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Abstract: Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks
and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary
studies. We employed 18 WDSs representing three non-synanthropic species (Mus spretus, Mus
spicilegus, and M. macedonicus) and three house mouse subspecies (Mus musculus musculus, M. m.
domesticus, M. m. castaneus), which are all important human commensals to explore whether the
number of major urinary protein (MUP) genes and their final protein levels in urine are correlated
with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein
excretion in the strains derived from M. m. castaneus, which is supposed to be the strongest commensal,
were not significantly different from the non-commensal species. Regardless of an overall tendency
for higher MUP amounts in taxa with a higher CN, there was no significant correlation at the strain
level. Our study thus suggests that expansion of the Mup cluster, which appeared before the house
mouse diversification, is unlikely to facilitate commensalism with humans in three house mouse
subspecies. Finally, we found considerable variation among con(sub)specific WDSs, warning against
generalisations of results based on a few strains.
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1. Introduction

Advancements in life sciences are inevitably contingent on biological models. Besides
well-known and extensively employed invertebrates such as the nematode Caenorhabditis
elegans or Drosophila fruit flies, the house mouse (Mus musculus) is undoubtedly one of the
most widespread model organisms. This synanthropic mammal species consists of three
widespread subspecies: musculus, domesticus, and castaneus, which diverged approximately
350–500 thousand years ago [1–5]. House mice are significant human commensals, while
other species involved in the same clade (‘M. musculus group’: M. spretus, M. macedonicus,
M. spicilegus, and M. cypriacus) live for the most part outside the synanthropic niche [6,7].

Like most other models, mice have several advantages. They are relatively easy to
breed and manipulate, have a relatively short generation time, and can reproduce all year
round. In fact, the entire genome sequence of the house mouse was published only a year
after that of humans [8], and large databases of well-annotated sequences and diverse
molecular markers with known positions in the genome are now available. Since house
mice are highly tolerant of inbreeding, numerous inbred laboratory stocks have been
established during the last century. However, these ‘classical laboratory strains’ (CLSs)
have several substantial limitations.

First, these mice represent an artificial taxon. In the 1980s, it became apparent that
most CLSs, until then considered domesticated M. m. domesticus, carry M. m. musculus
Y chromosomes [9–11]. Later, it was shown that CLSs’ genome is a mixture of all three
subspecies, though the contribution of domesticus prevails [12–14]. Second, the genetic
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and phenotypic diversity of CLSs is severely restricted. For example, despite a wide
array of existing stocks, their ancestry basically traces back to a single female [12,15–17].
Therefore, mouse inbred strains cannot encompass the whole variation in the wild and do
not represent natural conditions.

Consequently, scientists have started to pay attention to wild mice and more natural
settings in addressing genetic, physiological, behavioural, and ecological questions, e.g.,
using seminatural enclosures [18–23] or barns [24–26]. However, the scale of natural
variation covered by the mice in these experiments has necessarily been limited. Moreover,
high variability contradicts the requirements for experimental reproducibility (see [13] for
a review of the strengths and limitations of CLSs and wild mice).

A promising compromise between the availability of sufficient variation and re-
producibility is inbred stocks directly derived from mice captured in natural popula-
tions [17,27–29]. Contrary to CLSs, the geographic origin and pedigree of these wild-
derived strains (WDSs) are precisely known. Although they cannot equal wild mice in
the level of variation that they harbour, this deficiency can be alleviated by increasing
the number of strains employed. A current study of 101 WDSs representing five species
(including the three M. musculus subspecies) and eight natural Y chromosome consomic
strains has revealed substantially higher variation than CLSs; for example, WDSs displayed
as many as 2483% single-nucleotide polymorphisms (SNPs) compared to CLSs [17]. There-
fore, WDSs appear to be excellent tools for diverse genetic, behavioural, and ecological
studies, allowing miscellaneous hypothesis testing.

Ideal candidates for such testing are genes involved in olfaction. The house mouse is
extraordinary because it possesses ~1200 olfactory receptors and ~250 pheromone receptors
in its genome [30–32]. The high numbers of receptors mirror a complex mix of chemical
signals involved in mouse communication. This mix includes products of multigene
families such as secretoglobins (also known as androgen binding proteins, ABPs), the
major histocompatibility complex (MHC), exocrine gland-secreted proteins (ESPs), odorant-
binding proteins (OBPs), and major urinary proteins (MUPs) (see [33–35] for review),
detected either by the main olfactory epithelium or vomeronasal organ.

Our study focuses specifically on major urinary proteins, which play a prominent
role in mouse chemical communication [36]. These relatively small (18–20 kDa) barrel-
shaped lipocalin proteins bind low-molecular-mass ligands, including volatile pheromones,
which are released through urine, saliva, tears, and other secretions into the external
environment. Because of this bond, the release is slow, and the effect of the ligands is
thus protracted [37,38]. However, at least some of them can, on their own, also modu-
late the recipients’ behaviour and physiology [39–44]. The most important are urinary
MUPs (uMUPs) which are expressed in the liver and secreted through the kidneys into
urine [45–47]. The uMUP production is sexually dimorphic: males excrete 3–10 times more
uMUPs than females [43,48,49].

In house mice, the Mup cluster consists of at least 21 genes and 20 pseudogenes, which
are tandemly arrayed across an ~2 Mb long stretch of chromosome 4. There are two classes
of Mup genes that differ in sequence similarity and expression profiles. Evolutionarily older
is the peripheral class, characterised by <82% mature protein sequence identity. The central
cluster is younger and highly homogeneous (>97% mature protein sequence identity),
suggesting a very recent series of duplications or gene conversions [50–52]. According
to Sheehan et al. (2019), the central Mup cluster has undergone two phases of expansion:
a minor one in the common ancestor of M. musculus, M. spretus, M. macedonicus, and M.
spicilegus, and a second, larger expansion predating the diversification of the three M.
musculus subspecies.

The timing of the second central Mup expansion suggests that this event may have
facilitated the evolution of human commensalism in house mice about 10,000 years ago [52].
This is because the ability to convey complex information through urinary scent marks
can be beneficial in densely populated synanthropic environments [53]. High population
densities associated with the synanthropic niche should increase interaction rates among
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mice, making information-rich urinary marks highly important. Therefore, although the
expansion of the central Mup gene cluster predated human commensalism, its further
diversification could have been positively selected by the synanthropic bond [52]. On the
other hand, we may assume that Mup genes, like other large gene families, are prone to
high within-species copy number variation (CNV) [54,55]. Unfortunately, a large part of
this variation remains undetected despite years of high-throughput sequencing. One of the
reasons for this gap is difficulties with correctly assembling large repeated regions [56,57],
whereas other approaches like qPCR may lack adequate accuracy [58]. Moreover, most
previous studies have been limited to a couple of CLSs, such as the reference genome
mouse C57BL/6, while information on the number and arrangement of Mup paralogs in
wild populations and/or other mouse species is rather scarce. This gene cluster may thus
harbour an important portion of undetected variation [50,51].

As mentioned above, the number of Mup genes is positively correlated with the level
of synanthropy in the M. musculus group, with a higher CN in the commensal house
mouse than in other, non-commensal species [52]. This raises the question of whether
this association can be extended to different house mouse subspecies or populations. For
example, according to Payne et al. (2001) [59] and Beynon et al. (2002) [60], a free-living
(‘feral’) island M. m. domesticus population revealed higher MUP profile similarity and
lower diversity than the mainland, farm-living populations. Similarly, Cheetham et al.
(2009) [49] reported reduced MUP profile complexity and diversity in lab strains compared
to wild mice. While the former case is likely to be largely related to population size
differences, and all three studies were focused on MUP electrophoretic band profiles rather
than the number of Mup genes, these findings suggest that variations in total gene count
and expression can be expected not only between synanthropic and non-synanthropic
mouse species, but also among subspecies and populations of M. musculus itself.

Despite the fact that house mice exhibit high ecological plasticity [61,62], M. m. do-
mesticus is generally believed to be more tightly associated with humans than M. m. mus-
culus [61,63–65]. Furthermore, populations of the former subspecies were shown to be
more strongly structured into local breeding units or demes [66]. Much less information is
available regarding the Asian subspecies M. m. castaneus, but it is also known to be highly
commensal [61,67–69] or even more commensal than M. m. domesticus [61,63,65], being
“man‘s closest indoor associate among undomesticated mammals” [70] (p. 20).

In this study, we test for a potential association between the level of synanthropy and
the number of Mup gene copies within the M. musculus species group using the droplet
digital PCR method. These data are complemented with measurements of MUP levels in
urine. Wild individuals are not suitable for this purpose because each mouse is genetically
distinct (and, for some part, heterozygous), which hampers generalisations. Therefore,
here, we employ 18 WDSs representing three house mouse subspecies and three other
species of Mus. We show that notwithstanding a general trend for a higher CN in M.
musculus than in its non-commensal relatives, CNV does not fully reflect the strength of
synanthropy. Moreover, though the total numbers of the urinary Mup gene copies were
found to be correlated with their overall uMUP levels in the urinary proteome, CN is a
poor predictor of the final level of uMUP excretion in individual strains. Finally, we show
that variation among strains derived from different subspecies does not exceed variation
within subspecies. We thus confirm the high genetic variability harboured by WDSs and
hence their great value for use in many fields of life sciences.

2. Materials and Methods
2.1. Mice

Genomic DNA was extracted from the liver as described in the Supplementary Mate-
rial. In total, we analysed 52 individuals of 18 WDSs, representing M. m. musculus (5 WDSs),
M. m. domesticus (5 WDSs), M. m. castaneus, M. spretus, M. macedonicus, and M. spicilegus
(2 WDSs each) (Table 1, Figure 1; also see Supplementary Material).
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Table 1. List of wild-derived strains used in this study. More details on the WDSs can be found
at https://housemice.cz/en (accessed on 1 January 2021). N = number of individuals per strain
(CNV/expression); note that CNV was estimated regardless of sex, whereas an equal number of
males and females per strain was used for expression measurements.

M. musculus

musculus domesticus castaneus

Strain Country N Strain Country N Strain Country N

BUSNA Czechia 3/6 DDO Denmark 3/6 CIM India 3/6
MBK Bulgaria 3/6 DROS Bulgaria 3/6 CKN Kenya 3/6
MDH Denmark 3/6 SCHUNT Germany 3/6
MPB Poland 3/6 STRA Germany 3/6
STUF Czechia 3/6 WLA France 3/6

M. spretus M. spicilegus M. macedonicus

Strain Country N Strain Country N Strain Country N

SEB Spain 3/6 ZRU Ukraine 3/6 XBS Bulgaria 3/6
SMON France 3/6 ZPB Bulgaria 2/2 MACSO Bulgaria 2/2
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Figure 1. Map of Europe with locations of the founding populations of the WDSs employed in this
study: brown circles: M. spretus, light green circles: M. spicilegus, dark green circles: M. macedonicus,
red circles: M. musculus musculus, blue circles: M. m. domesticus; the violet line schematically depicts
the hybrid zone between M. m. musculus and M. m. domesticus. Two M. m. castaneus stocks, CIM from
Masinagudi, India, and CKN from Nairobi, Kenya, are missing.

2.2. CNV

Copy numbers were scored using the QX200 Droplet Digital PCR System (Bio-Rad,
Hercules, CA, USA). We designed an MUP-specific assay consisting of two primers and

https://housemice.cz/en
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a fluorescent probe (Supplementary Figure S1, Supplementary Material) using C57BL/6J
sequence and primer design tools (Geneious Prime 9.1.5, Biomatters, Auckland, New
Zealand). The validity of the assay was checked first using NCBI Primer-BLAST (Supple-
mentary Table S1) and then using C57BL/6J genomic DNA as a template. All samples
were run in triplicates (technical replicates) and processed in the Quantasoft environment
provided with the QX200 ddPCR System, and the resulting values were rounded. The
resulting numbers were halved to obtain haploid CN estimates. Values for the biological
replicates were then averaged.

2.3. Proteomic Analysis

We followed a protocol described in [71]. In short, all urine samples were precipitated
with ice-cold acetone and centrifuged at 14,000 rpm for 10 min at 0 ◦C. The protein con-
centration of each lysate was determined using a BCA assay kit (Fisher Scientific, North
Shore City, New Zealand). Peptides cleaved with trypsin were desalted on a Michrom C18
column. Nano reversed-phase columns were used (EASY-Spray column, 50 cm × 75 µm
ID, PepMap C18, 2 µm particles, 100 Å pore size). Eluting peptide cations were converted
to gas-phase ions via electrospray ionisation and analysed using Thermo Orbitrap Fusion
(Q-OT-qIT, Thermo, Waltham, MA, USA) with the same parameters as described in [71–73].

LC-MS data were pre-processed with MaxQuant software (version 1.6.34) [74]. The
false discovery rate (FDR) was set to 1% for both proteins and peptides, and we specified
a minimum peptide length of seven amino acids. The Andromeda search engine was
used for the MS/MS spectra mapping against the modified Uniprot M. musculus database,
containing 44,900 entries. In this database, all original MUP sequences were replaced with
a complete list of MUPs from the Ensembl database [75]. Quantifications were performed
using label-free algorithms [74] with a combination of unique and razor peptides. From
the whole-proteome dataset, we dissected concentrations (in ng/mL) of individual urinary
MUPs, which were subsequently pooled.

2.4. Statistics

All datasets were tested for normal distribution. When no significant deviation from
normality was proven, parametric tests (analysis of variance, Tukey HSD, Student’s t-test,
Pearson’s correlation) were used; otherwise, non-parametric tests (Kruskal–Wallis, Mann–
Whitney, median test) were applied. Statistica v. 14 [76] was employed for all the statistical
analyses.

3. Results
3.1. CNV

Variation within the technical (within-individual) replicates, expressed as Poisson
errors provided by QX200 software, was very low (Supplementary Table S2), regardless
of the number of copies (r = −0.102; p = 0.4916). Nevertheless, the variance between
individuals within WDSs significantly increased with CN (Figure 2), i.e., the higher the CN,
the greater the difference between individuals of the same strain (r = 0.541; p = 0.0204).

ANOVA revealed highly significant CN variation among the taxa (F = 44.649, d.f. = 5,
p = 0.0000). As expected, non-commensal WDSs had the lowest CN captured by our assay,
with average values ranging from 4.40 (MACSO) to 9.65 (ZPB), but mostly between 5 and
6 (Supplementary Table S2). In contrast, higher CN values were found in the commen-
sal subspecies: the ranges of Mup copies were 22–35 in M. m. musculus (mean = 25.94,
SE = 1.354), 17–40 in M. m. domesticus (mean = 26.11; SE = 2.093), and 7–14 in M. m. casta-
neus (mean = 10.62, SE = 1.486). According to the Tukey HSD post hoc test, the difference
between musculus and domesticus was not significant (p = 1.0000), while both of the sub-
species had significantly higher CNs than all other WDSs, including castaneus (p = 0.0001).
Although castaneus also had a generally higher CN than the non-commensal species, these
differences were not significant (p = 0.2960–0.8542 depending on comparison). Finally,
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differences between the non-commensal species were not significant (p = 0.9535–1.0000
depending on comparison) (Table S4, Supplementary Material).Genes 2023, 14, x FOR PEER REVIEW 6 of 15 
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As shown in Figure 2, CN values varied widely among the strains (F = 194.660,
d.f. = 17, p = 0.0000), although the variation could only be tested in two commensal M.
musculus subspecies, musculus and domesticus, for which a sufficient number of WDSs was
measured. We gauged it as differences in average CN between WDSs within subspecies vs.
differences between WDSs of different subspecies. Student’s t-tests showed no significant
differences in both musculus and domesticus (p = 0.5012 and 0.1403, respectively), and the
two subspecies did not significantly differ from each other in this respect (p = 0.0919). In
summary, intrasubspecific variation appeared to be similar in the two subspecies, and it
was not different from intersubspecific variation in both of them.

3.2. Total Urinary MUP Levels

Like in CNV, the total uMUP levels varied considerably among WDSs, but, contrary
to CNV, also within the strains, especially in M. m. musculus and M. m. domesticus, in
both sexes (Figures 3 and 4; Supplementary Table S6). Kruskal–Wallis and median tests of
variance among strains yielded slightly different results, yet all were close to the significance
limits (males: Kruskal–Wallis H(17,50) = 26.973, p = 0.0585; median test chi-square = 31.333,
d.f. = 17, p = 0.0182; females: Kruskal–Wallis H(17,50) = 32.548, p = 0.0129; median test
chi-square = 26.000, d.f. = 17, p = 0.0745). When taxa, instead of WDSs, were compared,
all results were significant (males: Kruskal–Wallis H(5,50) = 21.135, p = 0.0008; median
test chi-square = 20.667, d.f. = 5, p = 0.0009; females: Kruskal–Wallis H(5,50) = 25.0177,
p = 0.0001; median test chi-square = 14,333, d.f. = 5, p = 0.0136). Kruskal–Wallis pairwise
comparisons only showed significant differences between musculus and M. spicilegus in
males (p = 0.0458) and between domesticus, M. spretus, and M. spicilegus in both sexes (males:
p = 0.0213 and 0.0039, respectively; females: 0.0045 and 0.0008, respectively; Table S5,
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Supplementary Material). The same results were revealed using pairwise Mann–Whitney
tests after Bonferroni adjustment of the α value.
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Variation was again assessed only in M. m. musculus and M. m. domesticus as differ-
ences between WDSs within and between the subspecies. Significant differences between
intrasubspecific and intersubspecific variation were found in neither subspecies nor sex
(p > 0.05 in all cases). This means that mean differences between the consubspecific strains
within musculus and domesticus are comparable to those between heterosubspecific strains.
When we compared intrasubspecific variation between the subspecies, we found a non-
significant result for males (t-test: p = 0.9556) but a significant result for females, with
higher variation in domesticus than musculus (p = 0.0154).

To what extent does variation in the total uMUP amount reflect variation in CN?
When all strains are pooled, the protein levels appear to be significantly correlated with
CN (males: r = 0.699, p = 0.0015; females: r = 0.625, p = 0.0056). However, these results can
be false positives caused by underlying general differences between the taxa, as shown
in a hypothetical example in Supplementary Figure S2. Indeed, when the two taxa with
sufficiently high N were tested separately, all results were insignificant (musculus, males:
r = 0.118, p = 0.8505; females: r = 0.859, p = 0.0621; domesticus, males: r = 0.037, p = 0.9523;
females: r = 0.046, p = 0.9420). In summary, uMUP CN is a poor predictor of the final
protein excretion at the level of WDSs within the two subspecies.

4. Discussion

In this study, we have demonstrated that although the average copy number in M.
musculus is generally higher than in its non-commensal relatives, CNV does not fully reflect
the strength of synanthropy. This is evident as the CN of M. m. castaneus, on average,
does not significantly differ from non-commensal species M. spretus, M. macedonicus, and
M. spicilegus. Moreover, CN was a poor predictor of total uMUP excretion at the level of
individual WDSs. Finally, we showed that variation among strains derived from different
subspecies does not exceed variation within subspecies.

A low CN in M. macedonicus, M. spicilegus, and M. spretus is consistent with previously
published results [52], suggesting that these non-commensal members of the M. musculus
species group have only undergone one round of expansion of the central Mup gene cluster,
while an additional expansion occurred in the three commensal house mouse subspecies
prior to their diversification [52]. A higher CN can potentially allow finer diversification
of chemical signals [77]. As pointed out by Hurst (1987) [53], Pocock et al. (2004) [78],
and others, an ability to convey detailed individuality information through urine or other
excreted fluids should be beneficial for enhanced interactions among animals in dense
house mouse populations. Higher information complexity may thus have facilitated the
evolution of human commensalism [52]. Similar associations between social structure and
individuality levels have been observed in marmots [79]. It has also been shown that people
from small home towns (i.e., from lower-density populations) have a poorer face-learning
ability than individuals from large home towns (i.e., from higher-density populations) [80].
Moreover, a large part of this variation is genetically determined [81,82].

The strikingly low number of Mup genes found in the southeastern Asian house
mouse subspecies M. m. castaneus is surprising since this taxon is commonly considered to
be strongly synanthropic [61,65,67–70], with feral populations being extremely rare (e.g.,
in Micronesia [63]). It should also be noted that all of the M. musculus-derived strains
used in this study, including the two castaneus WDSs (CIM, CKN), were established from
commensal populations living in similar synanthropic habitats. Our study thus shows that
the Mup CN is not correlated with the level of commensalism within the house mouse. This
conclusion is reinforced by the considerable CN variance within each of the subspecies,
indicating relaxed or weak selective pressure for a high CN.

The discrepancy between CN and final protein excretion is not unexpected for several
reasons. First, in addition to functional Mup paralogs, CN estimated through ddPCR is
likely to also involve several pseudogenes, despite our effort to only amplify functional
genes. Second, the expression of individual MUPs is regulated by a complex endocrine
system involving testosterone, thyroxine, and growth hormone [83,84]. Consequently,
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it can be down-regulated or up-regulated depending on health, food supply, age, and
other conditions [85,86], or as a consequence of social interactions [87], although the latter
potential influence might have been prevented or at least reduced by individual housing of
the mice under study. It has been suggested that uMUPs are able to provide individual
identity information in urine markings (e.g., [36,50,53,88–92]). This notion has recently
been challenged by Thoß et al. [85,93], who argue that individual MUP excretion profiles
are dynamic rather than stable over time, as required for the ‘barcode hypothesis’, implying
a further cause of MUP excretion variability. In any case, regardless of which of the two
contradictory hypotheses is correct, we should expect higher variation within WDSs in the
total MUP levels than in the total Mup CN, in agreement with the results of this study.

At the level of the individual taxa, the overall uMUP excretion corresponds to the
CN. The data obtained from the three non-commensal species are consistent with those
published earlier [52,84], not only in terms of the apparently, though not always significantly,
lower uMUP levels relative to M. m. musculus and M. m. domesticus, but also in terms of
differences within the non-commensal group, with uMUP excretion being the highest in
M. macedonicus and the lowest in M. spicilegus in both sexes (Figures 3 and 4). In contrast,
while previous studies [48,52,94] reported higher MUP levels in M. m. musculus males than
in M. m. domesticus males, we found no significant differences between them. The cause of
this discrepancy is unclear; however, it would be intriguing to investigate how different
mouse subspecies respond to varying social contexts, which in this case was complete social
isolation. On the other hand, our data are consistent with the lack of difference between
these subspecies in females reported by Stopková et al. (2007) [48], Hurst et al. (2017) [94],
and Sheehan et al. (2019) [52]. In fact, despite high variance among the consubspecific
strains, we revealed slightly higher uMUP excretion in domesticus females than in musculus
females, in agreement with Stopková et al. (2007) [48] and Sheehan et al. (2019) [52].

5. Conclusions

We have confirmed that WDSs harbour substantial genetic variability, making them
highly valuable for many fields of life sciences, including copy number variation and its
medicinal and evolutionary consequences. Chemical communication plays a crucial role in
many mammals [95,96]. Consequently, some mammal species, such as the house mouse,
have undergone extraordinary expansion of genes related to olfactory signals and their
receptors [30–32]. Mouse olfactory signals involve products of various multigene fami-
lies [33–35,97], which are released into various body fluids, mainly into urine. As a crucial
part of urine scent marks [36,98], major urinary proteins have long been focused on in a
vast array of studies (e.g., [36,52,84,90]). However, many of them employed highly inbred
laboratory strains that had been created via artificial selection, and thus they substantially
differed from wild mice in numerous traits [84]. Other surveys have been limited to a single
subspecies. This all makes generalisations of such studies difficult.

Wild-derived strains offer the combined benefits of CLSs (reproducibility due to being
inbred) and wild animals (natural variability). Here, we have demonstrated tremendous
diversity in MUP gene copy number and total protein levels in urine samples obtained
from mouse WDSs. This finding highlights the immense value of these stocks for genetic,
biomedical, and evolutionary studies [17]. However, we should keep in mind that ‘riding
two horses at once’, i.e., combining reproducibility with diversity, also imposes higher
demands on the number and proper choice of employed WDSs. Namely, they should both
compensate for the haphazardness of fixation of individual traits by the inbreeding process
and cover as much of the natural variation as possible. The first demand can be met by
choosing more than one WDS from the same local area, whereas the second calls for using
stocks derived from populations scattered across a large portion of a (sub)species range.

To summarise, our investigation of Mup gene numbers and the levels of their final
protein product in urine, using 18 stocks derived from commensal and non-commensal
taxa of the M. musculus species group, suggests that the second expansion of the central
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Mup cluster is unlikely to facilitate a commensal relationship with humans in the three
house mouse subspecies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes14112090/s1: Figure S1: Position of ddPCR primers and
probes in Mup paralogs (A) and the Tert gene (B). RP = reverse primer, FP = forward primer, E = exon.
Proportions of exons, introns, primers, and probes are not exactly to scale; Figure S2: A hypothetical
example of the discrepancy between correlations at different levels. While there is no correlation
between the number of genes and their expression in Taxon 1, and this correlation is even significantly
negative in Taxon 2, we detect a highly positive correlation in the total sample; Table S1: List of Mup
paralogs covered by the Mup assay, with sequences of the primers and probes. The Mup paralogs
are named according to the NCBI nomenclature. SNPs are marked in red; Table S2: List of Mup
pseudogenes of lower specificity to the GRCm39, with sequences of the primers and probes. The loci
are named according to the NCBI nomenclature; ‘Ps’ stands for pseudogene. SNPs are marked in
red; Table S3: CN estimates for each individual studied; Table S4: The results of Tukey HSD post-hoc
pairwise tests of estimated Mup CN between the mouse (sub)species: The p-values significant at
the α = 0.05 level are marked in red; Table S5: The results of Kruskal-Wallis tests of the total MUP
levels between the mouse (sub)species: p-values of multiple comparisons for males (top) and females
(bottom). The values significant at the α = 0.05 level are marked in red; Table S6: Total MUP levels in
the urine (ng/mL).
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17. Piálek, J.; Ďureje, L’.; Hiadlovská, Z.; Kreisinger, J.; Aghová, T.; Bryjová, A.; Čížková, D.; Fornůsková, A.; Goüy de Bellocq,
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