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Abstract: Plants evolved several mechanisms to protect themselves against viruses. Besides recessive
resistance, where compatible host factors required for viral proliferation are absent or incompatible,
there are (at least) two types of inducible antiviral immunity: RNA silencing (RNAi) and immune
responses mounted upon activation of nucleotide-binding domain leucine-rich repeat (NLR) receptors.
RNAi is associated with viral symptom recovery through translational repression and transcript
degradation following recognition of viral double-stranded RNA produced during infection. NLR-
mediated immunity is induced upon (in)direct recognition of a viral protein by an NLR receptor,
triggering either a hypersensitive response (HR) or an extreme resistance response (ER). During
ER, host cell death is not apparent, and it has been proposed that this resistance is mediated by a
translational arrest (TA) of viral transcripts. Recent research indicates that translational repression
plays a crucial role in plant antiviral resistance. This paper reviews current knowledge on viral
translational repression during viral recovery and NLR-mediated immunity. Our findings are
summarized in a model detailing the pathways and processes leading to translational arrest of
plant viruses. This model can serve as a framework to formulate hypotheses on how TA halts viral
replication, inspiring new leads for the development of antiviral resistance in crops.

Keywords: antiviral resistance; NLR-mediated translational arrest; PTGS; symptom recovery;
translational repression

1. Introduction

With an ever-growing population, there is an increasing need to optimize crop produc-
tion. Plant viruses alone account for around 47% of the emerging plant diseases in crops [1].
Viral transmission between plants often involves human handling, animal feeding, infected
seeds, or vectors. Common vectors include insects, such as thrips, aphids, leafhoppers, and
white flies. Combatting insect vectors with insecticides is often inefficient due to strong
selection towards resistant individuals, rendering most insecticides ineffective within a
few generations. Moreover, insecticides are often detrimental to beneficial insects, such
as pollinators [2]. Since insecticide resistance increases in agricultural areas and viral
spread is hard to control, enhancing the natural resistance of crop species is crucial to
combatting viruses.

Viruses are obligate parasites that rely on host translational machinery for protein
translation of viral RNAs and for viral replication. Therefore, plants can display passive
resistance to a certain virus when the translation machinery of the plant species is incom-
patible with the viral replication cycle [3]. For instance, mutation or reduced expression of
the genes encoding the eukaryotic translation initiation factors eIF4G and eIF4E or isoforms
of these proteins can provide recessive resistance to certain viruses in a broad range of
plant species [4–6]. Durable recessive resistance against viruses can indeed be provided
by changes in genes encoding components of the translation machinery [7], highlight-
ing the importance of understanding the mechanisms by which plant viruses hijack host
translation. Besides passive resistance, plants possess at least two known types of active

Genes 2023, 14, 1293. https://doi.org/10.3390/genes14061293 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14061293
https://doi.org/10.3390/genes14061293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-2655-3108
https://orcid.org/0000-0002-7184-0301
https://doi.org/10.3390/genes14061293
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14061293?type=check_update&version=2


Genes 2023, 14, 1293 2 of 22

immunity against plant viruses: RNA silencing (RNAi) and immune responses mounted
upon recognition of viral proteins by specific nucleotide-binding leucine-rich repeat (NLR)
immune receptors. The RNAi pathway is highly conserved among eukaryotes and has
been shown to control gene expression during plant development and in biotic and abiotic
stress responses [8]. In plants, antiviral resistance mediated by RNAi leads to either post-
transcriptional gene silencing (PTGS) to control infection by RNA viruses or transcriptional
gene silencing (TGS) and PTGS to control infection by DNA viruses. RNAi is considered
the primary antiviral defense, and many (plant) viruses have evolved viral RNA silencing
suppressors (VSRs) to counteract the RNAi pathway [9–15]. A second layer of active
defense against plant viruses is mediated by immune receptors of the NLR type. Unlike
RNAi, which is triggered upon recognition of double-stranded viral RNA molecules, NLR-
mediated resistance is activated upon recognition of a viral effector protein. Viral effectors
can be, e.g., the coat protein (CP) or movement protein (MP) [16]. Typically, NLR-type
immune receptors consist of either a coiled-coil (CC) or a Toll Interleukin 1 Receptor (TIR)
domain (referred to as CNL and TNL, respectively), a nucleotide-binding (NB) domain,
two ARC domains, and a leucine-rich repeat (LRR) domain. NLRs can be localized at
the plasma membrane, in the cytoplasm, and/or in the nucleus of plant cells [16]. They
recognize effectors either directly, through interaction mediated by the LRR domain, or
indirectly, through a binding partner (the guard–decoy model) or via modification of a host
protein (bait) [17,18]. Upon recognition, NLRs adopt an active state by exchanging bound
ADP for ATP [19]. Activation often results in local cell death called the hypersensitive
response (HR). However, the activation of certain NLRs by their cognate viral pathogen can
also lead to extreme resistance (ER) in which cell death is not apparent [20]. Whether NLR
activation induces HR or ER is not solely determined by the NLR protein, as the expression
of NLRs in different genetic backgrounds or the overexpression of their eliciting effectors
can turn an ER output into an HR [20–22]. It has been hypothesized that HR and ER are
either the result of separate sequentially activated pathways or phenotypic variants of the
same pathway [23]. ER is thought to confer resistance to viruses through a translational
arrest (TA) mechanism, possibly in concert with abscisic acid (ABA) signaling, preventing
viral spread from infected tissues through callose depositions at plasmodesmata [24–30].
Two well-studied NLRs that trigger a viral TA are potato (Solanum tuberosum) Rx1 and
tobacco (Nicotiana tabacum) N, conferring resistance to potato virus X (PVX) and tobacco
mosaic virus (TMV), respectively [25,28,31–33]. Both the CNL Rx1 and the TNL N induce
viral TA, which suggests that TA is a shared output downstream of NLR activation during
antiviral response [28].

Translational repression is a common process in plant cells that occurs during develop-
ment or in response to stresses, such as UV irradiation, high boron concentrations, and virus
infection [25,28,34–37]. It is proposed that TA has an advantage over RNA degradation be-
cause of its potential reversibility, allowing the re-entry of (host) transcripts into translation
once stress conditions fade [38,39]. In antiviral immunity, repression of viral translation is
triggered through multiple distinct processes, including PTGS, NLR-mediated immunity,
and signaling downstream of the conserved leucine-rich repeat receptor-like kinase (LRR-
RLK) NUCLEAR SHUTTLE PROTEIN (NSP)-INTERACTING KINASE 1 (NIK1) [40]. In
NIK1-mediated resistance, virus-derived small RNAs (vsRNAs) trigger a global TA rather
than a specific TA in response to infection with geminiviruses [40,41]. Viral recognition
leads to TA in many ways, either virus-specific or broad-spectrum. This suggests that
translational inhibition is an important factor for viral resistance in plants [25,28,39,42–44],
yet research in this area remains limited, especially for NLR-mediated TA. This review aims
to provide a comparison of PTGS and NLR-mediated TA of RNA viruses to describe the
overlaps and differences between these antiviral defense mechanisms.
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2. Translation of Viral Transcripts in Plants

Viruses are obligate intracellular parasites that rely on host factors for propagation.
This section examines transcript adaptation and the translation strategies and optimization
strategies that RNA viruses use to ensure viral replication.

2.1. Adaptations of Viral RNAs for Enhanced Translation

Viral RNAs must disguise themselves to mimic eukaryotic mRNA, evade the host
immune system, and hijack the host machinery for translation. Eukaryotic mRNA has a
unique 5′ cap structure essential for translation initiation. The cap structure, which consists
of a methylated guanosine residue, binds translation factors and ribosomes to initiate
protein synthesis. Additionally, eukaryotic mRNA has a 3′ poly(A) tail that protects the
mRNA from degradation by exonucleases [45]. Many plant RNA viruses lack either a 5′ cap,
a 3′ poly(A) tail, or both, preventing recognition and translation by the host machinery.
Moreover, many plant RNA viruses are multicistronic, containing several open reading
frames (ORFs) within the same RNA strand or encoding a polypeptide that is processed
by proteases into multiple peptides. To overcome the lack of a 5′ cap or a 3′ poly(A) tail,
viral RNAs have evolved adaptations to recruit ribosomes. These adaptations include,
e.g., 5′ internal ribosome entry sites (IRESs), 5′ viral genome-linked protein (VPg), 3′ cap-
independent translation enhancers (CITEs), and cap snatching [46]. IRES elements are
highly structured RNA sequences that allow ribosomes to initiate translation from a posi-
tion internal to the RNA molecule, bypassing the requirement of a 5′ cap structure. VPg is
a protein covalently linked to the 5′ end of some viral RNAs, and it is thought to enhance
translation initiation [46]. CITEs are RNA elements located at the 3′ end of some viral RNAs
that enhance translation initiation by interacting with translation initiation factors. Interest-
ingly, both 5′ IRES and 3′ CITE elements are also present in some eukaryotic mRNAs and
are thought to stimulate translation during stress and developmental circumstances when
cap recognition is hindered [47]. These elements consist of cis-acting secondary structures
that recruit host initiation factors or ribosomal subunits, enabling protein synthesis [48–50].
Another strategy involves VPg, which plays a crucial role in the translation of viral RNA
by interacting with host translation factors, such as eIF4E and its isoform eIF4isoE. VPg
competes with the cap structure of host mRNAs to bind these factors, thereby inhibiting
host translation and redirecting the host machinery towards viral translation [51,52]. In
contrast, some segmented negative-stranded RNA viruses have developed an alternative
mechanism called cap snatching to initiate translation [53,54]. Cap snatching involves the
cleavage of the 5′ end of host cell mRNAs, which is then fused with the viral RNA. As a
result, the modified 5′ regions of viral RNA become identical to the endogenous mRNA
and can undergo the regular translation process [53,54]. For a detailed list of the strategies
employed by different plant virus families, see [46].

2.2. Viral Translation

Different RNA virus families have developed diverse mechanisms to achieve efficient
translation. Depending on the location of the encoded peptide sequence in the viral RNA,
commonly used strategies include cap-independent translation, synthesis of subgenomic
RNAs (sgRNAs), cap snatching, and translational recoding [55–57]. Cap-independent
translation occurs at the first 5′ localized ORF and is regulated by IRES and 3′ CITE
structures in the viral RNA. These structures interact with translation initiation factors,
such as eIF4E and eIF4G, or directly with the ribosomal subunit through 18s rRNA, which
stimulates host translation initiation complex assembly and translation of the viral RNA,
mimicking cap-dependent translation of eukaryotic mRNA [48–50].

In positive-stranded RNA viruses, sgRNAs are synthesized from initial viral RNA
by an RNA-dependent RNA polymerase (RdRp) encoded in the viral genome. RdRp
recognizes subgenomic promoters in the viral RNA that give rise to different sgRNAs.
These sgRNAs enable the host machinery to translate viral proteins located internally or at
the 3′ end of the viral RNA [55]. Due to the dense coding of viral genomes, overlapping or



Genes 2023, 14, 1293 4 of 22

adjacent ORFs often require translational recoding for translation. Translational recoding
includes leaky ribosome scanning, non-AUG initiation, ribosomal codon read-through,
ribosomal frameshifts, and translational bypassing. The mechanism used largely depends
on the viral genus [58].

2.3. Optimization of Viral Translation

In addition to cis elements that regulate translation, viruses have evolved various
strategies to achieve maximum translation efficiency. For example, a commonly observed
phenomenon is the induction of a ‘host shut-off’ mechanism, where the translation of
endogenous mRNA is suppressed [59]. This can be accomplished through interference
with the cap-dependent translation of host mRNAs, resulting in a decrease in, among other
things, host antiviral responses and an increase in viral RNA translation. Moreover, viruses
have optimized translation by facilitating RNA cyclization, interfering with host translation
initiation, and compartmentalizing translation in virus factories (VFs) [60,61]. Viral RNA
cyclization is promoted through a specific type of 3′ CITE structure that binds to eIF4F,
leading to the interaction of eIF4F with a hairpin structure at the 5′ end of the RNA. In turn,
this results in the cyclization of translation [62,63]. This cis-element-stimulated cyclization
has been demonstrated for viruses in the Tombusviridae family [62,63]. Multiple viruses
interfere with host translation by targeting eIF4E, altering its phosphorylation status [64]. In
plants, phosphorylated eIF4isoE shows an increased binding affinity for VPg and enhanced
mRNA translation [65,66], perhaps favoring the translation of viral VPg-containing RNAs
over host mRNA. VFs, viroplasms, inclusion bodies (IBs), or viral replication complexes
(VRCs) are intracellular structures induced by viruses. These membrane-bound inclusion-
like bodies or spherules concentrate viral RNA and proteins, potentially enhancing viral
replication. The formation of VFs is often facilitated by viral proteins that manipulate
membranes of the endoplasmic reticulum, mitochondria, peroxisomes, and/or chloroplast
membranes [67–71]. Although VFs are primarily associated with RNA replication, they
have also been suggested to play a role in viral translation and cell-to-cell movement in
certain cases [72,73].

3. Immune Mechanisms Resulting in Translational Repression of Viral RNAs

Plants have developed diverse mechanisms to defend themselves against viral infec-
tions, including PTGS. PTGS, also known as RNAi, starts with the recognition of double-
stranded RNA (dsRNA) that is often generated during viral replication [74]. Dicer-like
proteins (DCLs) recognize and slice dsRNA into 21–24-nucleotide vsRNAs [74–77]. DCL4 is
thought to be the primary DCL enzyme involved in the antiviral defense response against
RNA viruses in plants, as it is required for the production of vsRNA and the cleavage of
viral RNA molecules [78,79]. vsRNAs are loaded into Argonaute (AGO) proteins, which
form the core of the RNA-induced silencing complex (RISC). RISC binds to target viral RNA
molecules, leading to either cleavage and degradation or translational repression [80,81]
(Figure 1a). Most RNA viruses encode VSRs to avoid PTGS. These VSRs either conceal vsR-
NAs to prevent RISC incorporation or impede proteins in the PTGS pathway by hindering
their function, affecting their stability, or suppressing their expression [8–15].

3.1. Viral Recovery through PTGS-Mediated Translational Repression

Symptom recovery is observed in certain plant–virus interactions, where asymptotic
leaves emerge or symptomatic leaves recover after systemic infection with a virus. This
phenomenon has been reported for numerous unrelated viruses and can also be induced
through mutation of VSRs [34,82–85]. Symptom recovery is associated with systemic
sequence-specific resistance, providing protection against reinfections and cross-protection
against related viruses [84]. Symptom recovery from RNA viruses can result from ei-
ther degradation or translational repression of viral transcripts [42,43,86–88]. Symptom
recovery is the only known phenomenon in plants where PTGS leads to translational
repression [34,82].
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Figure 1. Distinct pathways trigger translation arrest in response to viruses. (a) Virus replication or 
subgenomic RNA (sgRNA) production for viral gene expression leads to the generation of double-
stranded RNA (dsRNA). Proteins such as DICER that are part of the RNA silencing (RNAi) machin-
ery recognize dsRNA, cleaving it into small RNAs (siRNAs) which are loaded into Argonaute 
(AGO) proteins, the catalytic subunits of the RNA-induced silencing complex (RISC). RISC selec-
tively targets virus transcripts in a sequence-specific manner, leading to RNA cleavage or physical 
hindrance of ribosome assembly and progression, thereby causing translation arrest (TA). (b) Upon 
entry into the cell, viral components (proteins or nucleic acids) are recognized by intracellular re-
ceptors belonging to the nucleotide-binding leucine-rich receptors (NLR) family. This recognition 
initiates a signaling cascade that activates defense responses known as effector-triggered immunity 
(ETI). ETI is often accompanied by a hypersensitive response (HR) characterized by localized cell 
death at the infection site. Remarkably, ETI can also induce an extreme resistance (ER) response, 
which globally or specifically halts viral protein production irrespective of the presence of viral 
RNA, leading to the alleviation of symptoms. (c) Signals originating outside the cell can be perceived 
by receptor-like kinases (RLKs), which become activated upon binding to ligands, triggering pat-
tern-triggered immunity (PTI). When PTI is induced via NIK1, NIK1 undergoes phosphorylation 
and phosphorylates downstream target ribosomal protein L10 (RPL10). Consequently, RPL10 is 
translocated to the nucleus, where it associates with the transcription factor LIMYB. The RPL10-
LIMYB complex represses the expression of ribosomal genes, resulting in global translational re-
pression. (Image created with Biorender.com.) 
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Figure 1. Distinct pathways trigger translation arrest in response to viruses. (a) Virus replication or
subgenomic RNA (sgRNA) production for viral gene expression leads to the generation of double-
stranded RNA (dsRNA). Proteins such as DICER that are part of the RNA silencing (RNAi) machinery
recognize dsRNA, cleaving it into small RNAs (siRNAs) which are loaded into Argonaute (AGO)
proteins, the catalytic subunits of the RNA-induced silencing complex (RISC). RISC selectively targets
virus transcripts in a sequence-specific manner, leading to RNA cleavage or physical hindrance of
ribosome assembly and progression, thereby causing translation arrest (TA). (b) Upon entry into the
cell, viral components (proteins or nucleic acids) are recognized by intracellular receptors belonging
to the nucleotide-binding leucine-rich receptors (NLR) family. This recognition initiates a signaling
cascade that activates defense responses known as effector-triggered immunity (ETI). ETI is often
accompanied by a hypersensitive response (HR) characterized by localized cell death at the infection
site. Remarkably, ETI can also induce an extreme resistance (ER) response, which globally or specifi-
cally halts viral protein production irrespective of the presence of viral RNA, leading to the alleviation
of symptoms. (c) Signals originating outside the cell can be perceived by receptor-like kinases (RLKs),
which become activated upon binding to ligands, triggering pattern-triggered immunity (PTI). When
PTI is induced via NIK1, NIK1 undergoes phosphorylation and phosphorylates downstream target
ribosomal protein L10 (RPL10). Consequently, RPL10 is translocated to the nucleus, where it asso-
ciates with the transcription factor LIMYB. The RPL10-LIMYB complex represses the expression of
ribosomal genes, resulting in global translational repression. (Image created with Biorender.com).

In Nicotiana benthamiana, symptom recovery from tomato ringspot virus (ToRSV)
is associated with PTGS but not accompanied by viral clearance [86]. Instead, ToRSV
recovery is accompanied by an accumulation of the ToRSV RNA2 viral segment and a
reduction in its encoded CP and MP through translational repression [42,87]. Whether
translation of RNA1 of ToRSV is also repressed remains elusive. Similarly, symptomless
recovery from an engineered tobacco rattle virus clone (TRV-GFP) infection in Arabidopsis
thaliana is associated with a decrease in GFP fluorescence, followed by a drop in the viral
titer [43,88]. During this stage, the TRV RNA is less associated with ribosomes, which
results in reduced levels of GFP. This observation suggests that translational repression
is involved in TRV recovery [43]. In contrast, in N. benthamiana, TRV RNA is known to
be targeted for slicing [89]. In A. thaliana undergoing infection by oil-seed rape mosaic
virus (ORMV), symptom recovery occurs in newly developed leaves in the presence of
infection-competent replicating viral RNAs. It has been proposed that 21–22 nt siRNAs
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in concert with PTGS and TGS machinery are responsible for this recovery in a non-cell-
autonomous manner, generating a source-to-sink siRNA gradient, where VSR function
becomes saturated, perhaps inhibiting viral protein translation. Accordingly, A. thaliana
mutants that result in a dysfunctional PTGS and/or TGS fail to undergo symptom recovery,
while impairing RNA decay machinery enhances such a response, probably by allowing
the accumulation of dsRNA, which can be processed into vsRNAs and exported to new
leaves [90]. These data suggest that PTGS participates in translational repression during
viral recovery. Moreover, under certain interactions, translational repression and slicing
can occur in parallel [87].

3.2. NLR-Mediated Translational Arrest

During NLR-mediated TA, the translation of viral transcripts of the virus triggering
the immune response is arrested, as well as that of transcripts from other viruses present in
the cell [25,39,91] (Figure 1b). The resulting TA appears to be cell-autonomous and only
occurs in cells where the NLR is activated [25,39]. Two structurally divergent NLRs, a
CNL (Rx1) and a TNL (N), are known to induce TA in N. benthamiana [25,28]. How NLR
activation leads to TA is poorly understood, and our current understanding of the Rx1-
and N- pathway(s) leading to TA is discussed below. In contrast to NLR-mediated TA,
LRR-RLK NIK1 triggers a global TA [40,41].

Rx1 has been introgressed into commercial potato cultivars from the wild potato
species Solanum andigena [31,32,92]. The Rx1 gene confers extreme resistance to PVX. In
transgenic N. benthamiana, Rx1 is activated in the cytoplasm upon recognition of the PVX
CP [32,93–96]. Recently, it was shown that Ran GTPase Activating Proteins 1/2 (Ran-
GAP1/2) are targets of PVX CP [97]. Since inactive Rx1 and RanGAP2 interact through
their CC and WPP domains, respectively, Rx1 activation likely occurs by indirect recog-
nition through RanGAP2 [97–99]. Once activated, Rx1 is translocated to the nucleus,
which is essential to the mounting of a full immune response [28,95,96,100]. Rx1 shuttling
is mediated by RanGAP2 and the co-chaperone SUPRESSOR OF G2 ALLELE OF SKP1
(SGT1) [96,99,100]. In the nucleus, the activated form of Rx1 directly binds and distorts
double-stranded DNA through its NB-ARC domain [93]. The DNA-binding capacity of
Rx1 could enable it to function as a transcriptional regulator by facilitating access to DNA
for transcription machinery. The binding specificity of Rx1 is suggested to be provided
by the Golden2-like transcription factor (TF) NbGlk1 [101]. In the absence of PVX, the CC
domain of Rx1 binds to NbGlk1 and a bromodomain (BD)-containing protein (NbBDCP),
preventing chromatin interaction [23]. Upon PVX infection, NbGlk1 mediates Rx1 binding
to Golden2-like consensus DNA sequences, which may lead to TA by regulating unknown
target genes.

N mediates resistance to TMV through recognition of the p50 helicase domain present
in the TMV replicase [102,103]. In N. tabacum, activation of this NLR results in HR [33].
However, when introduced in N. benthamiana, N activation leads to ER through TA [25,33].
Recognition of p50 is mediated by N-receptor-interacting protein 1 (NRIP1), which is
normally localized in chloroplasts [104]. However, p50 recruits NRIP1 to the cytoplasm and
nucleus to form p50-NRIP1 complexes [104]. Afterward, NRIP1 binds to the TIR domain
of N, triggering activation [104,105]. The N-mediated defense response encompasses
multiple pathways. However, the specific mechanism by which it induces TA remains
unknown. Currently, the only protein suggested to be involved in TA is the helper NLR N
REQUIREMENT GENE 1 (NRG1) via an unknown mechanism [39]. Future studies aimed
at unveiling the proteins involved in NLR-mediated transcriptional activation could help
determine whether both NLRs require the same partners for signaling or utilize distinct
pathways. Differences in sensitivity to the VSR p38 of turnip crinkle virus (TCV) suggest
that the mechanisms that lead to TA are different for N and Rx1 [28].

Alternatively, virus-derived nucleic acids from begomovirus, a DNA virus, can trig-
ger a global TA through NIK1 [40,41] (Figure 1c). NIK1 is part of the same LRR-RLK
subfamily as BRI1-ASSOCIATED RECEPTOR KINASE-1 (BAK1), which is well known
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for its role in plant defense against bacteria, fungi, and oomycetes [106–108]. The global
TA following NIK1 activation is thought to be induced through the downregulation of
translational-machinery-related genes [109]. This downregulation is indirectly facilitated
by the ribosomal protein L10A (RPL10A), which translocates to the nucleus upon phos-
phorylation by NIK1, where it interacts with the L10-interacting MYB domain-containing
(LIMYB) TF [41,41] (Figure 1c). However, the mechanism of NIK1 activation and the signal-
ing pathway leading to global TA remain obscure, though transcriptional reprogramming
might be common during TA in response to plant viruses.

4. Translational Repression

After recognition of a virus by the plant immune system, viral transcripts need to
be recognized and their translation arrested. During TRV recovery and NLR-mediated
TA, repression of viral transcripts is associated with an increase in RNA processing bodies
(PBs) [39,43]. This section summarizes the current knowledge of how viral recovery and
NLR-mediated TA impact transcript recognition, transcript halting, and PB formation.
Furthermore, dependency on AGO proteins and VSR interference within these defense
pathways will be discussed.

4.1. Transcript Recognition

To mount a TA of viral RNAs, the plant must distinguish viral RNAs from endogenous
RNAs. Recognition of a viral transcript can occur through the sequence specificity brought
by vsRNA in an RISC complex or by the binding of RNA-binding proteins (RBPs) to
common viral motifs present in the RNA. Some of these common motifs include dsRNA,
the 5′-ppp region of the RNA, the 5′ UTR region, and hairpin structures [110–113].

During viral recovery, transcript recognition is assumed to occur through sequence
specificity provided by siRNAs [38]. This hypothesis is supported by the observation that
plants have sequence-specific resistance to reinfection after viral recovery [84]. However,
transcript recognition has not been reported for ToRSV or TRV recovery, where translational
repression is involved. In NLR-mediated TA, viral transcripts present in the cell are
halted [25,39,91]. Most likely, a common element present in viral RNA is recognized by an
RBP, resulting in the translational repression of viral transcripts. Evidence suggests that a
structural motif present in the CP-encoding part of the PVX RNA is essential for TA of these
transcripts [25]. In correspondence with this, the translation of PVX transcripts lacking the
CP region was no longer halted when N-mediated TA was triggered. The PVX-induced
TA could be reverted when the CP ORF was replaced with another viral CP with low
sequence similarity, suggesting that the recognition and subsequent targeting for repression
is likely caused by a structural element in this region. Moreover, activation of the NLR
Tm-2a from a wild relative of tomato (Solanum lycopersicum), Solanum peruvianum, inhibited
the accumulation of PVX but not that of PVX∆CP in tobacco [25]. This suggests that the
structural element present in the CP region might be a common target for NLRs. However,
the possible binding partner and RNA structure both remain unidentified. Other elements
of the viral RNAs, such as their 5′ cap structure and their poly-A tail at the 3′ region,
are unlikely to be recognized during NLR-mediated TA, since TCV sgRNA lacks these
structures and is still halted during N-mediated TA [39,114].

4.2. Translation Inhibition

After dsRNA sensors recognize the viral transcripts, the translation of transcripts can
either be repressed before translation initiation or later, during translation elongation. For
example, in miRNA-mediated translational repression, translation initiation is known to be
inhibited through the physical blocking of mRNAs by AGO1-RISC binding at the 5′ UTR to
prevent recruitment of the 48S ribosomal subunit and ribosome assembly [115]. In addition,
depending on the position of the RISC target site, the binding of RISC to the RNA can
physically block translation elongation [115]. The stage during translation at which the
transcripts are halted can be determined through polysome profiling, as the association
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of ribosomes is prevented by translational inhibition prior to translation initiation [116].
During ToRSV recovery, monosome and polysome profiling revealed that translation
inhibition occurred after translation initiation. However, during TRV recovery, translation
inhibition appeared to occur before translation initiation [43,87]. In NLR-mediated TA,
polysome profiles revealed that PVX RNAs were no longer associated with polysomes [39].
In N-mediated TA, PVX RNA was prohibited from associating with monosomes, which
suggests that repression occurs before translation initiation [25]. However, the mechanism
behind translation initiation inhibition during NLR-mediated TA remains obscure.

4.3. Processing Bodies

Liquid–liquid phase separation (LLPS) is a physical phenomenon where a homoge-
neous solution separates into two distinct liquid phases, driven by changes in concentration,
temperature, or other factors [117,118]. RNA granules, which comprise all intracellular
aggregations of ribonucleoprotein (RNP) complexes large enough to be microscopically vis-
ible, can undergo LLPS. Cells undergoing a viral infection often accumulate RNA granules,
which dynamically influence each other by exchanging components, such as transcripts
and proteins [119].

In plants, RNA granules can be classified into PBs, stress granules (SGs), and siRNA
bodies. In PBs and SGs, LLPS behavior is thought to be driven by multivalent interactions
between RBPs, RNA, and other proteins that enable the formation of weak reversible bonds,
which, in turn, can dynamically change the properties of the granules [120–123]. PBs are
essential in regulating gene expression, mRNA decay, and translation [124]. These bodies re-
side within cells to process aberrant mRNA transcripts. During mRNA decay, endogenous
aberrant mRNA or viral RNAs are degraded through decapping by the mRNA decapping
protein 2 (DCP2), followed by de-adenylation and 5′ to 3′ decay by the exoribonucle-
ase XRN4 [124]. Decapping is assisted by the co-activator DCP1 and scaffold varicose
(VCS) [125,126]. Besides mRNA decay, PBs are sites for storing translationally repressed
RNAs [121]. Once the abundance of repressed RNA increases due to RNAi, virus infection,
or UV irradiation, the number and size of PBs changes consequently [36,39,43,124,127].
Plant viruses have been proposed to utilize components of PBs for their benefit, and PBs
have been suggested to store repressed viral RNA during immune responses and viral
recovery [39,43,128,129].

During TRV recovery, A. thaliana shows an increase in PBs potentially containing
repressed TRV RNA aggregates. Eventually, these RNAs are degraded by decapping
enzymes present in these PBs. However, degradation of the TRV RNA is not necessary for
recovery, as was demonstrated by the normal TRV recovery observed in the DCP2 mutant
its1 [43]. Although DCP1 was used as a PB marker, the exact composition of the PBs that
form during TRV recovery remains unknown.

When cells underwent NLR-mediated TA, PBs were shown to accumulate as well [39].
These PBs contained DCP1 but were depleted of DCP2, resulting in transcript accumulation
caused by the lack of RNA degradation [39]. The protein composition within these types
of PBs remains unknown so far. After NLR activation, the cellular DCP1 levels remain
unchanged, which suggests that a pre-existing pool of DCP1 acts as a nucleation point
for PB formation [39]. While Meteignier et al. (2016) suggested that the lack of DCP2 in
PBs could be due to limited levels of cellular DCP2, previous studies have shown that
DCP1 and -2 are both recruited into PBs depending on the stress perceived and that this is
not necessarily reflective of their cellular concentrations [130]. Therefore, it is likely that
the depletion of DCP2 in NLR-mediated PB formation is an active exclusion rather than
a passive reflection of PB protein component concentrations in the cytoplasm. However,
the mechanisms that stimulate PB formation during NLR-mediated immunity remain to
be elucidated.

The formation of PBs in response to NLR activation occurs through a different mecha-
nism than that triggered by UV irradiation or RNAi [36,39]. For example, UV irradiation
triggers phosphorylation of eIF2a, resulting in a global TA [131], which does not occur
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after N activation [39]. Additionally, when PTGS is repressed by VSR P19, PB formation is
reduced, while P19 has no influence on PB formation following N activation [39]. Although
the mechanisms that induce PB formation after NLR activation are distinct, whether the
formed PBs are qualitatively similar or distinct remains under debate and requires further
research. Whether PBs form during ToRSV recovery is unknown. However, it is unlikely,
since the inhibition of translation initiation is known to result in PB formation, whilst
inhibiting translation elongation leads to a decrease in PBs [36]. As discussed, translational
repression during ToRSV recovery likely happens during elongation, whilst TRV recovery
and NLR-mediated TA occurs before translation initiation. However, the exact mechanisms
underlying PB formation have not been investigated for these viruses.

4.4. Translation Repression Depends on AGOs and VSR Interference

AGOs form an integral part of the RNAi pathway, where they act as the catalytic sub-
unit of the RISC complex. Multiple AGOs (AGO1, AGO2, AGO4, and AGO7) are known to
be involved in and are essential for antiviral immune responses [25,43,80,132–136]. All these
AGO proteins have RNA slicing activity, whilst only AGO1 has been proven to be directly
involved in translational repression [38,80,114,115,137,138]. AGOs can directly perform
RNA slicing through their endonucleolytic PIWI domain [139]. Although the composi-
tion of the AGO protein interactome remains elusive, translational repression by AGO is
thought to operate through association with WG/GW motif-containing proteins [140–143].
In A. thaliana, genetic studies identified a gene encoding the GW-containing protein SUO
involved in miRNA-mediated translational repression [138]. However, whether SUO di-
rectly interacts with AGO through its GW motifs to perform its function has not been
investigated, and how AGOs determine whether to perform slicing or repression is poorly
understood. Possibly, AGO function is regulated through post-translational modifications,
such as phosphorylation or changes in subcellular localization [42].

Multiple VSRs interact with AGOs to impair RNAi. For instance, AGO1 expression,
stability, and activity can be targeted by VSRs [8,14,87,137,144,145]. In line with this, VSRs,
including the carmovirus p38 and ipomovirus P1, contain the AGO-interacting motif
WG/GW and compete with host proteins for AGO binding [144,146]. Some VSRs have
multiple strategies to interfere with plant signaling. For example, p38 of TCV prevents the
processing of dsRNA into siRNA and impairs siRNA loading into AGO1 and AGO2 in
A. thaliana [144,147,148].

During symptom recovery of ToRSV in N. benthamiana, translational repression is
AGO1-dependent [42]. It is likely that AGO1 is (in)directly involved in the PTGS mechanism
leading to translational repression of ToRSV RNA2. This is supported by the finding that
ToRSV CP hinders AGO1 function through interaction with the WG/GW motif of AGO1,
triggering AGO1 degradation and probably competing with cellular WG/GW proteins
involved in translational repression [13,87]. During TRV infection in A. thaliana, AGO2
and AGO4 are involved in initial susceptibility to TRV, whilst other unidentified proteins
are required during recovery [43]. Multiple VSRs are known to affect symptom recovery
and the expression of strong VSRs, such as HC-Pro from potyvirus, and p25 from PVX
can eliminate symptom recovery during ToRSV infection [149]. Similarly, viral recovery
of TRV was abolished by p38 of TCV [43]. Moreover, the inactivation of VSRs can lead to
symptom recovery of virus isolates that typically do not display recovery. This has been
shown for 2b of cucumovirus, HC-Pro of potyvirus, and P19 of tombusvirus [150–153].
Recovery in ToRSV and TRV is not dependent on a lack of VSRs in the virus isolates but
rather on the relative strength of the VSRs present. As mentioned earlier, ToRSV CP acts as
an AGO-hook triggering AGO1 degradation, and TRV 16K acts as a VSR by preventing
AGO4-RISC assembly [87,154]. Additionally, the loss-of-function mutants for AGO1 and
other genes involved in siRNA signal amplification, such as RDR6, SGS3, and DCL4, fail to
alleviate infection symptoms [90]. These observations together suggest that AGO protein(s),
in complex with partners containing WG/GW motifs, could participate in the TA of RNA
viruses and that VSRs target this function.
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Rx1-mediated and N-mediated TA are AGO1-independent and AGO4-dependent [25].
AGO4 is involved in resistance to many viruses through the RNA-directed DNA methyla-
tion (RdDM) pathway, yet it is also involved in antiviral mechanisms unrelated to RdDM
in the cytoplasm [135,155,156]. During plantago asiatica mosaic virus (PIAMV) infection,
AGO4 is suggested to re-localize to the cytoplasm and directly target the PIAMV RNA [157].
The exact mechanisms behind this interaction remain unknown. It is likely that AGO4
acts independently of the RdDM pathway as well during NLR-mediated TA, since the
viral replication cycle is restricted to the cytoplasm. Involvement of the AGO proteins in
NLR-mediated TA is further proven by the expression of VSR p0 from beet western yellows
virus (BWYV), p38 of TCV, and p19 of cymbidium ringspot virus (CymRSV) [25,28,158].
p0 inhibits N-mediated TA and is known to induce the degradation of AGO proteins in
A. thaliana [25,146]. However, its effect on Rx1-mediated TA has not been tested. Possibly,
N-mediated TA is repressed by p0 promoting the degradation of AGO4. Besides p0, p38 of
TCV inhibits N-mediated TA [25]. However, p38 does not physically interact with AtAGO4,
suggesting that N-mediated TA requires additional AGO proteins or that p38 inhibits
TA at the dsRNA processing level [144]. The latter is unlikely since NLR-mediated tran-
script recognition is supposed to occur through common motif recognition rather than
through siRNA complementarity, suggesting that the process might be siRNA-independent.
Rx1-mediated TA is not inhibited by p38, suggesting a distinct mechanism leading to
Rx1-mediated TA [28]. p19 of CymRSV is known to repress systemic PTGS by binding
dsRNAs in order to prevent incorporation into RISC complexes. However, TA induced by
both Rx1 and N is not influenced by p19, further supporting a distinction between the TA
mechanisms involved in NLR and viral recovery [28,133,158].

5. Discussion
5.1. Similarities between TRV Recovery and N-Mediated Translational Repression

Although multiple differences exist between the mechanisms of viral recovery and
NLR-mediated TA, there is potential overlap in the pathways controlling TRV recovery
and N-mediated TA, as both are inhibited by the VSR of TCV, p38, and both induce the
accumulation of PBs [25,39,43]. Since p38 can inhibit TA at multiple points, both through
its function as an AGO hook and as an inhibitor of siRNA processing, it is impossible to
elucidate whether the pathways overlap just because they are inhibited by p38 [144,147,148].
Further research is needed to uncover potential overlap in these mechanisms, including
the testing and comparison of responses to other viral VSRs and dependence on other
AGO proteins. Moreover, the composition of PBs formed during TRV recovery and NLR-
mediated TA is mostly unknown, and caution should be taken when comparing these
systems, since TA during TRV recovery has been studied using TRV-GFP, which may occur
through a different route than recovery for wildtype TRV [43]. Furthermore, it remains
unclear whether PBs during TRV recovery are depleted of DCP2, similar to the PBs formed
during NLR-mediated immune responses. Additional research is needed to determine the
exact RNA and protein contents of PBs and the mechanisms behind their formation.

5.2. Processing Bodies

The components present in the PBs formed during TRV recovery and NLR-mediated
TA are mostly unknown. However, many proteins found in A. thaliana PBs where mRNA
decay occurs have implied roles in translational repression, including DCP5, VCS, and
SUO [38,126,138,159]. Therefore, these proteins might be present together with DCP1 [39,43].
Although it seems likely that PBs consist of viral RNA during viral recovery and NLR-
mediated TA, their exact RNA content has yet to be determined. Furthermore, the exact
mechanisms behind PB formation remain unknown, although recent studies suggest that
DCP5 and RNA helicase proteins are required for PB formation in A. thaliana [160,161].
Furthermore, tandem zinc finger 1 (AtTZF1) is involved in RNA binding and protein
recruitment into PBs [162–164]. However, AtTFZ1 appears to be mainly localized in root
tips and the vasculature, and therefore it is unlikely that AtTFZ is involved in PB formation
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observed during recovery and NLR-mediated TA, though other TFZ homologs might pro-
vide a similar function. In animals and yeast, granule formation is stimulated by peptide
motifs within intrinsically disordered regions that are often found in proteins that reside in
RNP complexes [165–168]. Whether plant PBs are driven by protein aggregation based on
disordered regions has not been investigated in detail [169]. In animal cells, the proteome
content of RNA granules was revealed using proximity labeling [170–172]. The use of this
technique could aid in uncovering the protein content of plant PBs. However, purifying
liquid membrane-free organelles remains challenging, and the exact content inside plant
PBs remains unknown.

5.3. Gene Regulation during NLR-Mediated TA

Many questions remain unanswered regarding NLR-mediated TA, particularly whether
transcription is necessary for TA and, if so, which genes are regulated. In Rx1-mediated TA,
Rx1 may be directly involved in gene regulation by binding to Golden2-like cis-regulatory
promoter elements via NbGlk1 [97,101]. Chromatin immunoprecipitation followed by
high-throughput sequencing (ChIP-seq) experiments could help identify which genes are
regulated during the defense response, including those involved in NLR-mediated TA. The
mechanism by which N-mediated TA is induced is also still unclear—whether it occurs
through the degradation of a negative regulator or transcriptional reprogramming by
WRKYs, SPL6, or another unidentified TF [173–175]. Conducting transcriptomic analysis
of TMV infection on N. benthamiana carrying N could identify candidate genes involved
in defense responses. Time-resolved RNA-seq could be used to reveal gene expression
patterns and identify regulators involved in the N-mediated immune response.

5.4. Transcript Recognition during NLR-Mediated TA

The recognition of transcripts during NLR-mediated TA is likely provided by the
structure of the CP coding region of the viral RNA. However, the protein(s) responsible for
the recognition of this structure is unknown [25]. One possibility is that AGO4 is involved
in transcript recognition independently of vsRNA complementarity. In human HeLa
cells, multiple AGO isoforms, tethered to RNA as fusion proteins, were shown to repress
translation based on hairpin structures present in the 3′ UTR of a reporter mRNA. This
indicates that these AGOs can indirectly perform translational repression independently of
small RNA templates [176]. It is plausible that plant AGO4 is able to recognize common
structural motifs in viral RNAs via an unknown bound co-factor during NLR-mediated
immunity, leading to TA.

The connection between the siRNA pathway and NLR-mediated plant immunity is
not well understood. However, a recent preprint by Nielsen et al. (2023) proposes that DCL
proteins are the main sensors of dsRNA in plants. Specifically, DCL4 has been identified
as a major player in the antiviral siRNA response, while DCL2 is considered partially
redundant. A. thaliana null mutants in dcl4 exhibit impaired growth and show enrichment
of WRKY DNA-response elements in the promoters of upregulated genes [177]. WRKYs
are well-known TFs involved in plant defense responses against various pathogens [178].
Notably, some dcl4 mutant plants exhibit an increased level of cell death. However, when
the dcl4 mutant background is combined with mutations in the co-chaperones sgt1b and
hsp90 (heat shock protein 90), both implicated in NLR decay, the penetrance of the cell death
phenotype is increased, suggesting a connection between the siRNA pathway and NLR-
mediated immunity [177]. Moreover, the loss of function of two non-related genes encoding
NLR proteins in A. thaliana, the CNL L5 and the TNL RPP9/RAC1 (Resistance to Albugo
candida 1), were found to suppress the dcl4 autoimmune phenotype, establishing crosstalk
between RNAi and NLR pathways for the first time. The capacity of both plant defense
systems to communicate could explain the efficiency of the TA induced by RISC and NLR
proteins, which, when combined, could account for a highly efficient antiviral response.
Further studies are needed to unravel the molecular mechanisms underlying this crosstalk.
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In animals, RNA sensing is primarily performed by immune receptors themselves.
Some RIG-I-like receptors (RLRs) recognize dsRNA structures in viral RNA through intrin-
sic DExD/H-box RNA helicase domains [179,180]. In contrast, other RLRs and nucleotide
oligomerization domain (NOD)-like receptors (NLRs) form complexes with RNA helicases
that serve as co-factors for RNA sensing [181,182]. Moreover, in animal cells, stress granules
induced during viral infection contain RLR immune receptors [183,184]. In plants, Rx1
has been shown to have the ability to bind single-stranded RNA [93], indicating that plant
NLRs themselves could recognize transcripts in TA and that possibly they could also be
found in PBs.

5.5. Translation Inhibition Hypothesis

Replicating or transcribing RNA viruses produce dsRNA intermediates that could
be perceived by cytoplasmic sensors such as the DCL proteins, triggering a response
similar to pattern-triggered immunity (PTI), activating the siRNA pathway (Figure 2a).
Amplification of this vsRNA signal could lead to saturation of VSR activity in a non-cell-
autonomous manner, leading to new asymptomatic leaves, regardless of the presence of
functional viral genomic RNA particles. In new leaves, the function of AGO-containing
RISC complexes could be the main factor responsible for TA [90] (Figure 2b). However,
information regarding the involvement of additional RBPs remains elusive.

During ETI, NLRs are activated and can act in different ways. For example, CNLs such
as Rx1 may recognize secondary structures on the PVX genome, specifically at the CP ORF,
leading to TA [25]. Whether Rx1 directly binds PVX RNA or whether accessory proteins are
needed remains unknown. A chimeric NLR where the CC-NB domain of Rx1 was replaced
by the homologous region of potato Gpa2, an NLR responsible for the resistance to the
nematode Globodera pallida, conferred ER to PVX, suggesting that this module works in a
non-pathogen-specific manner, while changing the recognition specificity of LRR directs
the resistance against taxonomically unrelated pathogens [185].

Recently, 2′,5′-cAMP was shown to accumulate during different types of abiotic
stress [186]. Both accumulation and exogenous application of this cyclic nucleotide induced
the formation of SGs—RNA bodies that are able to promote TA. More recently, proteins
containing TIR domains, such as NLRs and TIR-only proteins, were demonstrated to pro-
duce 2′,3′-cAMP/cGMP via DNA and RNA hydrolysis upon activation [187] (Figure 2c).
When 2′,3′-cAMP/cGMP synthetase activity is combined with the NADase activity of
oligomerized TNLs, cell death is triggered by promoting the association of ENHANCED
DISEASE SUSCEPTIBILITY 1 (EDS1)-SENESCENSE ASSOCIATED GENE 101 (SAG101)
with NRG1, resembling an HR [187]. ER could be achieved by halting viral translation
and/or viral RNA clearance, which can be facilitated by the siRNA pathway and PBs, and
are dependent on AGO proteins. Whether the 2′,3′-cAMP/GMP synthetase activity of TIR,
utilizing RNA as a substrate in the absence of NADase activity, could potentially confer
extreme resistance and trigger TA via virus elimination and the promotion of SG assembly
remains to be ascertained.

Another layer of protection against viral infection that could lead to TA occurs at
the translation machinery level, including the usage of isoforms of translation factors,
the degradation of critical proteins for virus translation, and post-translational modifica-
tion [188–191]. In plants, specific ribosomal proteins (RPs) have been demonstrated to
be necessary for the translation of RNA viruses [192]. Therefore, it is conceivable that
plants can adjust their RP composition in response to viral infection. The function of
subunits of the translation initiation complex, such as eIF4E and eIFiso4E, can be inhibited
by phosphorylation mediated by SnRK1 (SUCROSE NONFERMENTING 1-RELATED
KINASE 1), a kinase implicated in metabolic signaling, which triggers a global inhibition of
translation [193]. Interestingly, plants that overexpress SnRK1 show enhanced resistance
to viral infection, which means that there is a direct link between plant immunity and
signaling from the primary metabolism. Likewise, the master regulator TOR kinase, under
favorable conditions, promotes anabolism [194]. However, under nutrient deficiencies
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or certain types of abiotic stress, TOR is inhibited by SnRK1 and catabolic pathways are
activated [195]. TOR is also known for its role in the transcriptional regulation of plant
immunity [39,196,197]. When TOR is pharmacologically inhibited, plants exhibit a primed
resistance against pathogens in concert with salicylic acid signaling [198]. Taken together, a
working model of antiviral immunity in plants can be proposed that involves several signal-
ing pathways, such as PTI, ETI, and siRNA. The cellular compartment where the processes
occur could also define the output, including the nucleus, in cytosolic non-membranous
organelles, such as processing bodies, and in the cytosol. Finally, the metabolic status of the
plant not only shapes the immune response against biotic challenges but likely also affects
the response to abiotic stress. This influence could be magnified with TA—a common
element that apparently links the response to these different types of stress.
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Figure 2. Crosstalk between the RNA silencing pathway and NLR-mediated translation arrest
(TA) during antiviral immunity. (a) Upon detection of virus-derived dsRNA by DCL4, the RNAi
pathway is activated. RNA-dependent RNA polymerase 6 (RDR6), in complex with Suppressor of
Gene Silencing 3 (SGS3), can amplify the generated siRNA molecules. (b) Amplified siRNAs can
be transported from infected leaves to new tissues, saturating viral silencing suppressors (VSRs)
and enabling RISC to induce TA, resulting in asymptomatic leaves. (c) Active NLRs containing
TIR domains (TNLs) and TIR-only proteins can bind and degrade RNA in a sequence-independent
manner. Both RNAases and TIR-nuclease activity produce 2′,5′-cAMP, which is able to stimulate
the formation of stress granules—membrane-free organelles—where TA occurs. SGS3-RDR6, along
with other unknown RNA-binding proteins (RBPs), are known to induce stress granule formation
in response to stress. RNA granule formation is a common outcome following immune receptor
activation and cytosolic dsRNA perception through the RNA silencing pathway. Thus, the TA
associated with RNA granules is proposed as one of the possible mechanisms for extreme resistance
upon immune activation. (Image created with Biorender.com).
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6. Conclusions and Perspective

This review highlights our current understanding of the resistance mechanisms that
lead to viral translational repression. Although many pathways appear to be involved,
they ultimately result in the same outcome: viral TA. While distinctions and similarities in
the underlying mechanisms have been identified through the influence of VSRs, significant
gaps in our understanding of the pathways involved in viral recovery and NLR-mediated
TA still exist. To address these gaps, additional research is needed to unravel the pathways
and processes that lead to translational repression. This includes efforts focusing on tran-
scriptomics and the (RNA-binding) protein composition of processing bodies. Furthermore,
recovery to distinct virus types and NLR-mediated TA should be studied to obtain a more
comprehensive view of the pathways involved in viral RNA translational repression. The
evolution of multiple pathways leading to viral translational repression has been beneficial
for plants, as it created a robust immune system that is hard to target by a single VSR
encoded in a viral genome. Still, it poses challenges for research in this area. Ultimately, a
better understanding of the mechanisms leading to translational repression will be of great
value for designing crops with broader and more durable resistance to biotic (and possibly
abiotic) stresses.
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