0.06 0.01
Small RNA 205 75 13,811 9259 0.01 0.02
Satellites 482 5 54,431 916 0.04 0
Simple repeats 44,168 25,179 2,068,877 1,322,998 1.34 2.54
Low complexity 7442 3280 469,011 234,151 0.3 0.45

5. Diversity and Stability of Snake Sex Chromosomes

Snakes represent about one-third of all reptilian species, with almost 3800 extant species
classified into three major lineages: the Caenophidia, the likely paraphyletic Scolecophidia,
and Henophidia [182-185]. Caenophidia is the most species-rich and diverse group, including more than
3100 species [186]. Scolecophidia contains approximately 400 species of blind snakes with a worm-like
body shape and fossorial lifestyle, and Henophidian snakes comprise about 200 species [186]. The largest
family is Colubridae, commonly termed colubrids [187,188], and is the most extensively studied for
cytogenetic investigation. We observe that colubrids exhibit higher variability in chromosome number
and genome size compared with those of other snake families, such as Boidae and Viperidae. (Figure 4).
This high degree of variation might have contributed to the remarkable diversity and speciation of
colubrids. The diploid chromosome number across all snakes is 2n =24-56[152,189]. Variation involving
macro- and microchromosome numbers have been reported in different families across snake
lineages [152,189]. However, phylogenetic reconstruction reveals that the ancestral snake karyotype
consisted of 2n = 36 chromosomes with 16 macro- and 20 microchromosomes. This is the karyotype
commonly observed in the majority of snake species [189]. Female heterogamety (ZZ/ZW system) occurs
in caenophidian snakes [20,23-25,27,28,41,44-46], whereas for noncaenophidian snakes (i) facultative
parthenogenesis in pythons and boas leads to exclusively female progeny [190-193], (ii) inheritance of
a color mutation in the ball python (Python regius) indicates a XX/XY sex determination [194], and (iii)
a recent study suggests that a transition from ZW to XY may have occurred for Boa imperator and
Python bivittatus based on male-specific genetic markers as well as transcriptomic and genomic data [41].
A report of heteromorphic ZZ/ZW sex chromosomes in the Madagascar boa based on conventional
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cytogenetics was recently confirmed by molecular cytogenetic methods in Acrantophis sp. cf.
dumerili [47,195]; however, the sex chromosomes of many snake species remain undifferentiated, with no
large morphological changes (such as Boidae and Phytonidae), and a low degree of differentiation
between Z and W or X and Y sex chromosomes [41,47,196,197]. In comparison to the long-term stability
of the Z chromosome across all snakes, the sex determination systems in noncaenophidian snakes are
likely far less stable and more dynamic [47,196,197]. A recent study showed that the scolecophidian
long-nosed worm snake (Myriopholis macrorhyncha) may have heteromorphic ZZ/ZW sex chromosomes,
which are likely nonhomologous to sex chromosomes of caenophidian snakes [198]. The Z sex
chromosome is indicated to share the same gene content across caenophidian snakes [20,153,199],
without large morphological modifications [200]. By contrast, several repeats are known to be
the primary source of differentiation of W sex chromosomes in caenophidian snakes [24,25,27-29],
with highly degenerated and heterochromatic accumulations of repeats, and variable topology and
degree of accumulation among species [181,201]. Notwithstanding conventional and molecular
cytogenetic approaches, the snake W sex chromosome can remain undetectable for genomic content
based on recent omic technology, except for the Indian cobra for which partial information on sex
chromosomes is detectable [60]. The study of the Indian cobra genome provides an overall view of
evolution by focusing on comparative genomics, thereby unlocking the diversity of toxin genes that
lack in-depth sex chromosome investigation.
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Figure 4. (a) Phylogeny of 108 snake species, with available data for karyotypes and genome size,
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belonging to the families Boidae, Viperidae, Elapidae, and Colubridae. (b) Boxplots show the
distribution of chromosome number and genome size (C-value) for the four families. Each dot
represents the species as given in the phylogeny. The phylogenetic tree was sourced from TimeTree
databases (http://www.timetree.org) [202] and shows each species with information on chromosome
number (211) and genome size variation. Data were sourced from the Animal Genome Size Database
(http://www.genomesize.com) [203].

6. Chromosomics of Snake W Sex Chromosomes: Bridging the Gap between Genomes
and Chromosomes

Snakes have unique genomic features that make them particularly interesting to study.
The sequencing of snake genomes is increasing our understanding of their molecular evolution
and genetic diversity. Evolutionary studies of venomous organisms provide sources of medical
information to catalog venom proteins for drug and antivenom development. A decade ago, it was a
major feat to sequence the first snake genome [204]. Subsequent advances in sequencing technology
have made the sequencing of many more snake genomes attainable [60]. Technologies based on
genome sequencing have the potential to resolve profiles of genetic differences between sexes at the
nucleotide level, making it possible to reveal sex-specific loci or sex-specific genes in species where
these had not previously been identified [40,44—46,205,206]. Recent advances in genome sequencing
technology have assisted in the assembly of heterochromatic and/or low-complexity genomic regions,
such as centromeres and differentiated W sex chromosomes. Current high-throughput sequencing
methodologies and bioinformatic tools have replaced conventional molecular biological investigation
techniques [29,60]. We currently have limited knowledge of whether the between-species variability of
the snake W genomic content and repeat content is exceptional [25,27-30], as research to date among
amniotes have been restricted predominantly to a small number of studied lineages, or whether it is
common during sex chromosome differentiation.

Physical anchoring of chromosome sequences is required to validate a chromosome-level assembly.
Once chromosome-level assemblies have been achieved for a greater number of snake species,
investigation of changes in the packaging and interactions between chromosomes will contribute to an
understanding of the role genome architecture has played during snake and amniote sex chromosome
evolution. Technological advances in genomic sequencing, particularly long-read (PacBio; [207,208]
and ultra-long-read (Oxford NanoPore Technologies; [209]) sequencing platforms, have provided
exceptional improvement in scaffold sizes of genome assemblies. A combination of short- and long-read
sequencing can provide chromosome-scale descriptions of repeat landscapes of sex chromosomes using
all available genome sequence data from snakes [60,210], but currently available data for snakes is
taxonomically limited and elucidation of the basic molecular machinery across snake lineages is required.
Despite the improvement in long-read sequencing over short reads in genome assembly, new genome
sequences often fail to produce ‘chromosome-level” assemblies, where contigs represent a complete
chromosome. In this regard, advances in cytogenetics and innovations in sequencing technology are
useful for providing higher-resolution genome assemblies, and will be important for implementation in
snake research moving forward. Without chromosome-level assemblies, the ability critically to examine
evolutionary questions, including basic questions surrounding genome evolution and function, as well
as adaptation and speciation, is limited [30,49,211,212]. Cytogenetic approaches, such as FISH, will help
to generate physical maps to confirm experimentally the correct orientation of scaffolded genome
sequences scaled into chromosomes. Such techniques will also enable the analysis of breakpoints and
gene order, positioning of centromeric and telomeric sequences, and structural variation. A novel
approach was developed in birds, where a set of chicken BAC clones was bioinformatically identified
and empirically validated as a set of universal avian probes to anchor sequence scaffolds rapidly
to chromosomes of sequenced species [110,213]. In this manner, it would be possible to anchor
the increasing number of snake or other amniote genomes being sequenced. Appropriate samples
can be obtained for the preparation of chromosomes [25,27,28], and these probe sets will provide
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high-resolution sequence arrangements on chromosomes. Some of the technical difficulties of FISH
mapping include low-throughput data, limited microscopic resolution, and probe specificity for
each analysis; in addition, examination of multiple loci simultaneously is technically challenging.
Development of high-throughput, next-generation chromosome conformation capture technologies,
such as the Hi-C approach [214], will provide more information on interactions and chromosomal
conformations in three-dimensional genomic structures. Integration with cytogenetics mapping
will allow orientation of the assembled contigs into chromosomes [215]. Bionano optical-mapping
technology can also be used to acquire long-range data throughout the genome, which are highly
suited to filling gaps and improving fragmented genomes in ways that are not possible using classical
cytogenetics [216]. Despite substantial advances in the aforementioned technologies, no single
genome has been completed with end-to-end chromosome assembly. Assembling the X chromosome
telomere-to-telomere will resolve many gaps and long arrays of complex repetitive regions in the
human genome using high-coverage ultra-long (Oxford nanopore) reads complemented with optical
mapping [217]. This achievement will revolutionize the field of chromosomics, and high-resolution
data produced from combinations of these approaches will elucidate further novelties regarding
evolution of sex chromosomes [218,219].

7. Concluding Remarks

Sex chromosomes were discovered by Nettie Stevens in 1905. She observed that in mealworms,
male cells carried chromosomes that were smaller than the rest, whereas female cells carried equally
sized chromosomes [220]. The availability of genomic data for many nonmodel species, and the
development of methods to detect sex-linked sequences in species with both differentiated and
undifferentiated sex chromosomes, have provided a global overview of the diversity of sex-determining
systems in amniotes. Recent progress on the evolution of sex chromosomes in several amniotes has
supported long-standing hypotheses and, for many other amniotes, has revealed that there is no
single narrative for how these regions form and evolve. Sex chromosomes show convergent genomic
signatures, suggesting broader trends in their formation. The hypothesized scenario of a super-sex
chromosome in the ancestral state of amniotes is followed by multiple fission to form products in
the evolutionary lineages. Unpredictably, the snake W sex chromosome shows the remnants of sex
chromosomal linkage homology shared among amniotes, as well as large abundances of satellites and
TEs. The snake W sex chromosome may retain the most ancestral state from an ancestral super-sex
chromosome in amniotes. Homologous sex chromosome turnover might occur in small clades under
pressure of selection. However, the diversity of sex chromosomes reveals a remarkable number of
exceptions and, therefore, a parallel diversity of underlying mechanisms. The evolutionary trap is
another potential hypothesis, followed by turnover of homologous sex chromosomes in species with
homomorphic sex chromosomes. Nonhomologous turnover could alternatively maintain ancestral
heterogamety (that is, XY to XY transitions, or ZW to ZW), or induce a shift in heterogamety (XY to ZW,
or vice versa). Although the incredible diversity of sex chromosomes and sex-determining systems
has been revealed, much less progress has been achieved in understanding the evolutionary forces
that have shaped this diversity. Studying ongoing or extremely recent turnovers and the possibility of
a super-sex chromosome is therefore required to elucidate the causal turnover mechanisms further.
A deeper characterization of sex determination in clades, where both homomorphic and heteromorphic
sex chromosomes are present, will help to determine the differentiation and conservation of sex
chromosomes. Studies of snake sex chromosomes of recent origin may also provide data on the
formative processes, although such studies are extremely difficult given that divergence between
sex chromosomes is slight. Snakes are an excellent model with which to examine hypotheses of sex
chromosome evolution, which can occur rapidly; thus, population-based approaches are useful for
understanding the mechanisms and patterns involved. Cytogenetic studies have presented the first
glimpses of ancestral amniote super-sex evolution; however, integration of multiple NGS platforms is
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required to attain an in-depth understanding. The novel procedure of telomere-to-telomere assembly
will further enable the mechanisms involved in reshaping sex chromosome evolution to be deciphered.

Box 1. What is the super-sex chromosome hypothesis? What can we learn from snake sex chromosomes?

The term “super-sex chromosome” was first proposed by Ezaz et al. [18] to express an ancestral donor source
of sequences contributing to the evolutionary diversification of amniote sex chromosomes. The hypothesis of the
existence of an ancient super-sex chromosome emerged from the results of extensive cytogenetic studies carried
out in several amniote species, as a means of understanding the organization of candidate BACs and repeated
element sequences mapped on sex chromosomes [25,28,30,58]. This hypothesis has also been postulated in
genome-wide SNP studies to identify sex-specific regions [31,32] to suggest that the sex chromosomes of diverse
amniote lineages exhibit sequence homology, and that a homologous super-sex portion might exist on an ancient
super-sex chromosome that experienced several rearrangements including multiple fissions and repeat element
insertions [28,30]. Snake sex chromosomes offer an excellent model, exhibiting a ZZ/ZW sex chromosome system,
with different phases of evolutionary degeneration or amplification of the W chromosome [20-25,28-30,32].
To test this hypothesis, we mapped different BAC sequences on the snake W sex chromosome found to be partially
homologous to other amniotes [25,28]. Recently, comparative cytogenetic analysis has identified homologies of
sex chromosomes across ancestral (Henophidia) and more recent (Caenophidia) snakes [202]. The principal
concept of a super-sex chromosome hypothesis is based on cytogenetics mapping; however, whether the evidence
of partial homology may be exclusively linked to a super-sex segment remains unclear, with the possibility of
random repeated element distribution throughout the genome. The mapped sequences, which form the basis of
the original hypothesis, also represent a set of candidate loci that span a very small portion, as a few bp to several
kb of the genome, compared to the total genome content of sex chromosomes that spans several megabases
in amniotes. Therefore, considering this limitation, we propose to further explore the super-sex chromosome
hypothesis using modern tools including genome-wide mapping of whole-sex chromosomes among diverse
amniote lineages.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/11/2386/s1,
Supplementary note 1: Gene ontology enrichment analysis and comparative repeatomic landscaping of Indian
cobra Z and W chromosomes [60,221-223], Supplementary dataset 1: Complete list of gene ontology terms
together with function descriptions for significantly enriched genes on the W chromosome detected in the
enrichment analysis.
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