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Abstract: Wood is the most important renewable resource not only for numerous practical utilizations
but also for mitigating the global climate crisis by sequestering atmospheric carbon dioxide. The
compressed wood (CW) of gymnosperms, such as conifers, plays a pivotal role in determining the
structure of the tree through the reorientation of stems displaced by environmental forces and is
characterized by a high content of lignin. Despite extensive studies on many genes involved in wood
formation, the molecular mechanisms underlying seasonal and, particularly, CW formation remain
unclear. This study examined the seasonal dynamics of two wood tissue types in Pinus densiflora:
CW and opposite wood (OW). RNA sequencing of developing xylem for two consecutive years
revealed comprehensive transcriptome changes and unique differences in CW and OW across seasons.
During growth periods, such as spring and summer, we identified 2255 transcripts with differential
expression in CW, with an upregulation in lignin biosynthesis genes and significant downregulation in
stress response genes. Notably, among the laccases critical for monolignol polymerization, PdeLAC17
was found to be specifically expressed in CW, suggesting its vital role in CW formation. PdeERF4, an
ERF transcription factor preferentially expressed in CW, seems to regulate PdeLAC17 activity. This
research provides an initial insight into the transcriptional regulation of seasonal CW development
in P. densiflora, forming a foundation for future studies to enhance our comprehension of wood
formation in gymnosperms.

Keywords: conifer; gymnosperm; compression wood; season; Pinus densiflora; lignin biosynthesis;
wood formation

1. Introduction

Lignocellulose, derived from woody plants, serves as a valuable source for biofuel
production [1,2]. Wood is composed of a secondary cell wall (SCW) enriched with cellulose,
hemicellulose, and lignin. To improve the properties of woody biomass, it requires a
comprehensive understanding of the transcriptional regulation of the biosynthesis of these
components. The process of wood formation (also known as xylogenesis) involves cell
division and expansion of cambial initials, xylem cell differentiation, SCW deposition, and
programmed cell death (PCD) [3,4]. This coordinated control appears to be the result of a
complex, multilayer transcriptional regulatory network [5,6].

Distinct weather conditions (e.g., day length, air temperature, and precipitation) mark
seasons, significantly influencing the genetic regulations in plants, particularly woody trees
like gymnosperms. During spring and summer, these trees actively grow, stimulating wood
formation. Conversely, during fall and winter, they enter dormancy, triggering defense
and stress response mechanisms [7,8]. Previous research underscores temperature as a
crucial determinant of wood formation onset in gymnosperms in the Northern hemisphere.
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Notably, extreme conditions such as heat, drought, and low spring precipitation can delay
the growth season [9,10]. The mechanisms terminating wood formation remain largely
unexplored. Factors like low temperatures, short photoperiods, or drought stress may be
involved, depending on the geographical location [8–10].

A critical feature of xylem cells is the formation of reaction wood, distinct in an-
giosperms (tension wood, TW) and gymnosperms (compression wood, CW). These adapta-
tions enable trees to resist environmental forces [11,12]. In gymnosperms, stem inclination
triggers CW formation in the lower side with abundant lignin, through the induction of
auxin and ethylene, and the reduction in jasmonic acid (JA) [13]. In contrast, TW formation
in angiosperms has a high cellulose content and is formed in the upper side of an incli-
nation of a stem [12]. Recently, many studies have been conducted on TW formation in
various angiosperm species, including Catalpa bungee, Populus trichocarpa, Hevea brasiliensis,
and Betula luminifera, to understand the underlying molecular mechanisms and identify
essential genes [14–18]. Previously, Sato et al. [19] reported transcriptome analysis of reac-
tion wood formation from Chamaecyparis obtusa. However, research on CW formation in
gymnosperms, especially conifers, is still limited [19–21].

Gymnosperm wood is characterized by high lignin content (25–35%), an HG-type of
lignin with more guaiacyl (G) units but a small portion of p-hydroxyphenyl (H) units.,
whereas angiosperm wood has a lignin content of 15–28%, with a GS-lignin having dif-
ferent proportions of syringyl (S) units [22,23]. It has recently been shown that laccase,
responsible for monolignol polymerization, is crucial for lignin biosynthesis in compression
wood [22,24]. Lignin-derived fuels have gained popularity in recent years as a technology
to produce biofuels from biomass with the potential to reduce dependence on fossil fuels
and greenhouse gas emissions [25]. Thus, CW of gymnosperms can be an excellent source
of lignin for biofuel production.

Genomic analyses of conifers have been challenging due to their enormous genome
sizes and high heterozygosity. The genome size of the Norway spruce (Picea abies), for
instance, is 20 Gb, seven times larger than the human genome [26]. Conifers have recently
been able to undergo genome-wide investigation via EST sequencing [27], whole-genome
sequencing, and RNA sequencing (RNA-Seq) [28]. The Norway spruce [26], White spruce
(Picea glauca, [29]), Loblolly pine (Pinus taeda, [30]), and Sugar pine (Pinus lambertiana, [31])
are some conifer species that have draft genome assemblies available. By RNA sequencing
and PacBio SMRT iso-sequencing, a comprehensive transcriptome profile of Korean red
pine (Pinus densiflora) was reported recently, which identified key genes involved in the
biosynthesis of cellulose, hemicellulose, and lignin [4]. P. densiflora has a native range that
includes the Korean Peninsula, China, Japan, and East Russia and is the most abundant
tree species in South Korea, covering up about 87% of coniferous forests [32]. P. densiflora is
an important source of wood in South Korea [33], with the trunks containing many resins
that can be used to make rosin and turpentine [34] and the leaves being used to make
essential oils [32]. In this study, we examined the transcriptional dynamics of CW formation
in P. densiflora across different seasons. The findings will contribute a comprehensive
overview of transcriptional regulation of CW formation, providing a platform for future
investigations into gymnosperm wood formation.

2. Materials and Methods
2.1. Wood-Forming Tissue Sampling and RNA Sequencing

Samples were collected from 14-year-old Korean red pine (P. densiflora) grown in the
Korea Forest Research Institute (KFRI, Suwon, Republic of Korea, 37◦15′ N, 126◦57′ E),
between 2018 and 2020 (approximately 9.5 m in height and 15.5 cm in diameter at breast
(DBH)). In branches of P. densiflora, the lower side with high lignin was classified as CW
and the upper side as OW. Developing xylem (DX) of CW and OW was collected during
four seasons: spring (SP), summer (SM), fall (FA), and winter (WN) in the indicated time
by scraping the surface of debarked branches, respectively (Figure 1a, Supplementary
Table S1). Each sample was collected from a branch at DBH of the tree to ensure the
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same developmental stage. Details about temperature, day length, and precipitation
during the sampling period can be found in Figure 1c, with information sourced from the
Korea Astronomy and Space Science Institute (KASI; “https://astro.kasi.re.kr (accessed on
20 August 2023)”) and the Korea Meteorological Administration (KMA; “https://www.
weather.go.kr (accessed on 20 August 2023)”). The temperature and day length on sampling
day were presented in Supplementary Table S1.
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Figure 1. Strategy for wood tissue sampling from P. densiflora used in this study. (a) Sampling of
MDX (Mature Developing Xylem) tissues from branches of P. densiflora grown in nursery. After
de-barking, the upper part (blue line) was collected as opposite wood (OW) with the lower part as
compression wood (CW) (red line) (see, Methods). (b) Quantification of Klason lignin from CW and
OW. Error bars indicate SD (n = 3). Student t-test, ** (p < 0.01). (c) Seasonal sampling and weather
condition. Sampling dates of two year were pointed by black arrow heads on top. Day length (yellow
line), precipitation (blue lines), and average temperature (red line) from March 2018 to February 2020
were shown in left and right axis, respectively. Total amounts of precipitation (mm) in each season
were shown in the middle of the graph. The weather data were obtained from Korea Astronomy
and Space Science Institute (KASI; “https://astro.kasi.re.kr (accessed on 20 August 2023)”) and
Korea Meteorological Administration (KMA; https://www.weather.go.kr (accessed on 20 August
2023)). CW (Compression Wood), OW (Opposite Wood), SP (Spring), SM (Summer), FA (Fall), and
WN (Winter).
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Total RNA was isolated from each tissue (pooled from three trees) using RNAprep
Pure Plant Plus kit (Tiangen, Beijing, China), and RNA quality was determined by a
2100 Expert Bioanalyzer (Agilent, Santa Clara, CA, USA). Preparation of cDNA library was
constructed according to the Truseq Stranded mRNA Preparation Kit (Illumina, San Diego,
CA, USA). Paired-end sequencing was performed on an Illumina NovaSeq 6000 platform
with a read length 2 × 101 bp. The resulting RNA sequencing data were deposited in NCBI
under BioProject accession PRJNA789345, and the summary of the results was performed
in Supplementary Table S2.

2.2. Transcript Assembly, Abundance Estimation, and Annotation

Transcriptome analysis was performed following the published method [4]. In brief,
after RNA sequencing, PRINSEQ-Lite 0.20.4 (“http://prinseq.sourceforge.net/ (accessed on
20 August 2023)”) was used for cleaning the paired-end raw reads (Phred quality above 20,
and the minimum length is 50 nucleotides). Then, the cleaned reads were used to generate
a reference transcriptome for de novo transcriptome assembly, using a script in Trinity
v2.6.6 [35,36] with a default parameter. Clustering of transcripts was performed using
CD-HIT-EST v4.6 with a default parameter [37,38]. Bowtie v. 1.2.2 was used for mapping
the cleaned reads of each library to the de novo assembled reference transcriptome [39].
Transcript abundance (i.e., read count) was determined by RSEM v. 1.3.0 [40], and the raw
counts were normalized as the trimmed mean of M-values (TMM)-normalized transcripts
per million (TPM). De novo assembled reference transcriptome genes were annotated
with A. thaliana (Athaliana_167_TAIR10) and P. trichocarpa (Ptrichocarpa_210_v3) protein
datasets from Phytozome V12 (https://phytozome.jgi.doe.gov/pz/portal.html (accessed
on 20 August 2023)) using BLASTX (e-value 1 × 10−5; max_target_seqs 1). Principal
component analysis was performed using the platform iDEP [41].

2.3. Differentially Expressed Gene and Gene Ontology Analysis

The differentially expressed genes (DEGs) were identified using log2 fold change
(log2FC) values of TPM, with a threshold of 1.5 or −1.5. The growing season up-regulated
genes (in CW or OW) had higher expressions during the growing season than dormancy,
with a log2FC of SP or SM versus FA ≥ 1.5. On the other hand, the growing season down-
regulated genes had lower expressions during the growing season than dormancy, with a
log2FC of SP or SM versus FA ≤ −1.5. In the growing season (SP or SM), CW up-regulated
genes had higher expressions in CW than OW, with a log2FC of CW versus OW ≥ 1.5. The
CW down-regulated genes had lower expressions in CW than OW, with a log2FC of CW
versus OW ≤ −1.5. The threshold TPM of 1.0 was used to identify whether genes were
significantly expressed.

Gene ontology (GO) enrichment analysis was performed using DAVID (“https://
david.ncifcrf.gov/tools.jsp (accessed on 20 August 2023)”, [42]). The biological process (BP)
GO was found to be substantially enriched at the threshold of p-value as 0.03. Following
the removal of redundancy terms, the top specific terms were reported in Figures 3 and 6,
indicating the performance of negative logarithmic adjusted p-value of enrichment.

2.4. Quantitative Real Time PCR (qRT-PCR) and Semi-Quantitative Reverse Transcription
PCR (RT-PCR)

One microgram of total RNA was reverse transcribed to produce first-strand cDNA
using Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) in 20 µL reaction
volume. The gene expression pattern was confirmed by quantitative real-time PCR (qRT-
PCR) and semi-quantitative PCR (RT-PCR) of both two sets of samples. The qRT-PCR
was performed using an AriaMx Real-time PCR system (Agilent, Houston, TX, USA) with
Brilliant III Ultra-Fast SYBR Green QRT-PCR Master Mix (Agilent, Houston, TX, USA).
Subsequent RT-PCR was carried out using 1 µL of the reaction product as the template.
PdeUBC11 gene was used as the quantitative control [4]. All primer sequences were

http://prinseq.sourceforge.net/
https://phytozome.jgi.doe.gov/pz/portal.html
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designed using the Primer3 program (“http://primer3.ut.ee (accessed on 20 August 2023)”)
(Supplementary Table S6).

2.5. Klason Lignin Quantification

Klason lignin (i.e., acid-insoluble lignin) contents of CW and OW in SM of the first
sample set were measured following the reported method [43]. In detail, debarked branch
tissues were dried at 65 ◦C for 1 week and ground to a fine powder. Ground samples
(∼100 mg) were placed in glass screw-cap tubes, and 1 mL of 72% (v/v) sulfuric acid was
added followed by complete mixing. The tubes were placed in a water bath set at 45 ± 3 ◦C
and incubated for 90 ± 5 min until all samples were completely hydrolyzed. The acid was
diluted to a 4% concentration by adding 28 mL of deionized water. Samples were mixed
by inversion several times to eliminate phase separation. Samples were autoclaved for 1 h
at 121 ◦C and slowly cooled down to room temperature before removing the caps of the
tubes. The autoclaved hydrolysis solution was vacuum filtered through pre-weighed filter
paper. The filter paper was dried at 65 ◦C to obtain acid-insoluble residue until a constant
weight was achieved. The filter paper was allowed to cool down to room temperature and
the weight of the filter paper and dry residue was recorded.

2.6. Transient Overexpression Analysis by the Agrobacteria-Infiltration Method and Laccase
Activity Assays

Full-length coding sequences of PdeERF4 (DN57342_c0_g1_i2, 813 bp), PdeMYB106
(DN63531_c0_g3_i10, 985 bp), and AtMYB46 (AT5G12870.1, 843 bp) were inserted down-
stream of the 35S promoter in the pB2GW7 vector [44] using the Gateway cloning method
(Invitrogen, Carlsbad, CA, USA) to produce the 35S::PdeERF4, 35S::PdeMYB106, and
35S::AtMMYB46 constructs. Vector constructs were transformed into Agrobacterium tumefa-
ciens (strain C58) that was then used for agrobacteria infiltration, following the reported
method [4]. Agrobacterium cells carrying empty plasmid (pB2GW7) were used as a neg-
ative control, whereas the 35S::AtMYB46 construct was used as the positive control for
infiltration efficiency. Extracellular protein extraction and in vitro laccase activity assay
(ABTS assay) were modified from the method used for Arabidopsis [45]. In brief, 300 mg of
tobacco-infiltrated leaf was ground into fine powder in liquid nitrogen, then mixed with
300 µL of protein extraction buffer (25 mM BisTris (pH 7.0), 10% glycerol (v/v), 200 mM
CaCl2, 0.1 mM EDTA, and protease inhibitor cocktail (cOmplete™, Mini Protease Inhibitor
Cocktail, Merk, Darmstadt, Germany)), then incubated in ice 5 min. The homogenate was
centrifuged in 3000× g for 5 min at 8 ◦C and then at 4 ◦C for 5 min in 13,000× g. Finally,
it was centrifuged at 8 ◦C for 45 min in 15,000× g. The supernatant was taken into a
new chilled tube after every centrifugation. The crude protein was quantified based on
Bradford dye-binding method [46]. Laccase activity was determined by the oxidation of
ABTS (3-ethylbenzthiazoline-6-sulfonic acid, Merk, Germany) to generate a stable cationic
radical (measure at the absorbance of 420 nm). The reaction mixture (1 mL) contains 900 µL
of 1 mM ABTS (diluted in 0.1 M sodium acetate buffer pH 5.0), and 100 µL of crude protein
(1.8 µg/µL) was incubated overnight at 25 ◦C, based on the optimum condition of laccase
activity [47]. A total of 500 ng/mL of laccases from Trametes versicolor (Merk, Darmstadt,
Germany) was used as a positive control for the ABTS assay.

3. Results
3.1. Analyzing the Seasonal Xylem Development in P. densiflora

We conducted a comprehensive study on the molecular mechanisms governing the
formation of compression wood (CW) in conifers throughout different seasons. To accom-
plish this, we developed a whole-genome transcriptomic profile of developing xylem (DX)
from both CW and the opposite wood (OW) in P. densiflora. DX samples from CW and
OW of branches were collected at specific times during spring (SP), summer (SM), autumn
(FA), and winter (WN) over two years (Figure 1a,c). The DX sample from CW, recognized
by its larger, darker appearance compared to OW, was gathered from the bottom portion

http://primer3.ut.ee
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of the branch (Figure 1a). As anticipated, we found that the CW had significantly more
lignin content (35.0%) than the OW (30.4%), which aligned with previous findings in P.
taeda (Figure 1b) [48].

Our samples were collected towards the end of each season, which corresponded to
the periods of the growing season (SP), late growing season (SM), mid-dormancy (FA), and
late dormancy (WN). Daily average temperatures varied significantly, with the warmest
temperatures occurring in summer and the coldest in winter (Figure 1c, Supplementary
Table S1). The day length remained similar from spring through summer (around 13 h),
before decreasing in autumn and winter (around 10 h) (Figure 1c, Supplementary Table S1).
Although patterns in temperature and day length changes were relatively uniform across
our two-year study period, precipitation levels varied significantly. The precipitation in SP
of the 1st set was much higher (about 3.7 times) than in the 2nd set, and the precipitation in
SM of the 1st set was slightly higher (about 1.45 times) than in the 2nd set (Figure 1c).

To evaluate the quality of the tissue samples before performing RNA-seq for tran-
scriptome analysis, we tested several marker genes related to wood formation using
semi-quantitative RT-PCR (Figure S1). PdeNAC2 and PdeMYB46, close homologues of
Arabidopsis MYB46 and VND6, respectively, were highly expressed during growing sea-
son (SP and SM) in both CW and OW and minimally expressed or not at all during the
dormant season (FA and WN) (Figure S1). Similarly, SCW-specific cellulose synthases (i.e.,
PdeCesA7 and PdeCesA8), lignin monomer biosynthetic genes (Pde4CL, PdeC3H, PdeCOMT,
PdeCCoAOMT1, PdeCCR) and lignin polymerization genes (PdeLAC3, PdeLAC10, PdeLAC12)
were predominantly expressed in SP and SM in both CW and OW (Figure S1). Some
lignin monomer biosynthesis genes (e.g., PdeC4H and PdeCAD) were also expressed in FA
and WN, suggesting their roles in defense mechanisms [14]. Interestingly, PdeLAC17 was
exclusively expressed in CW, not OW, during the growing season.

3.2. Building the Seasonal Transcriptomes of the Developing Xylem of P. densiflora

We constructed a transcriptome library using 16 samples, capturing both CW and
OW across four seasons, with data collected over two years. From these, we obtained a
total of 526,109,063 reads, with more than 95% of reads having a Q30 score or higher and
an average quality score of 36.36 (Supplementary Table S2). These reads allowed us to
assemble 326,226 contigs, with an N50 value of 1551 bp and an Ex90N50 value of 2288 bp.
Using BLASTX, 105,984 contigs (32.48%) and 105,413 contigs (32.31%) were matched to
protein sequences of A. thaliana and P. trochocarpa, respectively.

We evaluated the transcriptional interrelationships of eight tissue libraries through
a hierarchical clustering analysis in the Trinity package [36] using the average values of
two-year biological replicates (Figure 2a). As expected, it showed distinct groupings for
the growing (SP and SM) and dormant seasons (FA and WN) (Figure 2a). A Principal
Component Analysis (PCA) showed a similar grouping, with some interesting observations
(Figure 2b).

The transcriptomes of FA and WN, both dormant seasons, exhibited strong similarities,
as evidenced by their proximity in Figure 2b. However, despite both SP and SM being
classified as growing seasons, their transcriptomes displayed notable differences, with a
clear separation. Particularly intriguing is the clear distinction between CW and OW in the
summer; in contrast, their transcriptomes appeared very similar during the other seasons.
This suggested unique transcriptomic characteristics in CW and OW specifically during
the summer.

To validate our RNA-seq data, we analyzed the expression patterns of several well-
known marker genes involved in secondary wall formation (e.g., PdeCesA7, PdeCesA8,
PdeIRX9, Pde4CL, and PdeC4H) using qRT-PCR in both two sampling sets. All of them
had similar expression patterns with TPM values from RNA seq data, which were highly
expressed in SP-SM but decreased in FA-WN (Figure 2c). These results confirmed our
RNA-seq data as sufficiently reliable for further analyses (Figure 2c).
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3.3. Coordinated Gene Expression Shapes Seasonal CW and OW Formation 
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Figure 2. Seasonal wood tissue-specific transcriptome analysis of P. densiflora. (a) Sample correlations
are illustrated using a heat map. SP, spring; SM, summer; FA, fall; WN, winter. CW, compression
wood; and OW, opposite wood. Average values of two-set biological replicates (log2 fold change value
with p-value, 0.005) were used in the Trinity package (analyze_diff_expr.pl). Clusters up-regulated
in SP-SM are marked in red box. (b) Principal component analysis (PCA) plot was generated using
the same dataset described in (a) in iDEP.91 (http://bioinformatics.sdstate.edu/idep/ (accessed on
20 August 2023)) with default parameters. (c) Validation of the RNA-seq data by marker genes of
secondary cell wall formation. In each plot, blue line (right Y-axis) represents TPM (Transcript Per
Million) values of the indicated gene from RNA-seq data while red bars (left Y-axis) show the results
of independent qRT-PCR experiments. Error bars indicate SD (n = 3).

3.3. Coordinated Gene Expression Shapes Seasonal CW and OW Formation

In the growing season (SP and SM), we identified 9367 up-regulated and 8174 down-
regulated differentially expressed genes (DEGs), with more DEGs in the spring than in
the summer (Supplementary Figure S2). GO analysis suggested the up-regulated genes
played roles in xylogenesis (e.g., cell division, cell differentiation, pectin, lignin, cellulose,
xyloglucan, xylan biosynthesis, etc.) and hormone regulation (e.g., auxin, cytokinin, and
brassinosteroid), whereas down-regulated genes seemed to be involved in stress response
(e.g., defense, salt stress, jasmonic acid (JA), ethylene, and water deprivation response)
(Supplementary Figure S2c).

http://bioinformatics.sdstate.edu/idep/
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To investigate the genes associated with seasonal changes in CW and OW formation,
we visualized gene expression using heatmaps across seven repertoires, including hormonal
regulation, cell division and expansion, SCW-related transcription factor, programmed cell
death, cellulose and hemicellulose biosynthesis, lignin biosynthesis, and stress response
(Figure 3). We observed that some genes were strongly upregulated in spring and then
downregulated in summer, whereas others showed a steady increase from spring to summer
(Figure 3). For example, genes associated with auxin and cytokinin signaling (e.g., MES17,
ARF4/6, IAA13, SAUR-like, auxin efflux carrier, PIN3, RR24, and ARR9) had a significant
upregulation in spring but declined in summer, whereas those related to brassinosteroid
signaling (e.g., BR6OX2, BRS1, BRL3, and DWF1) continuously increased from spring to
summer. Interestingly, genes that negatively regulate gibberellin signaling (i.e., SPY) and a
jasmonic acid signaling gene (i.e., MYC2) were less active in both spring and summer.
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Figure 3. Seasonal CW and OW formation involves the coordinated expression of a diverse gene
repertoire. Heatmaps of each gene repertoire (i.e., hormonal regulation, cell division and expansion,
SCW-related transcription factor, programmed cell death, cellulose and hemicellulose biosynthesis,
lignin biosynthesis, and stress response) show the up- or down-regulation of each gene expression
in the growing season (SP and SM) compared to dormant season (FA) (represented by blue to black
color bars) and the change in gene expression in CW versus OW in the growing season (by red to
green color bars). Detailed gene expressions can be found in the Supplementary Table S2, and the
color scale bars are located at the bottom left. CW (Compression Wood), OW (Opposite Wood), SP
(Spring), SM (Summer), and FA (Fall).
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Most wood formation-related genes (e.g., cell division and expansion, SCW-related
transcriptional factors, SCW biosynthesis, and PCD) were significantly upregulated in
spring, with many stress response genes downregulated in CW during both spring and
summer. Certain genes were found to have a higher expression in summer (e.g., WRKY50,
NRT3.1, ERF-1, etc.) (Figure 3, Supplementary Table S3). The CW/OW fold change was
similar in SP in most of the wood formation genes, whereas some genes were higher in
SM (e.g., MES17, ARF6, Auxin efflux carrier, MYB46, CSLA09, UXS3, CESA8, PAL2, etc.)
(Figure 3, Supplementary Table S3).

Taken together, our research reveals that the expression of genes involved in wood
formation, hormone regulation, and stress response varies seasonally, suggesting a complex
interplay of molecular mechanisms driving wood formation in P. densiflora.

3.4. Evaluating Seasonal Variations in Gene Expression Involved in Wood Formation

Figure 1c shows that there were no significant changes in temperature and day length
during the two sequential years of our study, but precipitation varied considerably between
seasons, especially in spring. Hence, we evaluated the expression of genes associated with
wood formation (including cell division and growth, cellulose and hemicellulose synthesis,
lignin biosynthesis, programmed cell death, and transcription regulation) across CW and
OW formation for these two years (Figure 4).
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and expansion, cellulose andhemicellulose biosynthesis, lignin biosynthesis, programmed cell death,
and transcriptional regulation) were presented. XTH (xyloglucan endotransglycosylases), PME
(pectin methylesterase), PL (pectate lyase), GLU (beta-1,3-glucanase), EXP (expansin), CYC (cyclin),
CSLA (cellulose synthase-like A), SUS (sucrose synthase), UGD (UDP-Glucose Dehydrogenase),
IRX (irregular xylem), UXS (UDP-xylose synthase), RWA (reduced wall acetylation), CESA (cellu-
lose synthase A), GUX (glucuronic acid substitution of xylan), PAL (phenylalanine ammonia-lyase),
C4H (cinnamate 4-hydroxylase), 4CL (4-coumarate: coa ligase), CAD (cinnamyl-alcohol dehydro-
genase), CCR (cinnamoyl-coa reductase), HCT (hydroxycinnamoyl-coa:shikimate/quinate hydrox-
ycinnamoyltransferase), CCoAOMT (caffeoyl-coenzyme a 3-o-methyltransferase), C3H (coumaric
acid 3-hydroxylase), COMT (caffeic acid o-methyltransferase), LAC (laccase), XCP (xylem cysteine
protease), BFN (bifunctional nuclease1), CEP (cysteine endopeptidases), RNSI (class I RNAse), NAC
(NAM, ATAF, and CUC), MYB (MYB transcription factor), GATA (GATA binding transcription factor),
VND (vascular-related NAC-domain), and NST (NAC secondary wall thickening promoting factor).
CW (Compression Wood), OW (Opposite Wood), SP (Spring), SM (Summer), FA (Fall), WN (Winter).
SP, spring; SM, summer; FA, fall; and WN, winter. TPM, transcripts per million.

Mostly, the genes related to wood formation followed a typical seasonal pattern—high
expression during spring and summer and low during dormancy (fall and winter). In CW,
gene expression was consistently high during spring of both years (Figure 4). However,
in OW, except for genes controlling cell division and expansion, the expression was lower
during the spring of the second year, compared to the first (Figure 4). We confirmed these
results using additional genes (Supplementary Figure S3).

However, despite these observations, the precise influence of changing precipitation
patterns on these gene expression shifts remains unclear and warrants further investigation.

3.5. Uncovering Key Genes in the SCW Biosynthesis Crucial for CW Formation in P. densiflora

We aimed to identify key genes involved in the SCW biosynthesis that are critical
for CW formation as a response to seasonal changes. For this, we reconstructed the
biosynthesis pathways of SCW components (cellulose, galactoglucomannan, xylan, and
lignin) using previously reported genes in P. densiflora [4] (Figures 5 and 6). With sucrose
or phenylalanine as a starting molecule, cellulose/galactoglucomannan/xylan and lignin
biosynthetic pathways are shown in Figures 5 and 6, respectively. The enzymes involved
in each step of the biosynthetic pathway are encoded by multiple genes, but genes (i.e.,
contigs) with significant expressions were shown (Figures 5 and 6).

Interestingly, genes such as INV, HXK, PGM, and UGP involved in the initial metabolism
of sucrose did not significantly increase their expression in spring compared to fall (Figure 5).
Only GGP and CSLA3, responsible for glucomannan production, were upregulated in
spring, suggesting seasonal regulation might not significantly impact galactoglucomannan
biosynthesis. For cellulose and xylan biosynthesis, all pathway genes were more active
in spring than fall, particularly the CESA genes (Figure 5). There were no noticeable
differences between CW and OW formation (Figure 5).

For lignin biosynthesis, pathway genes were significantly upregulated in spring
(Figure 6). While PRX (Peroxidase) was reported to be insignificant in gymnosperms [4], our
data supported this finding. Some transcripts belonging to CCoAOMT were up-regulated
in FA may have been due to the response against UV-B [14]. We noted several laccases,
responsible for monolignol polymerization, were specifically upregulated in CW compared
to OW, with the contig ‘DN58818_c0_g3_i6’, the most significantly CW-specific expressed,
which we named PdeLAC17 due to its similarity to Arabidopsis LAC17. This was further
validated by both semi-quantitative RT-PCR (Figure 7a) and qRT-PCR (Figure 7b).

SP, spring; SM, summer, FA, fallk WN, winter.
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Figure 5. The seasonal transcriptional regulation of genes in cellulose, galactoglucomannan, and xy-
lan biosynthetic pathways for secondary wall formation. Metabolites in each step of the biosynthetic
pathway are shown in the box, and all related genes are shown to the side. SUS (Sucrose Synthase);
CESA (Cellulose Synthase A); UGD (UDP-Glucose Dehydrogenase); UGP (UDP-Glc Pyrophosphory-
lase); PGM (Phosphoglucomutase); UXS (UDP-Xylose Synthase); IRX10L (Irregular Xylem 10-Like);
IRX9L (Irregular Xylem 9-Like); IRX14L (Irregular Xylem 14-Like); IRX7 (Irregular Xylem 7); DUF579
(Domain Of Unknown Function 579); GUX (Glucuronic Acid Substitution Of Xylan); RWA (Reduced
Wall Acetylation); INV (Invertase); HXK (Hexokinase); GGP (GDP-D-Glucose Pyrophosphorylase);
G6PI (Glucose-6-Phosphate Isomerase); M6PI (Mannose-6-Phosphate Isomerase); PMM (Phospho-
mannomutase); GMP (GDP-D-Mannose Pyrophosphorylase); CSLA3 (Cellulose Synthase-Like A3);
and GGT (Glucomannan-1;6-Galactosyltransferase). The seasonal wood formation of CW and OW
was shown by the up- and down-regulated of each gene in SP compared to FA, indicated as the color
bar (blue to black, respectively). The CW formation in SP was shown by the up- and down-regulated
of each gene in CW compared to OW, indicated as the color bar (red to green, respectively). The fold
change value was the average of two sampling sets. CW (Compression Wood), OW (Opposite Wood),
SP (Spring), SM (Summer), and FA (Fall).
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C4H (Cinnamate 4-Hydroxylase); 4CL (4-Coumarate: CoA Ligase); CCR (Cinnamoyl-CoA 
Reductase); HCT (Hydroxycinnamoyl-Coa:Shikimate/Quinate Hydroxycinnamoyltransferase); C3H 
(Coumaric Acid 3-Hydroxylase); CSE (Caffeoyl Shikimate Esterase); COMT (Caffeic Acid O-
Methyltransferase); CCoAOMT (Caffeoyl-Coenzyme A 3-O-Methyltransferase); CAD (Cinnamyl-

Figure 6. The seasonal transcriptional regulation of critical genes in the lignin biosynthetic pathway
in the secondary cell wall formation. Metabolites in each step of the lignin biosynthetic pathway are
shown in the box, and all related genes are shown to the side. PAL (Phenylalanine Ammonia-Lyase);
C4H (Cinnamate 4-Hydroxylase); 4CL (4-Coumarate: CoA Ligase); CCR (Cinnamoyl-CoA Reductase);
HCT (Hydroxycinnamoyl-Coa:Shikimate/Quinate Hydroxycinnamoyltransferase); C3H (Coumaric
Acid 3-Hydroxylase); CSE (Caffeoyl Shikimate Esterase); COMT (Caffeic Acid O-Methyltransferase);
CCoAOMT (Caffeoyl-Coenzyme A 3-O-Methyltransferase); CAD (Cinnamyl-Alcohol Dehydrogenase);
LAC (Laccase); PRX (Peroxidase); and F5H (Ferulate 5-hydroxylase). The seasonal wood formation
of CW and OW was shown by the up- and down-regulated of each gene in SP compared to FA,
indicated as the color bar (blue to black, respectively). The CW formation in SP was shown by the up-
and down-regulated of each gene in CW compared to OW, indicated as the color bar (red to green,
respectively). The fold change value was the average of two sampling sets. CW (Compression Wood),
OW (Opposite Wood), SP (Spring), SM (Summer), and FA (Fall).
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Figure 7. PdeLAC17 is expressed in CW, specifically. (a) Seasonal expression of PdeLAC17 in CW and
OW. Semi-quantitative RT-PCR was performed using cDNA prepared from total RNAs extracted
from each sample. PdeUBC11 (DN59720_c0_g1_i20) was used as a loading control. PdeLAC17
(DN58818_c0_g3_i6). (b) Validation of PdeLAC17 expression. In each plot, blue line (right Y-axis)
represents TPM (Transcript Per Million) values of PdeLAC17 from RNA-seq data, whereas red bars
(left Y-axis) show the results of independent qRT-PCR experiments. Error bars indicate SD (n = 3).

3.6. Identifying Differentially Expressed Genes Involved in CW Formation

As genes involved in SCW formation in CW were majorly upregulated from spring to
summer, common differentially expressed genes (DEGs) during this period might have been
potential candidates for CW formation. There were only a few genes (50 transcripts) that
were upregulated from spring to summer (Supplementary Figure S4a). The upregulated
genes were involved in lignin biosynthesis, whereas many defense response genes were
downregulated in summer (Figure S4b). The common upregulated genes were involved in
SCW formation (e.g., LAC, MAT2, KAM1, and FLA11), auxin, cytokinin, and strigolactone
signaling (e.g., MES17, ARR3, and LBO1), whereas several negative regulators and stress
response genes were downregulated in summer, with most related to the ethylene response
(Figure S4b, Supplementary Table S4).

Subsequently, we sought to identify transcription factors (TFs) upregulated during
CW formation (Figure 8, Supplementary Table S5). Among the many TF families found to
be upregulated from spring to summer, we identified TFs significantly upregulated in CW
in both spring and summer (PdeERF4 and PdeMYB106) (Figure 8a,b). Their expression
patterns were confirmed by semi-quantitative RT-PCR (Figure 8c).
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quantitative RT-PCR was performed using cDNA prepared from total RNAs extracted from each 
sample. PdeUBC11 (DN59720_c0_g1_i20) was used as a loading control. CW (compression wood), 
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3.7. Functional Examination of PdeERF4 and PdeMYB106 as Possible Regulators of  
Laccase Activity 

We speculated that the TFs highly expressed in CW might regulate PdeLAC17. As 
laccases have an oxidative function, they are known to oxidize the biphenolic dye ABTS 
to a stable cationic radical state [47]. 

For the preliminary characterization of PdeERF4 and PdeMYB106 functions, we 
transiently introduced 35S::PdeERF4 or 35S::PdeMYB106 constructs into tobacco leaves 
and assessed the oxidative activity after 4 days of infiltration (Figure 9). 35S::AtMYB46, a 
known TF regulating AtLAC17 [5], was used as a positive control and showed a 
substantial increase in ABTS absorbance (Figure 9a). 35S::PdeERF4 significantly boosted 

Figure 8. Identification of transcription factors preferentially expressed in CW formation. (a) Analysis
of transcription factor (TF) family. Number of TFs up-regulated in the growing season (SP and SM)
was plotted (green bars). CW up-regulated TFs were shown in red bars. (b) Partial list of transcription
factors abundantly expressed in CW of growing season. Top two highly expressed TF were marked by
blue. (c) Seasonal expression of PdeERF4 and PdeMYB106 in CW and OW. Semi-quantitative RT-PCR
was performed using cDNA prepared from total RNAs extracted from each sample. PdeUBC11
(DN59720_c0_g1_i20) was used as a loading control. CW (compression wood), OW (opposite wood),
SP (Spring). SM (Summer), FA (Fall), and WN (Winter). AGI: Closest Arabidopsis Gene Index.

3.7. Functional Examination of PdeERF4 and PdeMYB106 as Possible Regulators of
Laccase Activity

We speculated that the TFs highly expressed in CW might regulate PdeLAC17. As
laccases have an oxidative function, they are known to oxidize the biphenolic dye ABTS to
a stable cationic radical state [47].

For the preliminary characterization of PdeERF4 and PdeMYB106 functions, we tran-
siently introduced 35S::PdeERF4 or 35S::PdeMYB106 constructs into tobacco leaves and
assessed the oxidative activity after 4 days of infiltration (Figure 9). 35S::AtMYB46, a
known TF regulating AtLAC17 [5], was used as a positive control and showed a substantial
increase in ABTS absorbance (Figure 9a). 35S::PdeERF4 significantly boosted oxidation,
whereas 35S::PdeMYB106 showed no significant effect (Figure 9a). The expressions of the
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introduced transgenes were confirmed by semi-quantitative RT-PCR (Figure 9b). These
findings suggest that PdeERF4 might positively influence the activity of laccases.
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Figure 9. Laccase activity measurement of transient overexpression of PdeMYB106 and PdeERF4 in
tobacco leaf. (a) ABTS assay using crude protein extracted in infiltrated leaf area. Laccase 500 ng/µL
was used as a positive control for this assay. 35S::AtMYB46 was used as infiltration positive control.
Error bars indicate SD (n = 3). Student t-test, * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). (b) Semi-
quantitative RT-PCR to confirm the expression of transgenes in tobacco leaf. cDNAs prepared from
total RNAs extracted from each sample were used as PCR templates.

4. Discussion
4.1. Seasonal Variation in Gene Expression in the CW and OW Formation

During the growing season, the majority of genes involved in wood formation in P.
densiflora were activated, whereas those linked to defense or stress response were sup-
pressed (Figures 3 and S2). The decline in expression of most SCW biosynthetic genes
post-summer illustrated a seasonal trend in the activation of these genes. Strikingly, genes
like Cellulose Synthase (CESAs) and Laccases (LACs) were not detected in the fall and win-
ter (FA) (Figures 4 and S1). A few lignin biosynthetic genes such as PdeC4H and PdeCOMT
remained active but at reduced levels during FA and WN, possibly providing cold and UV
radiation protection (Figures 4 and S1) [49].

The transcriptomic profile differed significantly between the active growth (spring—
SP) and late growth (summer—SM) stages of the growing season (Figure 2b). Spring vs.
fall exhibited more DEGs than summer vs. fall (Supplementary Figure S2). SP activated
genes implicated in cell wall formation, cell division, and differentiation. On the other
hand, SM triggered functions associated with growth suppression, such as senescence and
defense response (Figures 3 and S2).

Wood formation in CW was notably increased from SP to SM, whereas, in OW, stress
response genes were activated during SM. Previous research on mountain pine (Pinus mugo
Turra ssp. Mugo) revealed that CW formation took longer than OW formation, with CW
cells spending more time in the wall-thickening phase [50]. Principal component analysis
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(PCA) showed significant differences in wood formation between CW and OW during
SM (Figure 2b). During SP, CW and OW showed a similar number of up-regulated genes
associated with hormone regulation, cell division and expansion, SCW formation, and
programmed cell death (PCD). However, OW had a significantly higher number of up-
regulated genes than CW in SM, primarily related to defense and stress response (Figure 3,
Supplementary Figure S2). This suggests that OW may face more environmental stress or
attacks than CW during SM.

Both CW and OW showed distinct responses to changes in weather conditions, specif-
ically precipitation. While previous studies have suggested that high precipitation leads
to larger xylem cell size [51,52], our results showed that precipitation did not affect gene
expression related to cell division and expansion (Figure 4). Interestingly, high precipitation
in the first set of SPs coincided with strong induction of SCW formation genes in both CW
and OW. But, under the lower precipitation conditions in the second set, CW maintained
high gene expression, whereas OW’s expression decreased (Figures 1c and 4).

Taken together, CW and OW may respond differently to seasonal shifts and weather
changes. CW experiences increased wood formation from SP to SM, whereas it decreases
in OW during the SM phase, prioritizing the defense response. The formation of SCW
and PCD in OW seems to coincide with precipitation levels, whereas CW appears to be
independent of these conditions.

4.2. Hormonal Regulation of Wood Formation in Seasonal Change

Auxin promotes cell proliferation and growth, and cytokinin stimulates cambium
reactivation and division, whereas GA fosters cell differentiation and elongation [8]. The
genes related to auxin and cytokinin signaling were strongly activated in SP but less
so in SM (Figure 3). Some genes like MES17 (involved in auxin biosynthesis) [53] and
ARR3 (implicated in cytokinin response and circadian clock regulation) [54] showed an
up-regulation in CW (Table S4). SPY, a dual-function regulator negatively affecting GA
while enhancing cytokinin and contributing to circadian clock regulation [55], showed
reduced expression in both SP and SM (Figure 3). MYC2, a gene that activates JA response
genes, was specifically up-regulated in OW-SM, which aligns with JA’s reported role in
stress response and reduced presence in CW of gymnosperm [13,56,57].

Ethylene, despite some conflicting reports, might also increase CW formation and
stimulate cambial growth in tension wood [8,13,58,59]. In our study, ethylene response
factors, such as ERF-1, ERF12, and ERF2, showed decreased activity in both CW and OW
during the growing season. Interestingly, PdeERF4, induced by ethylene, JA, and abscisic
acid [60], was highly expressed in CW (Figure 8). EDF3 and ERF110, which are involved in
flower senescence and flowering time, respectively [61,62], were down-regulated in both
SP and SM and were specifically induced in OW SM (Figure 3, Supplementary Table S4).

In summary, auxin, cytokinin, and GA seem to positively regulate wood formation,
whereas JA seems to act as a negative regulator. Ethylene’s role appears to be complex,
promoting both senescence and CW formation.

4.3. Identifying Key Genes in Compression Wood Formation in P. densiflora

Following the identification of critical genes in lignin, cellulose, and hemicellulose
biosynthesis in P. densiflora as previously reported [4], we were able to pinpoint those
involved in SCW formation. We found that their expression patterns correlated with
seasonal changes and were more abundantly expressed in CW (Figures 5 and 6). The
activities of these genes predominantly increased during the SP and decreased in FA. In
the context of previous research, it was noted that CW had an increase in not only lignin-
related genes (such as PAL, C3H, 4CL, CAD, HCT, and CCoAOMT) but also those related to
cellulose biosynthesis (such as CSLA) [21,24]. In contrast, our study observed no abundant
expression in CW of these genes, with the exception of laccase (Figures 5 and 6).

The laccase gene PdeLAC17, important for monolignol polymerization [63], was
consistently upregulated in CW (Figure 6, Table S4). Within the identified laccase transcripts,
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some showed CW abundance, whereas others did not (Figure 6, Supplementary Table S4).
This aligned with findings from other conifer studies, suggesting a differential regulation of
laccase family members during CW development [22,64,65]. Among the 50 transcripts up-
regulated in CW, we identified two transcription factors—PdeERF4 and PdeMYB106—as
the most significantly upregulated (Figures 8 and S4). Interestingly, 35S::PdeERF4 exhibited
significant oxidation activity in tobacco leaf, similar to 35S::AtMYB46 (Figures 9 and S5).
This suggested that PdeERF4 may contribute to the induction of laccase activity in CW.

5. Conclusions

Our research has provided a comprehensive view of the intricate dynamics of gene
expression involved in the wood formation of P. densiflora. The analysis distinctly revealed
seasonal shifts in the activation of genes related to wood formation and stress responses.
The CW and OW displayed differing responses to such shifts and weather conditions,
demonstrating the complex relationship between environmental factors and genetic regula-
tions of wood formation. A range of genes contributing to SCW formation were identified,
with varying levels of expression across seasons and weather conditions. Notably, the
laccase family member PdeLAC17, associated with monolignol polymerization, showed
consistent upregulation in CW. Among the transcripts upregulated in CW, we identified
two transcription factors that were significantly upregulated, PdeERF4 and PdeMYB106,
potentially contributing to laccase induction in CW. Taken together, our findings underscore
the importance of a multifaceted approach, incorporating environmental, hormonal, and ge-
netic factors, to comprehensively understand the regulation of wood formation. This study
contributes to our understanding of the complex processes governing wood formation and
presents potential gene targets for enhancing wood production and quality in forestry and
bioenergy industries. Further research is required to explore the full complexity of these
interactions and to validate the role of the identified genes and their possible applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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the CW in the growth season (SP and SM), Figure S5: Coding sequences of PdeERF4 and PdeMYB106,
Table S1: Temperature and day length in the sampling days, Table S2: Summary of RNA-seq analysis,
Table S3: The expression of well-known genes involved in wood formation of CW and OW in growing
season, Table S4: List of typical compression wood up- and down- regulated genes, Table S5: List
of typical compression wood up- and down- regulated transcriptional factors, Table S6: Primer
sequences used in this study.
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