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Abstract: Recent genome wide association studies have identified 89 common genetic variants
robustly associated with ischemic stroke and primarily located in non-coding regions. To evaluate
the contribution of coding variants, which are mostly rare, we performed an exome array analysis on
106,101 SNPs for 9721 ischemic stroke cases from the SiGN Consortium, and 12,345 subjects with no
history of stroke from the Health Retirement Study and SiGN consortium. We identified 15 coding
variants significantly associated with all ischemic stroke at array-wide threshold (i.e., p < 4.7 × 10−7),
including two common SNPs in ABO that have previously been associated with stroke. Twelve
of the remaining 13 variants were extremely rare in European Caucasians (MAF < 0.1%) and the
associations were driven by African American samples. There was no evidence for replication of these
associations in either TOPMed Stroke samples (n = 5613 cases) or UK Biobank (n = 5874 stroke cases),
although power to replicate was very low given the low allele frequencies of the associated variants
and a shortage of samples from diverse ancestries. Our study highlights the need for acquiring large,
well-powered diverse cohorts to study rare variants, and the technical challenges using array-based
genotyping technologies for rare variant genotyping.

Keywords: African American; exome wide association study; exome array; ischemic stroke; rare
coding variants

1. Introduction

Stroke is the second leading cause of disability and death worldwide, accounting for
over 6 million deaths in 2019 [1]. The etiology of ischemic stroke(IS), the predominant
form of stroke, is multifactorial and includes both genetic and nongenetic causes. Genome-
wide association studies (GWAS) have identified 89 stroke-associated loci to date [2,3],
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although these loci account for only a very small proportion of stroke heritability. A major
limitation of current genome-wide approaches, which rely predominantly on genotyping
arrays, is that they typically interrogate only common variation throughout the genome
(e.g., SNPs with minor allele frequency > 1–5%) and generally do not cover the coding
regions of the genome. Protein-coding variants are generally rare and are poorly captured
by conventional GWAS arrays. Identifying the contribution of protein coding variation to
stroke etiology is important. Even if exonic variation accounts for only a small proportion
of stroke burden, identification of variants in novel genes may provide new insights into
stroke biology.

The potential contribution of rare protein-coding variation to the etiology of ischemic
stroke has not been systematically studied. Several small pilot exome-array association
studies have been published based on relatively small numbers of subjects [4]. In 2015,
Auer et al., published an exome-wide association analysis based on 365 ischemic stroke
cases with small- and large-vessel subtypes (plus additional controls) who underwent
whole exome sequencing through the NHLBI Exome Sequencing Project [5]. This study
identified two protein-coding variants associated at exome-wide levels of significance, one
a common variant (in PDE4DIP), and a second a rare variant (in ACOT4), although neither
association has been replicated in subsequent studies. Using whole genome sequencing
data from the TOPMed Consortium, Hu et al., recently performed a genome-wide analysis
of 5616 ischemic stroke cases and >27,000 controls, from which they identified 2 variants
significantly associated with IS and a 3rd variant associated with IS due to large-artery
atherosclerosis (n = 352 cases). The lead variants at all loci were low-frequency and more
common in non-European populations. None of the variants were exonic, and none of
these associations have been replicated in independent data sets, although the minor allele
frequencies of these variants were low and the power to replicate limited.

To expand these efforts, we have performed an exome-wide array analysis of
9721 stroke cases from the SiGN Network and 12,345 controls to evaluate the impact
of rare coding variation on stroke risk.

2. Materials and Methods
2.1. Samples and Genotyping

This study includes 9721 ischemic stroke cases from the Stroke Genetics Network
(SiGN) (dbGap Accession phs000615.v1.p1) and 12,345 non-stroke controls (1303 from
SiGN and 11,042 from the Health and Retirement Study (HRS). SiGN is an international
collaboration of 31 studies across North America, Europe, and Australia to identify genetic
determinants of ischemic stroke [6]. The analysis presented in this manuscript includes
subjects (mostly stroke cases) recruited from multiple sites in the United States and Eu-
rope (UK, Poland, Belgium, Spain, Austria, and Sweden). The HRS is a representative
sample of people in the U.S. over the age of 50 residing in households with an oversample
of African American (AA) and Hispanic populations [7]. HRS exome chip data is avail-
able with an approved HRS Restricted Data Agreement (RDA). Access information can
be found at https://hrs.isr.umich.edu/data-products/genetic-data/products (accessed
on 8 April 2022). Although exome array genotyping was successfully performed on
15,561 HRS subjects, only the subset of 11,042 HRS subjects who had no stroke history and
had genome-wide array data available were included in this study so that alignment of the
genome-wide genotyping data could be used for estimation of ancestry.

Genotyping for both studies was performed at the Center for Inherited Disease Re-
search (CIDR), SiGN cases on the Illumina HumanOmni5Exome-4v1_A array and HRS
controls on the Illumina HumanExome-12v1-1 array. Both studies used calling algorithms
implemented in GenomeStudio version 2011.1, Genotyping Module 1.9.4, and GenTrain
version 1.0.

https://hrs.isr.umich.edu/data-products/genetic-data/products
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2.2. Genotype Quality Control

A challenging feature of our study design is the use of cases and controls genotyped on
slightly different arrays and at different times. We have previously performed a high quality
GWAS of stroke in SIGN using external controls [6], which focused on common variants
(MAF > 1%) as opposed to exome content enriched for low frequency variants. Rare variants
are more challenging to call using array technologies because arrays rely on clustering due
to genotype intensity to make genotype calls. To minimize the potential for bias arising
from differential quality of genotyping calling between the two genotyping platforms, we
therefore implemented a very stringent quality control procedure to identify poor quality
SNPs and SNPs showing evidence for differential genotyping calling between the two
arrays. In Stage 1 of our genotype quality control procedure, performed prior to association
analysis, we utilized a large set of variant filters to identify and exclude SNPs of poor
quality or differential quality between the two arrays. All remaining SNPs then underwent
association analysis, after which we performed a Stage 2 quality control assessment that
consisted of manual inspection of the genotype intensity plots of all associated SNPs from
both the SiGN and HRS arrays to further exclude SNPs showing evidence of poor clustering
on one or both genotype intensity plots. Manual inspection of genotype intensity plots for
all SNPs prior to analysis was considered too labor-consuming and not feasible.

2.3. Population Structure Analysis Using Admixture and PCA

GWAS array genotypes from SIGN (Illumina 5MplusExome array) and HRS (Illu-
mina Human Omni-2.5 Quad beadchip) were used for genetic ancestry analysis following
genotype data cleaning as previously [6]. Only directly genotyped autosomal variants
with minor allele frequency (MAF) > 5% were used. The variants were further pruned
to keep independent variants not in linkage disequilibrium (LD). Principal component
(PC) analysis of genotypes was carried out in PLINK on unrelated samples and then the
related samples were projected to the established PC space. Up to 10 PCs were included as
covariates for association testing. Cases and controls had comparable distribution on the
PC space. Particularly for “AFR” samples, there was no statistically significant difference
in EUR or AFR component between cases and controls.

We additionally estimated the percentage of genetic ancestry (Europe, Africa, Na-
tive America, Eastern/South Asia) in individuals using the ADMIXTURE software pro-
gram [8] and the Human Genome Diversity Project (HGDP) reference genomes [9]. Samples
estimated as having genetic ancestry of (European + Central Asia) > 70% were classi-
fied as “EUR”, and samples estimated as African ancestry > 50% and Native American
ancestry < 5% and Asian ancestry < 5% were classified as “AFR”. The remaining samples
(mostly Latinx) were classified as “Other.” This classification was used to facilitate genotype
cleaning and filtering as applied to a particular genetic ancestry, e.g., comparing MAF
between EUR samples from SiGN and EUR samples from HRS. Only “EUR” and “AFR”
samples were used for this purpose.

2.4. Association Analysis

We performed association analysis using the mixed model as implemented in SAIGE [10].
Genetic relationship matrix was modeled as a random effect. Covariates in the logistic
regression model included sex and the first 10 principal components to account for ancestry.
Power calculations indicated that our sample provided 80% power to detect odds ratios
ranging from 1.09 to 1.20 for genetic variants with minor allele frequencies (MAF) = 0.5%
and 1%, respectively, at the exome-wide threshold for significance, i.e., 4.7 × 10−7 for
106,101 variants.

2.5. Replication

We sought to replicate associations in the TOPMed Consortium, through a look-up
from the TOPMed Stroke Working Group. TOPMed Stroke included 5613 ischemic stroke
cases and 27,106 controls who underwent whole genome sequencing [11]. Among the stroke
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cases were 4305 cases of European ancestry and 884 cases of African ancestry. We addition-
ally attempted replication of associated variants with stroke in the UK Biobank. For these
analyses, we extracted ischemic stroke cases using an ICD code algorithm previously pub-
lished in the “Definitions of Stroke for UK Biobank Phase 1 Outcomes Adjudication” [12].
Ischemic stroke was defined using ICD 10 codes 163.X (cerebral infarction) and 164.X1
(stroke not specified as haemorrhage or infarction) and analyses performed in 5874 stroke
cases and 117,442 controls (i.e., 20 controls/case). All data were downloaded from the UK
Biobank Resource under Application Number 49852. We performed logistic regression in
PLINK using age, sex and 5 principal components for ancestry.

3. Results

Study subject characteristics. Our analysis was based on 9721 cases and 12,345 controls.
SiGN cases were recruited from 22 sites across the U.S. and Europe (Table S1). SiGN cases
(all sites) plus SiGN controls from Belgium and Poland were genotyped on the Illumina
HumanOmni5Exome-4v1_A array and all HRS controls were genotyped on the Illumina
HumanExome-12v1-1 array. Characteristics of study subjects are shown in Table 1. The
mean age of stroke onset in cases was 67 years (range: 14–104 years). 81% of cases and 80%
of controls were genetically defined as European ancestry and 11% of cases and controls
were genetically defined as African ancestry. TOAST subtype classification was unavailable
in 64% of all stroke cases.

Merging of variants from the SiGN and HRS arrays. A total of 4,278,837 GWAS
plus exome content SNPs were released for analysis in SiGN and 228,088 exome array
SNPs for HRS following completion of array-specific initial quality control procedures
by the genotyping center (CIDR) and subsequent in-depth quality assurance/quality
control (QA/QC) analysis by the genotyping analysis core at the University of Washington
(SiGN) or the University of Michigan (HRS). The sample level and variant level filters
recommended by the genotyping analysis cores were applied before data merging and
the two-stage variant QC described below for current study. After removing variants that
failed strand or allele alignment, there were a total of 198,811 overlapping SNPs between
the SiGN 5MPlusExome array. We then removed 10,413 of these aligned SNPs because they
were peripheral to relevant exome content, as they were included as ancestry-informative
variants or for QC or method development purposes. We then conducted detailed quality
control analyses on the remaining set of 188,398 SNPs merged from SiGN and HRS to
identify SNPs whose genotyping quality potentially differed across platforms.

Stage 1 variant quality control filtering. We implemented multiple quality con-
trol checks to exclude potentially problematic SNPs from analysis. Criteria for exclud-
ing SNPs included: (1) excessive deviation from HWE in either EUR or AFR controls,
or extreme deviation in cases; (2) AT/GC SNPs with high allele frequency; (3) discor-
dant genotype calls between samples genotyped on both platforms; (4) excessive differ-
ences in AF between EUR controls genotyped in SIGN and HRS; (5) low minor allele
count; (6) high genotype missingness calls; (7) possible under-calling of genotypes, es-
pecially in SiGN (8) non-autosomal SNPs, (9) SNPs marked in HRS as technical failures;
(10) large AF differences between controls and gnomAD; and (11) SNPs with duplicate
probes but discordant genotypes (Figure 1). A total of 82,297 (43.7%) of SNPs were excluded,
although the bulk of these (n = 78,725) were excluded due to low MAC in both cases and
controls. A detailed description of the variant exclusion criteria, including filters for used
for each criterion, is provided in the Supplemental Materials, and the specific filtering
thresholds used at each step in QC are provided in Table 2. For HRS, we applied the filters
recommended in the Quality Control Report recommended by HRS Analysis team at the
University of Michigan.



Genes 2023, 14, 61 5 of 12

Table 1. Characteristics of study subjects.

Cases Controls

N 9721 12,345

Age (or Age of onset for cases) 67.0 ± 14.0 57.0 ± 9.7

Age range (yrs) 14–104 17–94

% Female 4662 (73.4%) 7335 (78.2%)

Self-reported ancestry

EUR 7138 (73.4%) 9659 (78.2%)

AFR 1022 (10.5%) 1358 (11.0%)

Hispanic 893 (9.2%) 1034 (8.4%)

Other 666 (6.9%) 0

unspecified 2 (0.2%) 294 (2.4%)

Genetic ancestry (computed)

EUR 7921 (81.5%) 9911 (80.3%)

AFR 1044 (10.7%) 1353 (11.0%)

Other 756 (7.8%) 1081 (8.8%)

Number of subjects excluded in QC
analysis based on unrelated subjects (but

included in association analysis)
246 (at pi-hat > 0.1875) 0

TOAST classification of IS

Cardioembolism 2210 (10.0%)

Large-Artery Atherosclerosis 1297 (5.9%)

Small-Artery Occlusion 2218 (10.1%)

Other Known Causes 296 (1.34%)

Undetermined 1831 (8.3%)

Unknown 14,214 (64.4%)

Genetic association results. Following variant quality control filtering, we performed
genetic association studies on 106,101 variants with minor allele count ≥ 10 in cases or
controls. We identified 36 variants significantly associated with all ischemic stroke meeting
array-wide threshold for statistical significance (i.e., p < 4.7 × 10−7). Upon manual review
of these variants, we considered the SiGN or HRS genotype intensity plots for 21 of
these SNPs to be of poor or questionable clustering quality, leaving 15 variants that we
regarded as being robustly associated with stroke. Association results for these variants are
shown for the overall meta-analysis in Table 3, and the genotype intensity plots for these
15 associated SNPs from both the SiGN and HRS arrays are provided in Supplemental
Figure S1. Among the 15 associated variants were two common SNPs in ABO, rs507666
and rs635634 that are in near perfect linkage disequilibrium with each other (r2 = 0.99) and
that have previously been associated with stroke [2]. Twelve of the remaining 13 variants
were extremely rare in European Caucasians (MAC ≤ 10 combined for each in cases and
controls) and the associations were driven by substantially higher allele frequencies in
African American cases than in African American controls (Table 4). Four of these variants
(TPTE rs143510517, MEP1A rs62619974, DDX31 rs142792732, and PATL1 rs79336999) were
associated with stroke at p < 1 × 10−10. A variant in PRIM2, rs199585353, was present
exclusively in European Caucasians, in whom the minor allele frequency was 0.25% in
cases (MAC = 40) and 0% in controls (p = 8.28 × 10−8).
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thresholds at each QC step). 

Table 2. SNP Quality control filters. 

1.  MERGE HRS + SiGN  198,811 SNPs 
2.  Remove SNPs designed for technical purposes such as randomly selected synonymous 

variants as annotated by CHARGE (see Supplemental Materials) 
188,398 remained 

3.  SNP QC filter     Excluded SNPs * 
 SNPs with genotype AT or GC if AF is between 40–60%  132 
 deviation from HWE in HRS controls( p < 1.0 × 10−5 (EUR), p < 1.0 × 10−10 (AFR)) 162 
 deviation from HWE in controls from SIGN ( p < 1.0 × 10−5 (EUR)) 51 
 deviation from HWE in stroke cases (p < 1.0 × 10−20 (EUR), 1.0 × 10−10 (AFR)) 3552 * 

 discordant call > 0 among technical duplicated samples from 51 subjects genotyped 
on both platforms (29 HRS samples and 22 WUSTL samples) 

205  

 

large allele frequency differences in EUR (EWAS p < 1.0 × 10−3 using the SAIGE 
method) between control samples genotyped in SiGN and HRS; the p < 1.0 × 10−3 
cutoff was chosen through examining the outliers on the distribution plots of the 

resulting p-values.  

147  

 Missing rate >2.5% in SiGN or HRS for non-rare variants with MAF ≥ 1%, 1145 
 Missing rate >0.8% in SiGN or HRS for rare variants with MAF < 1% 43,289 

Figure 1. Stage 1 variant quality control pipeline. 188,398 SNPs merged between the SIGN and HRS
arrays. 82,297 SNPs excluded, leaving 106,101 SNPs for analysis (see Table S1 for specific filtering
thresholds at each QC step).

Of the 13 non-ABO variants, all have MAF < 0.1% in European ancestry populations
and ≤4% in African ancestry populations as indicated in gnomAD. Seven of the 13 are
annotated through ANNOVAR using RefSeq gene annotation [13] as missense variants,
2 as stoploss variants, and the remaining 4 as function unknown. One SNP rs149905649 in
gene DOK7 was included in ClinVar but was annotated as “benign/likely benign”. None
of the remaining SNPs were included in ClinVar.

Replication. We sought to replicate the associations of these 15 variants in TOPMed
Stroke and UKB. In TOPMed Stroke, 10 of the 15 variants were polymorphic in TOPMed,
none of which showed evidence for association (Table S2). Associations of the two ABO
variants were directionally consistent with the discovery analysis in both the European
and African ancestry populations. Among European ancestry cases and controls com-
bined, only 2 of the remaining 13 (non-ABO) variants had minor allele counts > 8; among
African ancestry cases alone, 7 of these 13 non-ABO variants had minor allele counts > 6
(range 190–631).
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Table 2. SNP Quality control filters.

1. MERGE HRS + SiGN 198,811 SNPs

2. Remove SNPs designed for technical purposes such as randomly selected synonymous
variants as annotated by CHARGE (see Supplemental Materials) 188,398 remained

3. SNP QC filter Excluded SNPs *

SNPs with genotype AT or GC if AF is between 40–60% 132

deviation from HWE in HRS controls( p < 1.0 × 10−5 (EUR), p < 1.0 × 10−10 (AFR)) 162

deviation from HWE in controls from SIGN ( p < 1.0 × 10−5 (EUR)) 51

deviation from HWE in stroke cases (p < 1.0 × 10−20 (EUR), 1.0 × 10−10 (AFR)) 3552 *

discordant call > 0 among technical duplicated samples from 51 subjects genotyped on
both platforms (29 HRS samples and 22 WUSTL samples) 205

large allele frequency differences in EUR (EWAS p < 1.0 × 10−3 using the SAIGE
method) between control samples genotyped in SiGN and HRS; the p < 1.0 × 10−3

cutoff was chosen through examining the outliers on the distribution plots of the
resulting p-values.

147

Missing rate >2.5% in SiGN or HRS for non-rare variants with MAF ≥ 1%, 1145

Missing rate >0.8% in SiGN or HRS for rare variants with MAF < 1% 43,289

Possibly undercalled in SiGN: MAC ≤ 3 in SiGN (all ancestries), but > 20 in HRS EURs 66

Marked as technical failure in HRS upon additional manual review of Genome Studio
clustering plots 308

Allele frequency differ significantly between HRS EUR samples and gnomAD
non-Finnish EUR (p < 1.0 × 10−5 for rare variants, p < 1.0 × 10−10 for low frequency

and common variants)
1618

duplicate probes on SIGN 5MplusExome array with discordant allele frequencies
(Fisher exact p < 0.05) 144

SNPs with low MAC (<10) 78,725

Non-autosomal SNPs 3478

Number of SNPs remaining 106,101

4. Both SNP-specific and study site specific masking for variants from SIGN samples Affected SNPs

variants showed substantial allele frequency differences between a particular site and
the remaining samples (p < 1.0 × 10−3 and AC > 10) 993

variants showed substantial call rate differences between a particular site and the
remaining samples (differential missingness p value < 5.0 × 10−7) 12,691

Number of SNPs remaining 106,101

* the excluded SNPs are not exclusive among rows; e.g., 3534 of these SNPs also excluded by other criteria.

In the UKB, we attempted to replicate only the PRIM2 rs199585353 and DOK7 rs149905649
associations observed in the European ancestry group as the number of African ancestry
individuals in UKB with stroke was small (n = 101). The imputation quality of PRIM2
rs199585353 did not meet our info score quality control threshold of 0.7 (info = 0.51)
and was therefore not analyzed. The MAF for DOK7 rs149905649 was 0.00051 in cases
(6/(5874 × 2)) and 0.00068 in controls (159/(117,439 × 2)); p = 0.46).
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Table 3. Annotations of 15 SNPs associated with stroke on exome-wide analysis.

SNP rs Number Gene Function AA Change A2 A1 OR p-Value

exm1345082 rs192153785 GH2 missense Q228P T G 7.45 1.92 × 10−8

exm1501517 rs140922537 ZNF765 missense P270S C T 6.99 5.63 × 10−10

exm1562153 rs143510517 TPTE missense R274W G A 6.56 7.17 × 10−12

exm21949 rs373898350 NBPF1 unknown G T 6.73 3.56 × 10−7

exm365204 rs141845742 SPATA16 stoploss X570Q A G 7.90 2.56 × 10−7

exm384695 rs149905649 DOK7 missense R92W C T 0.16 3.67 × 10−8

exm552854 rs62619974 MEP1A missense K396R A G 6.77 1.04 × 10−11

exm558342 rs199585353 PRIM2 unknown G T 5.51 8.20 × 10−8

exm615057 rs375144101 TRGC1 stoploss Ter174LysextTer17 A T 7.35 4.46 × 10−10

exm791656 rs142792732 DDX31 missense E33K C T 0.16 2.38 × 10−17

exm90767 rs372423248 SEC22B unknown A C 7.41 2.57 × 10−8

exm90783 rs373433490 SEC22B unknown C T 6.74 1.65 × 10−10

exm913753 rs79336999 PATL1 missense Y645C T C 7.52 2.10 × 10−13

exmrs507666 rs507666 ABO intronic G A 1.17 4.79 × 10−8

exmrs635634 rs635634 ABO Intergenic C T 1.17 6.12 × 10−8
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Table 4. Allele frequencies and counts of 15 EWA stroke-associated SNPs in cases and controls stratified by ancestry.

Ancestry = ALL EUROPEANS ONLY AFRICAN AMERICANS ONLY

CASES
(n = 9721)

CONTROLS
(n = 12,345)

CASES
(n = 7138)

CONTROLS
(n = 9659)

CASES
(n = 1022)

CONTROLS
(n = 1358)

SNP rs Nnumber Gene A2/A1 MAF AC MAF AC

MAF
gnomAD

(TO-
TAL) MAF AC MAF AC

MAF
gnomAD

(EUR
Non-

FINNISH) MAF AC MAF AC

MAF
gnomAD

(AFR/AFR
AM)

exm1345082 rs192153785 GH2 T/G 0.21% 40 0.00% 0 0.15% 0.01% 2 0.00% 0 0.00% 1.58% 33 0.00% 0 1.44%

exm1501517 rs140922537 ZNF765 C/T 0.25% 49 0.01% 2 0.25% 0.03% 5 0.00% 0 0.01% 1.92% 40 0.04% 1 2.43%

exm1562153 rs143510517 TPTE G/A 0.36% 69 0.01% 2 0.07% 0.04% 6 0.00% 0 0.00% 2.55% 53 0.04% 1 0.77%

exm21949 rs373898350 NBPF1 G/T 0.18% 35 0.00% 1 0.00% 0.01% 1 0.00% 0 0.00% 1.35% 28 0.04% 1 0.03%

exm365204 rs141845742 SPATA16 A/G 0.16% 31 0.00% 0 0.12% 0.00% 0 0.00% 0 0.00% 1.29% 27 0.00% 0 1.17%

exm384695 rs149905649 DOK7 C/T 0.00% 0 0.22% 54 0.22% 0.00% 0 0.06% 10 0.09% 0.00% 0 1.45% 39 1.66%

exm552854 rs62619974 MEP1A A/G 0.34% 67 0.00% 1 0.36% 0.01% 1 0.00% 0 0.01% 2.83% 59 0.00% 0 3.08%

exm558342 rs199585353 PRIM2 G/T 0.21% 40 0.02% 6 0.02% 0.25% 40 0.00% 0 0.04% 0.00% 0 0.00% 0 0.01%

exm615057 rs375144101 TRGC1 A/T 0.26% 50 0.00% 1 0.13% 0.04% 6 0.00% 0 0.01% 1.63% 34 0.04% 1 1.27%

exm791656 rs142792732 DDX31 C/T 0.00% 0 0.58% 143 0.37% 0.00% 0 0.03% 5 0.00% 0.00% 0 4.77% 128 4.11%

exm90767 rs372423248 SEC22B A/C 0.21% 40 0.00% 0 0.03% 0.01% 1 0.00% 0 0.00% 1.58% 33 0.00% 0 0.28%

exm90783 rs373433490 SEC22B C/T 0.27% 53 0.01% 3 0.01% 0.02% 3 0.00% 0 0.00% 2.11% 44 0.12% 3 0.11%

exm913753 rs79336999 PATL1 T/C 0.37% 71 0.00% 0 0.22% 0.00% 0 0.00% 0 0.00% 3.21% 67 0.00% 0 2.41%

exm-rs507666 rs507666 ABO G/A 20.80% 3589 17.99% 4442 17.23% 22.93% 3207 19.14% 3297 19.85% 9.95% 183 10.43% 281 10.79%

exm-rs635634 rs635634 ABO C/T 20.78% 3586 18.00% 4443 17.17% 22.94% 3209 19.13% 3296 19.79% 9.68% 178 10.50% 283 10.75%
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4. Discussion

We combined exome array genotypes from a large collection of stroke cases with ex-
ome array data from publicly available controls to carry out a large-scale association
study to identify rare protein-coding variants associated with ischemic stroke. With
9721 well-phenotyped stroke cases, this study represents the largest effort to date to iden-
tify rare protein-coding variants associated with ischemic stroke at an exome-wide level.
Although we identified 13 rare variants meeting exome-wide thresholds for association,
none replicated in the 2 replication datasets. Of the 13 rare variants none have known
biology function to be compelling candidate genes responsible for the pathogenesis of
ischemic stroke; 12 of the 13 associations were driven by allele frequency differences in
the African American (AA) population, in whom the sample sizes in both the Discovery
and Replication data sets were much smaller. We also identified two common variants
(MAF ~ 0.20 in European ancestry) in ABO that are in high linkage disequilibrium with
each other and that have been previously associated with ischemic stroke [2].

Our results lend further support for advocating the inclusion of diverse populations
in genomic studies. The sample sizes of African American samples were small in our
discovery data (1044 AA cases). However, most of the identified exome variants in our
EWAS analysis (12 out of 13 variants) reached statistical significance due to their presence
or relatively higher minor allele frequencies in African American (MAF 0.03%~4.11%),
while being absent in Europeans. Nonetheless, at n = ~1000 of cases, the power was too
low for a reliable discovery and replication, especially given the genetic diversity among
African American across study cohorts. It is thus not surprising that these AA-specific
coding signals did not replicate in the TOPMed cohort, in whom the AA sample size
was also limited. Our efforts highlight the need to expand genomics research in non-
European populations.

Up to 81.5% of our discovery samples were of European ancestry genetically. Yet, we
identified only 2 exome-wide associated loci driven by European samples, one previously
identified at ABO and the second a novel locus in PRIM2, that was not replicated in either
TOPMed or UKB. There are several possible reasons for our failure to identify more robust
associations in exomes of Europeans. First, the coverage of the exome in our analysis was
low due to our stringent filtering criteria and some ‘causally’ variants may have failed QC
and not been tested. In fact, only 46.5% of the variants of the exome array content were
actually tested. Whole exome sequencing would have provided much greater coverage
across genomes. Second, the overall EWAS power to detect and replicate ‘significant’
associations for rare variants in our dataset, even with 9721 cases in the Discovery set, was
low. Although the two ABO variants are very common with MAF up to 20% in European,
the variant in PRIM2 only has MAF 0.04% in GNOMAD European samples. Third, it is
also possible that rare protein-coding variants do not play a large role in the etiology of
ischemic stroke.

Our study highlights a major challenge in accruing large sample sizes for rare variant
analyses. The problem of accruing large samples sizes for analysis of common variants has
been addressed successfully by combining study-specific genome-wide association results
through meta-analysis. Within contributing studies, established protocols are typically
used that include a thorough assessment of genotype intensity clusters for evaluation of
cluster separation and genotype calls. Such assessments rely on sufficient numbers of
each genotype to establish genotype separation boundaries. If sufficient numbers of each
genotype are not available, as when the minor allele count is very small, establishing the
genotype cluster separation boundaries can be difficult, making the genotype call unreliable.
This problem is magnified if cases and controls are genotyped in different labs or different
batches, because any ‘batch’ effect will mimic a difference between cases and controls. We
attempted to address this problem by implementing a very stringent set of quality control
measures that considered both within study (SiGN and HRS) as well as between study
measures. We further attempted to minimize the possibility of identifying false results
by manually inspecting the genotype intensity clusters of all variants we reported to be
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exome-wide associated with stroke. However, the cost of our implementing this stringent
procedure was removing a large proportion (46.6%) of variants from analysis. The rigid
variant QC procedures coupled with the necessity of manually inspecting all genotype
intensity plots for all ‘reportable’ associations also makes bin-based analyses much less
attractive since many bins will be incompletely covered due to variant filtering and all
variants would require the laborious task of evaluation of genotype intensity plots.

Future efforts to identify rare protein-coding variants associated with stroke would be
wise to pay heed to these lessons by using studies that rely either on non-array genotyping
technologies, such as sequencing, for variant detection, or to employ very large samples
for array-based studies in which cases and controls are genotyped together with careful
effort made to minimize batch effects. For example, a recently published study from the
TOPMed Stroke Working Group was based on whole genome sequencing (WGS), although
this study included only 5616 ischemic stroke cases and 27,116 non-stroke controls [11].
This WGS study identified five novel variants associated with stroke. However, only 2 of
these variants were present in SiGN and neither provided evidence for replication.

Our study includes other limitations. Even with 9721 stroke cases, our sample is
powered only to detect those rare variants having relatively large effect sizes. Stroke
subtype information was available for only 35.6% of our cases, even further limiting power
for stroke subtype-specific analyses.

5. Conclusions

We have conducted the largest effort to date to identify rare protein-coding variants
associated with ischemic stroke at an exome-wide level. We identified 13 rare stroke-
associated variants as well as one additional association with 2 common variants at a
previously known locus in ABO. Our study highlights the multiple challenges in using
publicly available controls for large-scale rare variant array-based studies and the impor-
tance of expanding the inclusion of diverse non-European samples in the genetic study of
ischemic stroke.
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