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Abstract: The implication of the heterogeneous spectrum of pro- and anti-inflammatory macrophages
(Macs) has been an important area of investigation over the last decade. The polarization of Macs
alters their functional phenotype in response to their surrounding microenvironment. Macs are
the major immune cells implicated in the pathogenesis of atherosclerosis. A hallmark pathology of
atherosclerosis is the accumulation of pro-inflammatory M1-like macrophages in coronary arteries
induced by pro-atherogenic stimuli; these M1-like pro-inflammatory macrophages are incapable
of digesting lipids, thus resulting in foam cell formation in the atherosclerotic plaques. Recent
findings suggest that the progression and stability of atherosclerotic plaques are dependent on the
quantity of infiltrated Macs, the polarization state of the Macs, and the ratios of different types of Mac
populations. The polarization of Macs is defined by signature markers on the cell surface, as well as by
factors in intracellular and intranuclear compartments. At the same time, pro- and anti-inflammatory
polarized Macs also exhibit different gene expression patterns, with differential cellular characteristics
in oxidative phosphorylation and glycolysis. Macs are reflective of different metabolic states and
various types of diseases. In this review, we discuss the major differences between M1-like Macs and
M2-like Macs, their associated metabolic pathways, and their roles in atherosclerosis.

Keywords: macrophage; atherosclerosis; innate immunity; polarization; immunometabolism

1. Introduction

Macrophages (Macs) are one of the major cell types of the innate immune system. They
regulate inflammation and clear infection through antigen presentation, polarization, and
phagocytosis. Macs release cytokines to regulate other immune cells [1]. Mac phenotypes
exhibit a broad spectrum and, depending on the signals they are exposed to, are polarized
to differentially activated states [2]. Macs manifest unique metabolic variations in different
disease conditions, and atherosclerotic plaques are a unique example of Mac polarization
and Mac-induced pathology [2]. Polarized Macs exhibit altered glycolytic metabolism,
mitochondrial oxidative phosphorylation (OXPHOS) and lipid metabolism, as well as
amino acid metabolism [2].

Quiescent Macs are referred to as M0 Macs. Classically activated pro-inflammatory
M1 Macs and alternatively activated anti-inflammatory M2 Macs are the two most studied
phenotypes of Macs [3]. The polarization of M0 Macs toward an M1 phenotype can be
achieved by induction of bacterial lipopolysaccharides (LPS) via the PI3K-AKT-mTOR-
HIF1α (Hypoxia-inducible factor 1-alpha) signaling pathway and M1 polarization can be
further enhanced by interferon-gamma (IFN-γ) [4]. On the other hand, the polarization of
M2 Macs is activated by Interleukin (IL)-4 or IL-13 via the JAK-STAT, PPARs, AMPK, and/or
transforming growth factor-β (TGF-β) pathways [4–6]. The cell surface and intracellular
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markers of M1 and M2 Macs show distinctive characteristics [7–9]. For example, CD38
and MCP-1 are commonly recognized as M1 polarization markers, while CD206 and Arg-
1 are commonly recognized as M2 markers. In addition to surface markers, to define
the phenotype and functional relevance of Macs, it is important to assess the functional
outcomes of the polarized Macs by determining the types of cytokines secreted and their
effects on the surrounding cells [7,10–12]. The cell surface markers and cytokine signatures
of M1 and M2 Macs are illustrated in Figure 1.
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Figure 1. Canonical M1 and M2 polarization of Macs. Under a range of polarization signals, naïve
Macs are polarized toward M1-like (LPS, IFN-γ skews) or M2-like (IL-4, IL-13 skews) Macs. There
are several surfaces, intracellular or intranuclear markers for the detection of Mac phenotypes. Other
than recognition markers, some specific pathways are upregulated or downregulated in M1 and M2
Macs. For example, glycolysis, pentose phosphate pathway, and fatty acid synthesis are upregulated
in M1 Macs, while oxidative phosphorylation and β-oxidation pathways are upregulated in M2 Macs.

Two main energy production pathways in cells are OXPHOS and glycolysis. Based
on their microenvironment, Macs can choose to use either of these pathways, switch from
one pathway to the other, or use both pathways [13]. M1 Macs have increased glycolysis,
decreased oxidative phosphorylation (OXPHOS), producing inflammatory cytokines under
infectious and inflammatory disease conditions [3,4]. In contrast to M1 Macs, M2 Macs
have increased levels of OXPHOS and exhibit anti-inflammatory properties [4–6,14].

2. Mac Polarization in Atherosclerotic Plaques

Local inflammatory responses in atherosclerosis activate different cells within the
atherosclerotic lesion [15]. Local inflammatory responses in atherosclerosis activate dif-
ferent cells within the atherosclerotic lesion. Endothelial cells are activated by lipids and
inflammatory mediators in the vessel wall. Modified and oxidized LDL that enters the
vein wall stimulates monocytes, these engulfed monocytes then infiltrate into the arterial
wall [15–17]. Increased levels of modified LDLs or oxidized LDLs cause the migration
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of a significant number of monocytes into the atherosclerotic plaque area beneath the
endothelial cells in the arterial wall [16]. The inflammatory microenvironment of the lesion
induces the monocytes to penetrate the arteries and differentiate into Macs. Then, Macs
phagocytize the modified lipoproteins, transform into foam cells, and eventually form the
atherosclerotic plaques [17]. Inflammatory Macs release pro-inflammatory cytokines and
induce inflammation. Consequently, more monocytes are further recruited to the lesion
area, and the accumulation of foam cells eventually leads to the formation of a necrotic
core of chronic atherosclerosis [18]. Macs have an important role in the phagocytosis of
necrotic cells in the plaques; pro- and anti-inflammatory Macs exacerbate or alleviate the
disease, respectively [19]. The different polarization of Macs affects their proliferation and
capability to recruit more monocytes which eventually alter the abundance and diversity
of specific Mac cell populations in the plaques [20,21]. As shown in Figure 2, different
subclasses of Macs have been identified in the plaques based on their surface markers,
functions, and cytokine production [20–22].
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Figure 2. Mac polarization in atherosclerotic plaques. The microenvironment of the lesion affects
the differentiation of monocytes to Macs. The Macs transform into foam cells and are retained in the
plaques. Therefore, pro and anti-inflammatory Macs exacerbate or alleviate the disease, respectively.
The polarization of Macs changes their functional phenotype in response to the signals in their
microenvironment. Different subclasses of Macs have been identified in the plaques including M1,
M(Hb), Mhem, M2, Mox, and M4. M1 Macs in atherosclerotic lesions can be stimulated by choles-
terol crystals, LPS, pro-inflammatory cytokines, and oxidized LDL. They secrete pro-inflammatory
cytokines such as TNF-α, IL-6, IL-12; in contrast, activated M2 Macs produce anti-inflammatory
cytokines such as IL-10 and IL-4.

Within atherosclerotic lesions, cholesterol crystals, LPS, pro-inflammatory cytokines,
and oxidized LDLs are known to induce pro-inflammatory M1 Macs [23]. Pro-inflammatory
M1 Macs, normally activated through toll-like receptor (TLR-4) or nuclear factor NF kappa
B (NFκB) pathways [24], secrete pro-inflammatory cytokines such as tumor necrosis factor
alpha (TNF-α), IL-1ß, IL-6, IL-12, and IL-23 [24]. M1 Macs are the major inflammatory Mac
cell population in lipid cores [25,26].

Alternatively activated M2 Macs, polarized locally or migrating from the circulating
pool, produce anti-inflammatory cytokines such as IL-10 and TGF-ß, and they have a high
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phagocytotic capability in destroying dead cells and debris [27]. There are three subtypes of
M2 macrophages. M2a Macs have been shown to have roles in wound healing, angiogenesis,
and atherosclerotic lesions; M2a Macs are activated by IL-4 and IL-13 cytokines [28,29].
In contrast, M2b subtype Macs are induced by immune complexes along with IL- 1ß and
LPS, they specifically express high levels of TGF-ß but different from other M2 subtypes,
producing inflammatory cytokines such as IL-1ß, IL-6, and TNF-α [30,31]. Finally, M2c
Macs are activated by glucocorticoids and TGF- ß; they phagocytize debris and apoptotic
cells [32].

Other than M1 and M2 phenotypes, other polarized Macs in the plaques have been
observed such as M(Hb), Mhem, Mox, and M4 [21,31]. M(Hb) and Mhem Macs, like
M2 Macs are anti-inflammatory and produce anti-inflammatory cytokines such as IL-10,
preventing the progression of plaque formation [33]. Ox-phospholipids induce Mox Macs
that express IL1-ß and cyclooxygenase 2 (COX-2) and are regulated by the TLR-2 dependent
metabolic pathway. Mox macrophages are counted as 30% of the total macrophages in
the progressive plaques [33]. M4 Macs are categorized as pro-inflammatory and pro-
atherogenic Macs in atherosclerosis [33]. M4 Macs are polarized by CXC chemokine ligand
4 (Cxcl4) associated with reduced phagocytosis, producing inflammatory cytokines and
molecules such as IL-6, TNF-α, and MMP-7 [31].

These polarized Mac subtypes regulate other Mac subpopulations to modify in their
microenvironment, together inducing aggravation or regression of the plaques [21,31]. It
is important to note that polarized Macs have plasticity and the capability to depolarize,
switching their phenotype and function based on the microenvironment [21].

3. Lipid Metabolism in Macs to Promote Anti-Inflammatory Polarization

The most efficient pathway for producing ATP in the cells is fatty acid oxidation (FAO).
For example, one palmitate molecule (FA contains 16 carbons) can produce
129 ATPs [31,34,35]. Excess cholesterol causes Mac-mediated foam cell formation; Macs
uptake the lipoproteins from apoptotic cells and activate signaling pathways to reduce
cholesterol in the cells [35]. Through scavenger receptors such as CD36, phagocytosis,
and micropinocytosis, Macs uptake modified LDLs and VLDLs, and these lipids then are
catabolized in the lysosome into FA and cholesterols [36]. In the endoplasmic reticulum
(ER), free cholesterols are esterified and form cholesterol fatty acid esters. If not degraded
or cleared, the lipid molecules accumulate in the cytosol as lipid droplets and shift the Mac
towards foam cell formation [37]. Alternative pathways exist to export free cholesterols
through the cell membrane [38]. Excessive cholesterol accumulation leads to increased
expression of transcription factors such as retinoid x receptor (RXR) and liver x receptor
(LXR) that upregulate the ABCG1 and ABCA1 expression [39]. These lipid transporters
mediate the efflux of the cholesterol via intermediate pathways to form HDLs [40]. It
has also been suggested that the possibility of aqueous diffusion and facilitated diffusion
pathways are involved in cholesterol transport [41].

Degradation of the lipids to fatty acids and free cholesterol in the lysosome takes place
through acid lipase enzymes in a process called lipolysis [42]. After efflux, cholesterol
associates with LDLs, and the fatty acids enter the FAO process [43] where they are
converted into fatty acid acyl-CoA and enter the mitochondria through an enzymatic
process of carnitine palmitoyltransferase 1A (CPT1A) [44]. Once in the mitochondria,
carnitine is removed by the CPT-2 enzyme, and β-oxidation of FA-acyl-CoA occurs [44,45].
FAO leads to increased production of acetyl-CoA through the citric acid cycle, increasing
production of NADH and FADH that consequently produce ATP through the electron
transport chain in the mitochondria [46].

On the other hand, Macs need lipids for proliferation and growth [43]. Fatty acid syn-
thesis (FAS) is a metabolic pathway that generates FA in the cytoplasm using the metabolites
from the Krebs cycle, pentose phosphate pathway, and glycolysis [47]. Moreover, mTOR
activation induces FAS through the transcription factor sterol regulatory element-binding
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protein (SREBP) [48], while mTOR inhibition leads to the activation of autophagy and
lipophagy that together reduce lipid accumulation in Macs [49].

FAO activation is one of the main metabolic pathways in M2 Macs [31]. IL-4 stimulated
M2 Macs induce FAO which is dependent on PPARs and their co-activator peroxisome
proliferator-activated receptor gamma co-activator 1-b (PGC-1b) to increase mitochondrial
biogenesis [50]. The dependency of M2 Macs on FAO is still controversial. Some publica-
tions showed that inhibiting FAO in M2 Macs in humans and mice, beta-oxidation inhibitor
etomoxir was not able to reduce M2 polarization in IL-4 polarized M2 Macs [51,52]. The
results regarding M1 Macs suggested that when modified LDL and free FA uptake were
increased, the expression of the scavenger receptor was upregulated, while lipolysis and
FAO were reduced [52].

It is not well understood how diverse Mac phenotypes and their associated metabolic
pathways are coupled with their phenotypes, meet their energy demands, or affect atheroscle-
rotic plaque stability. However, the current literature supports the notion that M1 Macs
accumulate more lipids compared to M2 Macs; M1 Macs induce inflammation and have
less activated FAO, while M2 Macs have more active FAO and FA consumption [53,54].

4. Glycolysis Modulation in Macs to Promote Pro-Inflammatory Polarization

Macrophages that are activated by pathogen-associated molecular patterns (PAMP)
via TLR or other pro-inflammatory factors are M1-like Macs, exhibiting increased glycolysis
and decreased OXPHOS [52,54]. Glycolysis is an alternative energy-producing mechanism,
it is a faster but a much less efficient way to produce ATP compared to OXPHOS, glycolysis
produces 2 ATP, while OXPHOS produces 26 ATP [52]. Inhibition of glycolysis reduces M1
polarization of Macs. Reduced OXPHOS activation in pro-inflammatory Macs results in the
accumulation of Krebs cycle metabolites such as malate, fumarate, citrate, and succinate [54].
Figure 3 illustrates the various intermediates used as precursors for anaerobic glycolysis in
pro-inflammatory M1-like Macs [55].
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Figure 3. Important metabolic pathways in M1 Macs. M1 Macs have increased aerobic glycolysis,
the process of converting glucose into lactate. An increased pentose phosphate pathway (PPP) is
another characteristic of M1 Macs, which leads to the generation of the inflammatory mediators,
nitric oxide (NO) and reactive oxygen species (ROS). M1 Macs have enhanced levels of succinate and
citrate because the TCA cycle is partially inhibited. Furthermore, increased citrate leads to enhanced
fatty acid synthesis (FAS) in M1 Macs. Reduced levels of electron transport chain (ETC) activity and
production of mitochondrial ROS are also known hallmark features of M1 Macs.
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Furthermore, increased glycolysis uncouples the mitochondrial electron transport
chain from ATP synthesis, causing increased ROS production levels [56] which is one of the
mechanisms that Macs use for bacterial killing [57]. mTOR, hypoxia-inducible factor 1-a
(HIF-1α), and ubiquitous enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
(uPFK2) are known to be involved in the regulation of glycolysis [58]. The uPFK2 increases
glycolysis by increasing the 6-phosphofructo-1-kinase (PFK-1) enzyme activity, and conse-
quentially the production of more fructose 2,6-biphosphate in pro-inflammatory Macs [58].
There are also elevated levels of glucose uptake in M2-polarized Macs compared to naïve
(M0) ones, but M1 Macs have the highest glycolysis activity (M1 > M2 > M0) [59]. As dis-
cussed above, to maintain their anti-inflammatory functions, M2 Macs use the Krebs cycle
and OXPHOS pathways. However, other studies do suggest that M2 Macs can also use the
FAO pathway to meet their anti-inflammatory energy needs [60], which is illustrated in
Figure 4.
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5. Models and Methods for Mac Polarization Study

In order to experimentally study Mac polarization and function, it is important to
understand the cell type and cell origin [61,62]. For example, immortalized Mac cell lines
and primary cells are fundamentally different cell types. In addition, human, mouse, or rat
macrophages have certain unique and distinct characteristics. Mac cell lines are not very
good candidates for polarization studies because of their immortal nature which exhibit an
“activated” phenotype which may be misleading for polarization studies [62,63]. On the
other hand, primary cells are the most physiologic source, and gene expression is closely
associated with their polarization states and metabolic pathways [62,64].

Although murine peritoneal macrophages have been frequently used in macrophage
studies for a long time, they are not the best cell types for polarization studies because
they are often collected from the peritoneal cavity after elicitation/activation by sterile
inflammatory agents (e.g., thioglycolate) and the collected peritoneal exudate contains
heterogeneous cell types which may be affected by various polarization agents [65]. Murine
bone marrow-derived Macs (BMDMs) are thought to be a better system for basic Mac
polarization studies. As a highly enriched population of primary-derived cells, they are
naïve and quiescent, and their gene expression and metabolic pathways are reflective of
the polarization cues [66,67].
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Given the variety of polarized Mac subtypes, identifying polarized macrophages
with a set of markers rather than a single marker, also including cytokine section readout,
will provide a more functionally relevant result in characterizing Mac phenotypes [68].
Transcriptomics (such as microarray) provide a wide range of transcript data regard-
ing the polarization markers [69]. Real-time qPCR provides more sensitive data with a
smaller number of cells [70]. Single-cell RNA-seq provides information regarding the
wide spectrum of the cell population of the polarized Macs [71]. However, it needs to
be noted that all aforementioned methods are gene-based which have the common lim-
itation that the gene expression profile is not necessarily always correlated with protein
levels/functional outcomes.

Protein expression studies are generally more functionally relevant than gene expres-
sion. ELISA, Luminex assays, and mass spectrometry techniques are some examples of
protein-based detection of Mac polarization [72–75]. The flow cytometry technique is
among the most reliable and commonly used techniques to assess phenotype and func-
tion, because of its cell-surface marker and cytokine labeling advantages [76]. In addition,
metabolic assays using extracellular flux analyzers are attractive methods to evaluate the
functional profiles of the Mac’s polarization of different cell populations [59].

We believe that the combination of methods mentioned above would also be of ad-
vantage for in-depth investigation of Mac heterogeneity. Better understanding of the Macs’
heterogeneity unique for specific disease stages of atherosclerosis would help to develop
diagnosis methodologies and personalized treatments. For example, understanding the
specific cell signatures that clearly differentiate the Mac phenotypes would help to deter-
mine the exact type of Macs in plaques during different stages of atherosclerosis, which
would be very valuable in guiding better diagnosis and treatment.

6. Conclusions

Atherosclerosis is the leading cause of death in western countries. In the atherosclerosis
disease model, studies regarding the role of Mac regulation and their polarization are very
valuable in the prevention of foam cell formation and consequently control of atherosclero-
sis. Atherosclerotic plaque Macs resemble the polarized M1 phenotype, showing elevated
inflammation and glycolytic metabolism. In contrast, M2 Macs prevent plaque formation,
showing reduced inflammation and oxidative phosphorylation. Mechanisms that minimize
Mac inflammation, increase lipid degradation, and prevent foam cell formation, are likely
to decrease atherosclerosis progression. Future works are needed to further elucidate the
mechanisms of actions by which different factors induce inflammatory or anti-inflammatory
Macs in the context of foam cell formation. For example, microbiota has emerged as a
key regulator of a variety of immune cell functions [77], including macrophages [66,76]. It
would be important to investigate the role the microbiota plays in regulating macrophage
polarization in general, and specifically in atherosclerosis development.

Overall, this review underscores the importance of macrophage polarization, and
its critical role in the pathogenesis of atherosclerosis. A better understanding of Mac
infiltration, differentiation, polarization and phagocytosis would be extremely beneficial
for the prevention and treatment of atherosclerosis.
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