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Abstract: Human Herpes Virus-6 (HHV-6), Epstein-Barr Virus (EBV) and Kaposi Sarcoma Herpes
Virus (KSHYV) are viruses that share with other member of the Herpesvirus family the capacity to
interfere with the autophagic process. In this paper, mainly based on the findings of our laboratory,
we describe how, through different mechanisms, these viruses converge in reducing autophagy to
impair DC immune function and how, by infecting and dysregulating autophagy in different cell
types, they promote the pathologies associated with their infection, from the neurodegenerative
diseases such Alzheimer’s disease to cancer.
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1. HHV-6, EBV and KSHV and Associated Diseases

Human Herpes Virus-6 (HHV-6), Epstein-Barr Virus (EBV) and Kaposi Sarcoma Herpes Virus
(KSHV) belong to the Herpesvirus family, even if the first is a betahepesvirus, while the EBV and
KSHYV are gammaherpesviruses. All members of this family are characterized by the possibility of
establishing two types of infections: Latent infection, in which only a minority of genes are expressed,
and; lytic infection, in which all viral genes are expressed and viral replication occurs. These viruses
infect several cellular types although the efficiency and the type of infection may be different among
them. HHV-6 comprises two different viruses sharing more than 80% homology, namely HHV-6A and
HHV-6B, both isolated for the first time from immune-suppressed patients [1], but are characterized
by a different capacity to infect target cells [2]. HHV-6B is the causative agent of exanthema subitum,
a self-limiting disease that arises in young children [3], while no diseases have been shown to be
induced by HHV-6A primary infection. Both viruses are neurotropic and have been associated with
Central nervous system (CNS) diseases such multiple sclerosis (MS) and Alzheimer’s disease (AD).
EBV and KSHYV are instead oncoviruses strongly associated with human B cell lymphomas: Primary
Effusion Lymphomas (PEL), in the case of KSHV and Burkitt’s Lymphoma, lymphoproliferative
diseases typical of immune-compromised patients and about 40% of Hodgkin Lymphoma in the case
of EBV. Besides hematological cancers, KSHV is present and plays a role in the pathogenesis of all
forms of Kaposi’s Sarcoma, while EBV is strongly linked to nasopharyngeal carcinoma [4] and to some
subtypes of gastric cancers [5]. As for other herpesviruses, HHV-6, EBV and KSHYV are able to impair
immune response, which is not surprising when considering that those viruses are able to persist
lifelong in the infected hosts. For this purpose, in previous studies, we found that these viruses may
interfere with the monocyte differentiation into dendritic cells (DCs) [6-9], preventing the formation of
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cells that play a pivotal role in initiating and regulating immune responses, including those against
cancer [10,11] and viruses [12].

2. Autophagy Regulation and Dysregulation

Autophagy is a catabolic process required for the maintenance of cellular homeostasis and to
adapt to stressful conditions [13]. It is also strongly involved in the anti-microbial immune response.
Autophagy comprises three processes, namely macroautophagy, usually referred as autophagy,
microautophagy and chaperon-mediated autophagy (CMA). Autophagy is regulated by a group
of autophagy-related (ATG) proteins that control all its steps, from autophagosome formation to
the degradation of the autophagic cargo and autophagosome membranes into the lysosomes [13].
The initiation of the autophagic process is controlled by several molecular pathways, the most important
of which are Target of Rapamycin (mTOR) and 5" Adenosine Monophosphate-activated Protein Kinase
(AMPK). They sense the availability of nutrients and are able to detect other types of stress such
as those caused by hypoxia and Reactive Oxygen Species (ROS) accumulation. Autophagy can be
either non-selective or selective. In the latter case, it mediates the degradation of specific cargo,
i.e., mitochondria (mitophagy), endoplasmic reticulum (reticulophagy) or invading microrganisms
(xenophagy), leading, in such cases, to the direct elimination of intracellular microbes, including
viruses through the lysosomal route. In addition, autophagy contributes to antiviral response being
involved in MHC-class II and class I-mediated antigen presentation [14], and being required for DC
formation from monocyte precursors [15]. That said, it can be quite expected that viruses try to subvert
autophagy to avoid their own elimination and to persist in the infected host. However, besides this,
viruses may, in some cases, take advantage of the autophagosome formation and utilize these vesicles
for their intracellular transport during their replication, as observed in the case of EBV and KSHV that
promote the first autophagic steps, while blocking the last ones [16,17].

A proper functioning of autophagy is required not only for immune response, as autophagy
helps to prevent accumulation of ROS and unfolded proteins, regulating the activation of pro-survival
pathways such as Mitogen-Activated Protein Kinases (MAPKSs), Signal Transducer and Activator of
Transcription 3 (STAT3) and Nuclear Factor-«B (NF-kB), as well as the release of pro-inflammatory
cytokines [18]. Also, because the reduction of autophagy may increase Endoplasmic Reticulum (ER)
stress and contribute to the triggering of the unfolded protein response (UPR), it plays a key role in the
inflammatory process. While, inflammation is in principle, a defensive process, when not properly
controlled, it may predispose to several diseases, including autoimmune diseases and cancer [19].
In the latter case, the major role seems to be played by the dysregulation of the selective autophagy
called mitophagy, which leads to the accumulation of damaged mitochondria that are the main source
of ROS. As a consequence of autophagy reduction the accumulation of p62 occurs, as this molecule
is mainly degraded through autophagy. Its role in cancerogenesis is quite controversial, as it may,
either promote tumorigenesis by activating NF- kB and induce apoptosis by activating caspase 8 or
even stabilize NRF2, a molecule having a contradictory role in cancer [20]. Autophagy dysregulation,
ER stress and inflammation are also involved in CNS diseases, not only the autoimmune ones, i.e.,
multiple sclerosis (MS), but also neurodegenerative diseases such as Alzheimer’s disease (AD) [21]
and Parkinson’s Disease (PD) [22].

3. HHV-6, Autophagy Dysregulation and Pathologies

In previous studies, we have highlighted that infection by HHV-6B derived from exanthema
subitum patients dysregulated autophagy in monocytes, increased ER stress and activated UPR as a
strategy to impair the in vitro differentiation of monocytes into DCs [9]. Even if the induction of this
immunosuppressive effect by HHV-6 infection was previously reported [23], our study shed more
light into the mechanisms responsible for it. Another consequence of autophagy reduction and UPR
dysregulation caused by HHV-6B infection in monocytes was the increase of intracellular ROS and the
inter-connected activation of STAT3 and STAT1 pathways, responsible for the up-regulation of the
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PD-L1 surface expression [24]. PD-L1 is an immune checkpoint inhibitor whose expression on cells
presenting antigens to T lymphocytes induces the exhaustion of the latters and thus causes immune
dysfunction [25].

Interestingly, as we recently showed, autophagy reduction and UPR dysregulation also occurs in
astrocytes and primary neurons infected by HHV-6A. In this case, such effects promoted beta-amyloid
(Ap) intracellular and extracellular accumulation as well as tau protein hyper-phosphorylation,
phenomena that characterize AD together with neuroinflammation [24]. Furthermore, inflammatory
cytokines are released following HHV-6 infection of monocytes [9] and, as these cells can cross the
brain-blood barrier and contribute to the formation of microglia, their infection could play a role
also in neuroinflammation. In such study, we found that the activation of the Protein kinase R-like
Endoplasmic Reticulum Kinase (PERK) branch of UPR was involved in HHV-6A-induced protein
tau hyper-phosphorylation while the Inositol-Requiring protein-1« (IRE1 alpha) and Activating
Transcription Factor 6 (AFT6) arms of UPR played a minor role. This is in agreement with other
previous studies reporting that PERK may activate Glycogen Synthase Kinase-3 (GSK-3) beta, a kinase
known to directly phosphorylate tau protein [26]. It has been recently reported that HHV-6 A and
HHV-6 B may play a role in cancerogenesis, as it can stimulate cell growth and block apoptosis, interfere
with epigenetic regulation and cooperate with oncogenic viruses such as EBV, HPV and KSHV. It will
be interesting to evaluate if autophagy dysregulation by HHV-6A and/or B could occur in cells from
which tumor arise and if this mechanism could contribute to their-induced pro-tumorigenic effects [27].

EBY, the first human oncovirus discovered, is able to block the last autophagic steps when its
replication is induced by opportune stimuli in lymphoma cells harboring viral infection in a latent
state. This is not very surprising as autophagic vesicles that may contain viral particles end up in
the lysosomes where their content is degraded [16]. Moreover, in this study, as well as in studies
from other’s laboratories, EBV has been shown to exploit the autophagic machinery to enhance viral
production [28]. However, other herpesviruses such as Varicella Zoster (VZV) have been shown
to allow a complete autophagic flux during the activation of their lytic cycle as they can resist the
degradative activity of lysosomal proteases [29]. Although, other studies indicated that this virus
can also block the last autophagic steps [30]. Dysregulating the activation of pathways involved
in the autophagy induction, such as PKR/EIF2 alpha and mTOR, is another strategy put in place
by other viruses belonging to the Herpesvirus family, such as Herpes Simplex virus-1 (HSV-1) or
cytomegalovirus (HCMV) [31]. The latter, similarly to EBV, is able to promote the initial autophagic
phases and inhibit the last ones, as its protein TRS1 interact with Beclin 1 [32]. As for HHV-6, EBV
infection also reduces autophagy in infected monocytes, leading to p62/SQSTM1 accumulation and
Nuclear factor erythroid 2-Related Factor 2 (NRF2) up-regulation, preventing ROS increase induced by
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) and Interleukin-4 (IL-4). As ROS is
one of the main drivers of monocyte differentiation into DCs, their reduction strongly impaired the
formation of these cells. Moreover, EBV reduced mitochondrial biogenesis in monocytes and through
this mechanism it further prevented ROS production [8]. Interfering with DC formation represents an
important strategy to escape from immune recognition, together with the other immune suppressive
strategies that EBV is able to put in place [33].

It is well-established that a proper functioning of autophagy is required for cancer prevention,
especially because its selective form, the mitophagy, is responsible for the elimination of damaged
mitochondria that produce ROS [34]. Being EBV an oncogenic virus, it is able to reduce autophagy
in B cells, the major targets of EBV infection, to facilitate their oncogenic transformation [35].
The accumulation of ROS, the activation of STAT3 pathway and Interleukin-6 (IL-6) secretion, effects
previously shown to be involved in EBV-driven LCL immortalization [36], were indeed exacerbated by
autophagy reduction [9]. Several proteins belonging to EBV have been shown to affect autophagy and
among them there are some expressed during the latency, such as LMP1 [37] and EBNA3 [38] and
other expressed during lytic cycle activation such as BFRF1 [39].
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4. KSHYV, Autophagy Dysregulation and Pathologies

Differently from HHV-6A, HHV-6B and EBV, KSHYV is not an ubiquitous herpesvirus. Its infection,
with the exception of some geographical areas, occurs indeed in only 5% of general population. During
the activation of its lytic cycle in PEL cells, KSHYV, similarly to EBV, blocks the last autophagic steps by
down-regulating Ras-related protein (RAB) 7, which regulates lysosome biogenesis and the fusion of
autophagosomes with lysosomes [17]. The inhibition of monocyte differentiation is a consequence also
of KSHYV infection [40], even if we have previously shown that KSHV-infected lymphoma cells secrete a
variety of cytokines that may per se contribute to the impairment of DC differentiation and function [6].
Also, in this case, we have demonstrated that the reduction of autophagy was the main mechanism
involved in this virus-induced immune suppressive effect, although the mechanism leading to it was
quite different. Indeed, KSHV dysregulated the balance between calpains and calpastatin, reducing the
latter and leading to cleavage of ATG5 [7]. As said above, KSHV is a human oncovirus. HUVEC cells
can be used as a model to study its-mediated oncogenic in vitro transformation. These endothelial cells
indeed, following KSHYV infection, change their phenotype becoming spindle cells that closely resemble
Kaposi’s Sarcoma cells. Knowing the role of autophagy in preventing cancer onset and the capacity
of KSHYV to reduce it in other cell types, we focused on the impact of KSHV infection on autophagic
process to evaluate whether autophagy dysregulation could be involved in HUVEC transformation.
As we recently showed, mTOR activation by the KSHYV, effect previously demonstrated in other
studies [41], was responsible for autophagy reduction in endothelial cells, promoting endothelial to
mesenchymal transition (EndMT), triggering UPR and promoting the production of pro-inflammatory
cytokines [19]. Besides through modulating pathways affecting autophagy, several KSHV proteins can
directly influence this process, as for example v-cyclin and v-Flip [42].

5. Future Perspective

In conclusion, based on the above reported studies, it emerges that autophagy reduction contribute
to immune dysfunction and promote the onset of disease associated with EBV, KSHV and HHV-6,
as summarized in Figure 1. Moreover, as a consequence of autophagy reduction, an accumulation
of p62/SQSTM1 occurs, as this multifunctioning protein is mainly degraded through a complete
autophagic flux [13]. As it has been observed that p62 accumulated during the in vitro immortalization
of B cells into LCL and during HUVEC transformation into spindle cells [9,19], studies are in progress
in our laboratory to assess the role of p62 in the carcinogenesis driven by these viruses. This molecule
indeed, among its numerous functions, has been shown to regulate DNA Damage Response (DDR)
that strongly influences cancer onset and progression [43]. p62 also contributes to shape the tumor
microenvironment that has a strong impact on immune response, regulating for example M1/M2 balance
and affects fibroblast trans-differentiation into Cancer Associated Fibroblasts (CAF) [44]. Interestingly,
the skewing of macrophages towards M2 differentiation is another effect that can be directly induced
by KSHYV infection of macrophages [45] and is possible that EBV might do so either. However, in vivo
studies are required to better clarify whether the manipulation of autophagy, and whether UPR
could be an effective strategy to improve the overall outcome of organism survival in the course of
herpesvirus infection.
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Figure 1. Scheme representing the consequence of autophagy inhibition by HHV-6, EBV and KSHV.
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