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Abstract: Gastric cancer (GC) is an important cancer-related death worldwide. Among its histological
subtypes, intestinal gastric cancer (IGC) is the most common. A previous work showed that increased
expression of the THY1 gene was associated with poor overall survival in IGC. Furthermore, it was
shown that IGC tumor cells with high expression of THY1 have a greater capacity for tumorigenesis
and metastasis in vitro. This study aimed to identify molecular differences between IGC with high
and low expression of THY1. Using a feature selection method, a group of 35 genes were found to
be the most informative gene set for THY1high IGC tumors. Through a classification model, these
genes differentiate THY1high from THY1low tumors with 100% of accuracy both in the test subset
and the independent test set. Additionally, this group of 35 genes correctly clustered 100% of the
samples. An extensive validation of this potential molecular signature in multiple cohorts successfully
segregated between THY1high and THY1low IGC tumors (>95%), proving to be independent of the
gene expression quantification methodology. These genes are involved in central processes to
tumor biology, such as the epithelial–mesenchymal transition (EMT) and remodeling of the tumor
tissue composition. Moreover, patients with THY1high IGC demonstrated poor survival and a more
advanced clinicopathological staging. Our findings revealed a molecular signature for IGC with
high THY1 expression. This signature showed EMT and remodeling of the tumor tissue composition
potentially related to the biology of IGC. Altogether, our results indicate that THY1high IGC tumors
are a particular subset of tumors with a specific molecular and prognosis profile.

Keywords: gastric cancer; intestinal-type gastric cancer; THY1; molecular profile

1. Introduction

Gastric cancer (GC) is a complex and aggressive disease that currently ranks fifth in
incidence and fourth as the leading cause of cancer-related death worldwide [1]. Most cases
of GC are diagnosed late, mainly due to their nonspecific symptomatology, contributing
to the severity of the disease at diagnosis [2,3]. Thus, despite several advances regarding
anticancer therapy in recent years, the prognosis of GC remains unsatisfactory, with a
5-year survival rate of approximately 20%, high recurrence rates, and distal metastasis
events [4]. At the histological level, adenocarcinoma is the most common type of GC,
accounting for 95% of all cases [5,6], and is divided into two subtypes according to Lau-
ren’s histological classification, intestinal GC (IGC) and diffuse GC (DGC), with different
etiological, epidemiological, and genetic characteristics [7]. Among these subtypes, IGC is
the most common, accounting for 70% of cases [8,9]. This subtype is markedly associated
with the multistep progression that can be initiated by chronic Helicobacter pylori infection,
as proposed by the model of human gastric carcinogenesis [10–12]. Due to its complexity
and biological heterogeneity, several studies have focused on biomarkers to understand
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the development and progression of IGC. In this sense, studies have demonstrated that
the THY1 gene is a potential marker of poor prognosis for patients with GC, including one
from our group that demonstrated this specifically in IGC patients [13–16].

Thy-1, or CD90, is a glycosylphosphatidylinositol (GPI)-anchored cell surface protein
that lacks a transmembrane domain [17,18]. This protein has a group of ligands composed
of different integrins, including the integrins αvβ3, αvβ5, α5β1, αMβ2, and αCβ2 [19–23].
In a physiological context, Thy-1 is mainly expressed in neurons, thymocytes, fibroblasts,
and mesenchymal stem cells, where it is related to functions such as cell adhesion, dif-
ferentiation, migration, and proliferation [24–27]. The high expression of Thy-1 has been
associated with several types of cancer; however, its impact on the prognosis of the disease
appears to be context-dependent. In the context of hepatocellular and renal carcinomas,
high expression of the THY1 gene has already been associated with poor prognosis and as
a marker of cancer stem cells with tumorigenic and metastatic capacity [28,29]. In contrast,
in ovarian cancer and nasopharyngeal carcinoma, high expression of THY1 was associ-
ated with tumor suppression and was involved in the suppression of metastasis [30,31].
These characteristics highlight that the role of the THY1 gene in prognosis depends on
the pathological context. In the context of GC, together with studies that demonstrate
THY1 as a potential marker of poor prognosis, the level of THY1 expression in tumor
cells is associated with a greater capacity for tumorigenesis, proliferation, adhesion, and
metastasis, emphasizing its importance in the context of the origin and progression of
the disease [32–35]. Nonetheless, the molecular mechanisms underlying the tumor cell
behavior and poor prognosis observed in patients with IGC tumors expressing high levels
of THY1 have not yet been clarified, with few studies addressing this issue [36]. Therefore,
these key questions must be addressed to understand the molecular mechanisms implicated
in the biology of these tumors.

To address this knowledge gap, we performed bioinformatics analyses using ma-
chine learning models to investigate distinct molecular patterns between IGC tumors with
high and low expression of the THY1 gene. We systematically addressed this issue by
using expression data from different cohorts with different transcriptomic methodolo-
gies and patients from different geographic backgrounds. Through this approach, we
identified a robust molecular signature of 35 genes for THY1high IGC tumors. This molec-
ular signature reveals key processes in the biology of THY1high IGC tumors, such as the
epithelial–mesenchymal transition and processes involved in the remodeling of the tumor
tissue composition and cellular interactions. Moreover, we showed that patients with
THY1high IGC tumors have poor prognosis in different aspects.

Altogether, the findings provide knowledge regarding the biology of IGC tumors with
high expression of THY1, which can help us to understand not only its biological behavior
and molecular background but also the worse prognosis of THY1high patients.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

RNA-seq data of 180 patients with IGC, as well the clinical data related to them,
were obtained from The Cancer Genome Atlas (TCGA) Project through the Genomic Data
Commons (GDC) portal using the TCGAbiolinks package (version 2.25; TCGAbiolinks,
RRID:SCR_017683) from R/Bioconductor (version 3.17 (http://www.bioconductor.org/, ac-
cessed on 5 May 2023) Bioconductor, RRID:SCR_006442) in R software (version 4.2.2 (https:
//www.r-project.org/, accessed on 3 March 2023); R software, RRID:SCR_001905) [37].
The design and workflow of this study are shown in Figure 1. Additionally, two small
independent sample sets (GSE191275, n = 10 and GSE193453 n = 4) were obtained using
the GEOquery package (version 2.38.4; GEOquery, RRID:SCR_000146) and processed in
the same way as TCGA data.

http://www.bioconductor.org/
https://www.r-project.org/
https://www.r-project.org/
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cutoff criteria of p-value ≤ 0.01 and |log2FC| ≥ 1.5 were considered DEGs. The total group of 90 
samples was divided into a training set (n = 63) and a test set (n = 27), and the expression level of the 
DEGs was used as input to an algorithm of recursive feature elimination with the support vector 
machine model. The resulting gene group was used to construct a classification support vector ma-
chine model. After that, the gene group was used in unsupervised cluster analysis. Clinical and 
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Figure 1. Workflow of the study. RNA-seq and clinical data for IGC patients (n = 180) were obtained
from the TCGA database. These samples were then segregated according to the level of THY1 gene
expression, with the upper quartile representing the THY1high group (n = 45) and the lower quartile
representing the THY1low group (n = 45). Differential gene expression analysis was performed to
obtain DEGs, with the THY1low group used as a reference for comparison. Genes that passed the
cutoff criteria of p-value ≤ 0.01 and |log2FC| ≥ 1.5 were considered DEGs. The total group of
90 samples was divided into a training set (n = 63) and a test set (n = 27), and the expression level
of the DEGs was used as input to an algorithm of recursive feature elimination with the support
vector machine model. The resulting gene group was used to construct a classification support vector
machine model. After that, the gene group was used in unsupervised cluster analysis. Clinical and
microarray gene expression data for IGC patients (n = 287) were obtained from a total of six studies
through the GEO database for validation of the group of genes. Finally, Gene Ontology and pathway
analyses were performed for the molecular signature. Survival analyses and clinicopathological
association were executed using the different cohorts.

2.2. Segregation of Samples According to the Expression Level of THY1

After obtaining the gene expression matrix, it was used as input to the package DESeq2
(version 1.38.3; DESeq2, RRID:SCR_015687), with which data normalization was performed
using the median of ratios (MRM) method [38]. After normalization, THY1 gene expression
quartiles were calculated: the THY1low group was established as the lower quartile of
expression, and the THY1high group was established as the upper quartile, with 45 IGC
patients per group, totaling 90 samples included in this study. Principal component analysis
(PCA) was applied to visualize segregation between the groups.
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2.3. Differential Gene Expression Analysis and Differentially Expressed Gene Identification

Differentially expressed genes (DEGs) were identified using the DESeq2 package [38].
For this, comparison between the THY1low and THY1high groups (45 samples in each group)
was performed. The THY1low group was considered the reference group, which means that
the identified DEGs were upregulated or downregulated in the THY1high group. After the
analysis, the biomaRt Package (version 2.54.1; biomaRt, RRID:SCR_019214) was used to
filter only protein-coding genes, totaling 18,907 final genes [39]. For DEG identification, an
adjusted p-value ≤ 0.01 and |log2FC| ≥ 1.5 were considered statistically significant. The
package EnhancedVolcano (version 1.18.0; EnhancedVolcano, RRID:SCR_018931) was used
to visualize the distribution of DEGs.

2.4. Feature Selection and Construction of a Supervised Machine Learning Model

To verify the existence of a genetic signature that can correctly discriminate between
the THY1low and THY1high groups, we first selected the most informative genes through the
recursive feature elimination with support vector machine (SVM-RFE) algorithm. We chose
this algorithm based on its demonstrated performance in the context of cancer and gene
selection [40]. For that, we first randomly split the 90 samples into a training set composed
of 70% (63/90) and a test set composed of 30% (27/90). In the training set, 32 and 31 samples
were from the THY1high and the THY1low group, respectively. In the test set, 13 samples
were from THY1high and 14 were from THY1low. Then, the training set was used to perform
SVM-RFE with 10-fold cross-validation through the gene expression levels transformed
by the variance stabilizing transformation (VST) method and scaled by z-score normaliza-
tion as input [38]. Then, the final support vector machine (SVM) model was constructed
using only the gene expression levels of genes selected by SVM-RFE and performance was
evaluated during construction using average accuracy with 10-fold cross-validation. The
hyper-parameters’ tuning was carried out through GridSearchCV, and the linear kernel
was chosen [41]. After building the model, it was tested through the Confusion Matrix and
area under the ROC curve (AUC) using the TCGA test set (n = 27) and the two small inde-
pendent sample sets (GSE191275 and GSE193453, n = 7), which were processed in the same
way as the TCGA cohort [42,43]. All the above steps were implemented using the scikit-
learn package (version 1.3.2; scikit-learn, RRID:SCR_002577) in the Python programming
language (version 3.11; Python programming language, RRID:SCR_008394) [44,45].

2.5. Unsupervised Cluster Analysis

By using expression data of genes in the molecular signature, normalized, and
transformed by the VST method and scaled to Z-score, hierarchical clustering analysis
was performed using the ComplexHeatmap package (version 2.14.0; ComplexHeatmap,
RRID:SCR_017270) [38,46]. Regarding the grouping of samples, the similarity metric used
was the Euclidean distance, and the grouping method was Ward’s linkage. For the k-means
clustering, the same data were used as input. Then, we used the scikit-learn package
(version 1.3.2; scikit-learn, RRID:SCR_002577) and specified the number of clusters as two.

2.6. Molecular Signature Validation

To verify whether the identified molecular signature is capable of separating IGC sam-
ples from other populations and methodological platforms, we performed unsupervised
cluster analysis with Gene Expression Omnibus (GEO) data using the molecular signature
genes. The evaluated studies were GSE15459 (99 IGC samples), GSE22377 (24 IGC samples),
GSE26899 (59 IGC samples), GSE26901 (82 IGC samples), GSE38749 (4 IGC samples), and
GSE57308 (19 IGC samples), totaling 287 samples. Of these, two studies used the chip
Illumina HumanHT-12 V3.0 expression beadchip (GSE26899 and GSE26901, n = 141) and
four studies used the chip Affymetrix Human Genome U133 Plus 2.0 Array (GSE15459,
GSE22377, GSE38749, and GSE57308, n = 146). Then, the data were grouped into two
main cohorts, the GEO/Illumina (GSE26899 and GSE26901, n = 141) and GEO/Affymetrix
(GSE15459, GSE22377, GSE38749, and GSE57308, n = 146) cohorts. The data were obtained
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using the GEOquery package (version 2.38.4; GEOquery, RRID:SCR_000146), and expres-
sion data were processed with the limma package (version 3.56.2; limma, RRID:SCR_010943)
using the quantile normalization for the GEO/Illumina and the robust multichip average
(RMA) normalization method for the GEO/Affymetrix cohort [47,48]. After obtaining gene
expression data, the samples were divided into THY1low and THY1high groups based on
quartiles of expression, with 35 patients in the THY1high group (upper quartile) and 36
in the THY1low group (lower quartile) for the GEO/Illumina cohort, and 37 patients in
the THY1high and 37 in the THY1low group for the GEO/Affymetrix cohort. A total of
145 samples were included in the analysis.

2.7. Gene Ontology and Pathway Analysis

Molecular signature genes were used for overrepresentation analysis (ORA) through
the clusterProfiler package (version 4.10.0; clusterProfiler, RRID:SCR_016884) [49,50]. For
this analysis, the significance limit was configured for p-value ≤ 0.05. The gene sets used
for the analysis were obtained through the Molecular Signature Database (MSigDB, version
3.0; MSigDB, RRID:SCR_016863) [51]. Within this database, gene sets consisting of the
Gene Ontology Biological Process (GOBP), well-defined biological processes and states
(Hallmarks), Kyoto Encyclopedia of Genes and Genomes (KEGG), WikiPathways, and
Reactome were selected [52–56].

2.8. Survival Analysis and Clinicopathological Characteristics Association

After previous analyses, survival and clinicopathological information from the TCGA,
GEO/Illumina, and GEO/Affymetrix cohorts were used for the remaining analyses. For
the association between clinicopathological characteristics and the THY1 expression groups,
Fisher’s exact test was applied, and p-values ≤ 0.05 were considered statistically sig-
nificant. Then, overall survival and recurrence-free survival analyses were performed
between the THY1low and THY1high groups using the survival package (version 2.11-4;
survival, RRID:SCR_021137). The Kaplan-Meier method was applied, and log-rank test
p-values ≤ 0.05 were considered statistically significant.

2.9. Statistical Analysis

All statistical analyses were performed using R software (version 4.3.1). p-values ≤ 0.05
were considered statistically significant. When appropriate, correction for multiple tests
was applied to generate an adjusted p-value using the Benjamini-Hochberg method for
correction, and an adjusted p-value ≤ 0.05 was considered to be statistically significant [57].

3. Results

3.1. Segregation of THY1high and THY1low Groups

To identify molecular differences between intestinal gastric cancer (IGC) tumors with
high and low expression of THY1, we collected data for 180 IGC patients with available
RNA-seq data in the TCGA database. After data preprocessing and normalization by
the median of ratios method MRM, these patients were separated according to THY1
gene expression quartiles, with 45 patients considered to have high THY1 gene expression
(THY1high group, referring to the upper quartile) and 45 considered to have low expression
(THY1low group, referring to the lower quartile). All subsequent analyses were based on
this segregation, and the study workflow is summarized in Figure 1.

The general characteristics of the patients can be found in Table S1. For a broad
overview of this segregation, we performed principal component analysis (Figure 2A)
using all the gene expression data, which showed that these two groups have distinct
global expression patterns that can separate them.
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Log2FC ≥ 1.5) and 338 downregulated (p-value ≤ 0.01, Log2FC ≤ −1.5) DEGs (Figure 2B). 
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Figure 2. Gene expression pattern and feature selection between the THY1high and THY1low groups.
(A) This figure shows a scatter plot of the principal component analysis. The x-axis represents
principal component 1 (PC1), and the y-axis represents principal component 2 (PC2). The proportion
described on the axes refers to the proportion of variance that these components explain. (B) This
volcano plot depicts the DEGs identified in the analysis. The x-axis represents the log2-fold change,
and the y-axis represents the adjusted p-value in −log10 values. The red color represents the
upregulated genes in the THY1high compared to the THY1low group, considered as those who passed
the cutoff point of p-value ≤ 0.01 and log2FC ≥ 1.5. The blue color represents the downregulated
genes in the THY1high compared to the THY1low group, considered as those who passed the cutoff
point of p-value ≤ 0.01 and log2FC ≤ −1.5. The gray color represents the genes that were not
significant in our cutoff point. (C) Venn diagram showing overlap between genes that were measured
on all transcriptomic platforms of the cohorts included in this study. (D) Line plot showing the
average accuracy for all possibilities between 1 and 600 genes in the SVM-RFE algorithm.

3.2. Differential Gene Expression between THY1high and THY1low Groups

To identify differential gene expression between the THY1high and THY1low groups,
we first excluded low counts and used only protein-coding genes, totaling 18,907 genes
for this analysis. Furthermore, we used the THY1low group as a reference for comparison,
which means that the DEGs identified were upregulated or downregulated in the THY1high

group. As a result, 811 DEGs were identified, including 473 upregulated (p-value ≤ 0.01,
Log2FC ≥ 1.5) and 338 downregulated (p-value ≤ 0.01, Log2FC ≤ −1.5) DEGs (Figure 2B).
A list of all identified DEGs is provided in Table S2.

3.3. Feature Selection and Supervised Machine Learning Approach Reveals a Group of Genes with
High Discriminatory Power for THY1high IGC Tumors

To further reduce the DEGs obtained in the TCGA cohort for the most informative
genes, we first eliminated the THY1 gene from this set so as not to influence the classification
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function. Then, we kept only the genes that were present on all transcriptomic platforms
of the cohorts included in this study (Affymetrix Human Genome U133 Plus 2.0 Array
and Illumina HumanHT-12 V3.0 expression beadchip), with the aim of proceeding only
with genes available on all platforms, totaling 600 genes (Figure 2C). We then applied an
algorithm of SVM-RFE using gene expression levels transformed by the VST method and
scaled by z-score normalization. For that, we first randomly split the 90 samples into a
training set composed of 70% (63/90) and a test set composed of 30% (27/90). In the training
set, 32 and 31 samples were from the THY1high and the THY1low groups, respectively. In
the test set, 13 samples were from THY1high and 14 from THY1low. Then, the training set
was used for SVM-RFE with 10-fold cross-validation. As shown in Figure 2D, the highest
average accuracy value with the lowest number of genes was found for a group of 35 genes
(98.3% average accuracy).

We then used this set of 35 genes to build the final SVM classification model. After
training and testing the model, we found an overall accuracy of 100% (Figure 3A) and an
AUC of 1.0 (Figure 3B), with all samples being correctly classified. To further address this
predictive potential, we used RNA-seq data from two small sets of independent samples
(GSE191275 n = 10 and GSE193453 n = 4) that were processed in the same way as the test
group. After segregating the samples according to the THY1 gene expression quartiles
(n = 7), these were used as input for the classification model using the 35 genes. As a result,
an accuracy of 100% (Figure 3C) and an AUC of 1.0 (Figure 3D) were achieved. These
results highlight the high predictive capacity of this set of 35 genes and, therefore, we
consider these genes as a molecular signature for THY1high IGC tumors (Table 1).

Table 1. Thirty-five genes of the common molecular signature of THY1high IGC tumors.

Gene Symbol Description L2FC p-Value Expression in THY1high

COL1A1 collagen type I α 1 chain 2.85 2.53 × 10−49 Upregulated
CCDC8 coiled-coil domain-containing 8 2.68 3.03 × 10−31 Upregulated
MFAP5 Microfibril-associated protein 5 2.51 2.78 × 10−20 Upregulated
TWIST2 twist family bHLH transcription factor 2 2.34 2.32 × 10−31 Upregulated
MXRA8 matrix remodeling-associated 8 2.31 6.94 × 10−29 Upregulated
CCL21 C-C motif chemokine ligand 21 2.28 2.48 × 10−10 Upregulated
CPXM1 carboxypeptidase X, M14 family member 1 2.25 3.74 × 10−36 Upregulated
TWIST1 twist family bHLH transcription factor 1 2.22 1.03 × 10−21 Upregulated
SPARC secreted protein acidic and cysteine-rich 2.22 6.93 × 10−60 Upregulated

ANGPTL2 Angiopoietin-like 2 2.16 3.30 × 10−29 Upregulated
MFAP2 microfibril-associated protein 2 2.13 4.23 × 10−17 Upregulated
WNT2 Wnt family member 2 2.11 1.74 × 10−13 Upregulated
BIRC7 baculoviral IAP repeat-containing 7 2.10 6.36 × 10−6 Upregulated

COL6A2 collagen type VI α 2 chain 2.09 3.87 × 10−40 Upregulated
CTSK cathepsin K 2.05 5.71 × 10−34 Upregulated

SERPINF1 serpin family F member 1 2.02 2.23 × 10−27 Upregulated
LYVE1 lymphatic vessel endothelial hyaluronan receptor 1 1.99 9.68 × 10−12 Upregulated
CD248 CD248 molecule 1.88 1.06 × 10−38 Upregulated

COL5A3 collagen type V α 3 chain 1.84 7.34 × 10−21 Upregulated
MEIS3 Meis homeobox 3 1.82 3.00 × 10−34 Upregulated
MSC musculin 1.81 3.30 × 10−29 Upregulated

VSIG4 V-set and immunoglobulin domain-containing 4 1.80 5.93 × 10−10 Upregulated
DOK5 docking protein 5 1.75 1.56 × 10−18 Upregulated

MAGEE2 MAGE family member E2 1.72 9.09 × 10−4 Upregulated
LZTS1 leucine zipper tumor suppressor 1 1.70 9.92 × 10−21 Upregulated
MAFB MAF bZIP transcription factor B 1.63 1.02 × 10−17 Upregulated

OSCAR osteoclast-associated Ig-like receptor 1.60 2.33 × 10−13 Upregulated
PCDH19 protocadherin 19 1.60 1.71 × 10−6 Upregulated
HAMP hepcidin antimicrobial peptide 1.54 2.17 × 10−5 Upregulated

COL15A1 collagen type XV α 1 chain 1.53 2.96 × 10−17 Upregulated
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Table 1. Cont.

Gene Symbol Description L2FC p-Value Expression in THY1high

SLC11A1 solute carrier family 11 member 1 1.52 4.84 × 10−14 Upregulated
GPR26 G protein-coupled receptor 26 1.51 6.34 × 10−3 Upregulated

COL20A1 collagen type XX α 1 chain −1.69 6.09 × 10−5 Downregulated
CXCL5 C-X-C motif chemokine ligand 5 −1.98 2.67 × 10−3 Downregulated
SPAG6 sperm-associated antigen 6 −2.44 5.66 × 10−8 Downregulated

In this table, the expression variable refers to the expression of a given gene in the THY1high group compared to
the THY1low group.
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Figure 3. Evaluation of the classification performance of the 35 molecular signature genes in an SVM
model. (A) Confusion matrix of the test set of the TCGA cohort (n = 27). The color gradient on the
right represents the number of samples in each quadrant. (B) ROC-AUC curve of the test set of the
TCGA cohort. The x-axis represents the false positive rate and the y-axis the true positive rate. The
blue line represents the AUC for the linear SVM model. (C) Confusion matrix of the small sets of
independent samples (GSE191275 and GSE193453 n = 7). The color gradient on the right represents
the number of samples in each quadrant. (D) ROC-AUC curve of the small sets of independent
samples (GSE191275 and GSE193453 n = 7). The x-axis represents the false positive rate and the y-axis
the true positive rate. The blue line represents the AUC for the linear SVM model.

3.4. Candidate Genes in the Molecular Signature Can Successfully Segregate between THY1high

and THY1low IGC Tumors in an Unsupervised Manner

To verify the capacity of the 35 genes to function as a molecular signature for THY1high

IGC tumors in a way that does not require prior model training and that can be applied
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independently of the transcriptomic methodology, we conducted unsupervised cluster
analysis using the expression levels of only these genes. For this, we used the Euclidean
distance as a similarity metric for the samples with the Ward’s linkage clustering method.
As a result, correct clustering occurred in 100% of the samples. The heatmap in Figure 4A
illustrates this distribution.
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Figure 4. Unsupervised cluster analysis of THY1 expression groups according to the expression
levels of the 35 genes from the molecular signature in the TCGA cohort. (A) Heatmap of hierarchical
clustering in the TCGA cohort. The lines represent each of the 35 molecular signature genes, and
the columns represent each of the 90 samples. In the upper part of the figure, the dendrograms
represent the hierarchical grouping of the samples based on the Euclidean distance between them
using the Ward’s linkage grouping method. The first rectangle below the dendrogram represents
the classification of cases, with the red one referring to the THY1high group and the blue one to
the THY1low group. The Z score, which represents the range of colors used, was used to scale the
expression data. (B) Two principal components of a principal component analysis representing the
k-means clustering in the TCGA cohorts (n = 90). The black dot represents the cluster centroid.

To further understand this group structure based on the 35 genes, we performed a
k-means clustering analysis to validate the previously observed clustering. As a result, all
samples grouped correctly (Figure 4B), reinforcing the previous results. It is interesting
to note that these 35 genes were able to segregate between the two groups in a satisfac-
tory manner in all methodologies applied, which strengthens the use of these genes as a
molecular signature for these groups.

3.5. External Cohort Validation Reveals the Robustness and Generalization Capacity of the 35-Gene
Molecular Signature for THY1high IGC Tumors

To ensure that the results observed were not influenced by bias in the TCGA popu-
lation or RNA-seq methodology, we used several external cohorts for validation of this
molecular signature. We obtained data from six different studies in the GEO database
(GSE15459, GSE22377, GSE26899, GSE26901, GSE38749, and GSE57308), covering patients
of different nationalities with gene expression data obtained from different microarray plat-
forms (Illumina HumanHT-12 V3.0 expression beadchip and Affymetrix Human Genome
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U133 Plus 2.0 Array), with a total of 287 IGC patients (Table S3). These studies were divided
into two major cohorts, the GEO/Illumina cohort (GSE26899 and GSE26901, n = 141) and
the GEO/Affymetrix cohort (GSE15459, GSE22377, GSE38749, and GSE57308, n = 146). Pre-
processing and normalization of the data were carried out by the quantile normalization for
the GEO/Illumina cohort and RMA for the GEO/Affymetrix cohort. We then separated the
THY1high and THY1low groups based on THY1 gene expression quartiles, with 35 patients
in the THY1high group (upper quartile) and 36 in the THY1low group (lower quartile) for
the GEO/Illumina cohort and 37 patients in the THY1high and 37 in the THY1low group for
the GEO/Affymetrix cohort.

Then, we applied the same previously unsupervised cluster analysis to these expres-
sion data. As shown in Figure 5A, a correct clustering of 98.6% (70/71) was achieved in the
GEO/Illumina cohort, with one sample from the THY1high group clustered with the wrong
group. Furthermore, for the GEO/Affymetrix cohort, a correct clustering of 95.9% (71/74)
was achieved, with three samples from the THY1low group clustered with the wrong group
(Figure 5B). Moreover, we applied the k-means clustering to additionally verify the distri-
bution of these groups. Interestingly, 100% of the samples from the GEO/Illumina cohort
were clustered correctly (Figure 5C), whereas for the GEO/Affymetrix cohort, the same
correct clustering rate was maintained (95.9%), with three samples from the THY1low group
clustered incorrectly (Figure 5D).
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clustering in the GEO/Illumina (n = 71) and GEO/Affymetrix (n = 74) cohorts, respectively. The
lines represent each of the 35 molecular signature genes, and the columns represent each sample. In
the upper part of the figure, the dendrograms represent the hierarchical grouping of the samples
based on the Euclidean distance between them using the Ward’s linkage grouping method. The
first rectangle below the dendrogram represents the GEO studies. The second rectangle below the
dendrogram represents the classification of cases, with the red one referring to the THY1high group
and the blue one to the THY1low group. The Z-score, which represents the range of colors used, was
used to scale the expression data. (C,D) Two principal components of a principal component analysis
representing the k-means clustering in the GEO/Illumina (n = 71) and GEO/Affymetrix (n = 74)
cohorts, respectively. The black dot represents the cluster centroid. The blue triangle represents
samples from the THY1low group that were clustered incorrectly.

Taken together, these results show that the molecular signature was able to successfully
separate these groups. This demonstrates the discriminatory nature of this set of genes
in a manner that is independent of the methodology used to obtain the gene expression
data or geographic origin of the patients. Hence, these 35 genes can be considered a robust
molecular signature and a consistent biological pattern for THY1high IGC tumors.

3.6. Molecular Signature Genes of THY1high IGC Tumors Are Involved in Key Processes of the
Epithelial–Mesenchymal Transition and Remodeling of Tumor Tissue Composition

To understand the biological consequences of the genes involved in the identified
molecular signature and provide context for such molecular changes, we performed ORA
to identify the biological processes in which these genes are involved. To this end, we used
as a reference a collection of gene sets from GOBP, Hallmarks, KEGG, WikiPathways, and
Reactome databases.

As a result, several biological processes were found to be statistically significant
(p ≤ 0.05). Among these, processes involved in remodeling of the tumor tissue composition (ex-
tracellular matrix organization, collagen formation, and regulation of angiogenesis), epithelial–
mesenchymal transition (epithelial–mesenchymal transition, epithelial–mesenchymal transition
in colorectal cancer, and positive regulation of epithelial–mesenchymal transition), and gain
of aggressiveness characteristics (positive regulation of cell migration, positive regulation
of cell motility, positive regulation of locomotion, and embryo development) were found
enriched in the molecular signature.

The statistics of these processes and the list of genes involved in each process are
summarized in Table 2. Altogether, these results indicate that the processes involved in the
epithelial–mesenchymal transition (EMT) and processes that encompass different aspects
of remodeling of the tumor tissue composition and a cell’s interaction within the tissue
context are central processes for the biology of THY1high IGC tumors.

Table 2. Gene Ontology terms and signaling pathways associated with the 35 molecular signature
genes of THY1high IGC tumors.

Overrepresentation Analysis
Signature Genes

p-Value Database
Up Down

Extracellular matrix organization COL1A1, MFAP5, SPARC, MFAP2,
COL6A2, CTSK, COL5A3, COL15A1 COL20A1 7.19 × 10−9 Reactome

(R-HSA-1474244)

Collagen formation COL1A1, COL6A2, COL5A3,
COL15A1 COL20A1 1.17 × 10−6 Reactome

(R-HSA-1474290)
Epithelial–mesenchymal transition COL1A1, MFAP5, SPARC, COL5A3 2.77 × 10−6 Hallmarks

Positive regulation of cell migration COL1A1, TWIST2, CCL21, TWIST1,
SPARC, LYVE1 2.98 × 10−4 GOBP

(GO:0030335)

Positive regulation of cell motility COL1A1, TWIST2, CCL21, TWIST1,
SPARC, LYVE1 3.74 × 10−4 GOBP

(GO:2000147)
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Table 2. Cont.

Overrepresentation Analysis
Signature Genes

p-Value Database
Up Down

Positive regulation of locomotion COL1A1, TWIST2, CCL21, TWIST1,
SPARC, LYVE1 4.10 × 10−4 GOBP

(GO:0040017)

Embryo development COL1A1, MFAP5, TWIST1, MFAP2,
MEIS3 2.18 × 10−3 GOBP

(GO:0009790)
Epithelial–mesenchymal transition

in colorectal cancer TWIST2, TWIST1, SPARC 2.44 × 10−3 WikiPathways
(WP4239)

Positive regulation of
epithelial–mesenchymal transition COL1A1, TWIST1 5.04 × 10−3 GOBP

(GO:0010718)

Regulation of angiogenesis TWIST1, SPARC, SERPINF1 1.22 × 10−2 GOBP
(GO:0045765)

In this table, the up and down in the signature genes variable refer to the expression of a given gene in the
THY1high group compared to the THY1low group.

3.7. THY1high IGC Tumors Lead to Poor Survival with a Heterogeneous Clinicopathological Staging

To verify the prognostic impact of high THY1 gene expression in patients with IGC,
we first tested the association between the established groups (THY1high vs. THY1low)
and clinicopathological staging of the patients. As a result, no significant association was
observed between the THY1 groups and the clinicopathological staging of patients in the
TCGA cohort (Figure 6A). However, in both GEO/Illumina and GEO/Affymetrix cohorts,
the THY1high group demonstrated a significant association with more advanced stages of
the disease. As shown in Figure 6B, in the GEO/Illumina cohort, 75% of THY1high cases
were found in advanced stages (III–IV), compared to 42% of THY1low cases (p = 0.024).
Furthermore, the same pattern was observed in the GEO/Affymetrix cohort (Figure 6C),
with 82% of THY1high cases found in advanced stages (III–IV) compared to 64% of THY1low

cases (p = 0.043). These results indicate that although a certain heterogeneity is observed
between the cohorts, both groups tend to be distributed in all stages, but with the THY1high

group preferentially in advanced stages.
Then, we performed survival analysis to verify the impact of THY1 groups in patient

survival. Regarding overall survival (OS), patients with THY1high IGC tumors consistently
had poor OS across all three cohorts. In the TCGA cohort (Figure 6D), patients with
THY1high IGC tumors had poorer OS (log-rank p = 0.0075, hazard ratio = 3.27, 95% CI:
1.31–8.16) than those with THY1low IGC tumors, with a median OS of 19 months compared
to 69 months in the THY1low group. In the GEO/Illumina cohort (Figure 6E), the same was
observed (log-rank p = 0.0082, hazard ratio = 2.37, 95% CI: 1.22–4.58), with the THY1high

group showing a median OS of 32 months compared to 49 months in the THY1low group.
For the GEO/Affymetrix cohort (Figure 6F), the THY1high group also showed a poor OS
(log-rank p = 0.025, hazard ratio = 2.20, 95% CI: 1.09–4.46), with a median OS of 24 months
compared to 64 months in the THY1low group.

Regarding recurrence-free survival (RFS), although there are no data available for
RFS of the GEO/Affymetrix cohort, in both the TCGA and GEO/Illumina cohorts, the
THY1high group showed a poor RFS. As depicted in Figure 6G, in the TCGA cohort, the
THY1high group showed poorer RFS (log-rank p = 0.018, hazard ratio = 3.58, 95% CI:
1.15–11.1), with a median RFS of 55 months compared to 64 months in the THY1low group.
In the GEO/Illumina cohort (Figure 6H), the same was observed (log-rank p = 0.0045,
hazard ratio = 2.47, 95% CI: 1.30–4.69), with the THY1high group showing a median RFS of
26 months compared to 84 months in the THY1low group. Additionally, in the GEO/Illumina
cohort, where adjuvant chemotherapy information was available, we verified whether
THY1 expression impacted the outcome of patients who used chemotherapy. As shown in
Figure 6I, the patients with THY1high IGC tumors who used the adjuvant chemotherapy
regimen had a poor RFS (log-rank p = 0.05, hazard ratio = 2.62, 95% CI: 1.01–7.26), with a
median RFS of 31 months compared to 84 months in patients with THY1low IGC tumors
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who used the adjuvant chemotherapy. Additional information for these comparisons can
be found in the Table S4. Moreover, information for all datasets from external GEO cohorts
is available in Table S5. Altogether, these results highlight the impact of THY1 expression
on different aspects of patients’ prognosis.
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Figure 6. Clinicopathological association and survival analysis between the THY1high and THY1low

groups. (A–C) Association between clinicopathological staging and the THY1 group in the TCGA,
GEO/Illumina, and GEO/Affymetrix cohorts, respectively. The association was tested using Fisher’s
exact test. (D–F) Overall survival analysis between the THY1high and THY1low groups in the TCGA,
GEO/Illumina, and GEO/Affymetrix cohorts, respectively. The red line refers to the THY1high group,
and the black line refers to the THY1low group. (G,H) Recurrence-free survival analysis between
the THY1high and THY1low groups in the TCGA and GEO/Illumina cohorts, respectively. The red
line refers to the THY1high group, and the black line refers to the THY1low group. (I) Recurrence-
free survival analysis between the THY1high and THY1low groups that had received the adjuvant
chemotherapy regimen in the GEO/Illumina cohort. The green line refers to the THY1high group,
and the blue line refers to the THY1low group. The x-axis represents the survival time in months, and
the y-axis represents the probability of survival.

4. Discussion

Through a feature selection method appropriate for gene expression data, SVM-
RFE, and different classification approaches, supervised and unsupervised, we found
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that THY1high IGC tumors have a distinct gene expression pattern compared to THY1low

tumors [40]. After validation in different external cohorts, a robust molecular signature
of 35 genes (32 upregulated and 3 downregulated in the THY1high group) demonstrated
potential to discriminate between THY1high and THY1low IGC tumors, regardless of the
transcriptome quantification methodology used (RNA-seq to TCGA and microarray to
GEO) or geographic origin of the patients. This highlights its high potential for generaliza-
tion and the consistency of the biological pattern found in this molecular signature. Given
the geographic variation in gastric cancer incidence and that the microarray approach
to transcriptome quantification represents approximately half of the transcriptome data
available and is still widely used, it is important to find molecular patterns that are common
regardless of these characteristics [58–61]. Therefore, we used this molecular signature to
characterize a poor prognosis profile and to understand the underlying biology of these
tumors [13]. Similarly, a previous work from Oh et al. (2018) reported a group of gastric
tumors with a mesenchymal phenotype and poor prognosis characterized by differen-
tial expression of 299 genes, which included not only the THY1 gene but also 9 genes
present in our signature [62]. Furthermore, through modulation of THY1 gene expression,
Zhu et al. (2015) demonstrated that high expression of THY1 leads to an inhibition of
apoptosis and increased expression of SPARC in gastric tumor cells, with SPARC being
found to be upregulated in the molecular signature identified in our work [35]. Moreover,
Liu et al. (2021) showed that both THY1 and COL1A1 are potential hub genes in gastric
adenocarcinoma associated with poor survival, with COL1A1 being another member of the
molecular signature identified in our work [16]. Although these studies did not address
THY1 directly and did not divide tumors by histological subtype, making comparison
difficult, they corroborate our results, demonstrating that high expression of the THY1 gene
is accompanied by a distinct pattern of gene expression and that the group of 35 genes
found as a molecular signature can successfully represent this pattern.

Analysis of the biological functions in which these molecular signature genes are
involved showed that the epithelial–mesenchymal transition (EMT) is one of the most
striking biological characteristics in THY1high IGC tumors. This is an important cellular
process in which epithelial cells adopt mesenchymal features [63]. In cancer, this process is
widely described as having a central role in tumorigenesis by conferring tumor cells with
migratory and invasive properties [64,65]. In agreement with our results, Shah et al. (2019)
and Pajuelo-Lozano et al. (2020) showed that gastric cancer cells with high expression
of THY1 have characteristics of gastric cancer stem cells with an EMT phenotype and
increased migration and invasion capacity [66,67]. Additionally, the processes of cell
migration, motility, and locomotion were found to be enriched in the THY1high group in
the present work. Furthermore, the study by Oh et al. (2018), which demonstrated high
expression of THY1 in gastric tumors with a mesenchymal phenotype, seems to corroborate
our results, though none of the previous studies directly addressed the IGC histological
subgroup [62]. Nevertheless, together with our results, these previous data indicate that the
EMT is a central biological process underlying the pathogenesis of THY1high IGC tumors.

In addition to the EMT phenotype, several processes associated with remodeling of
the tumor tissue composition and cell interaction with this tissue context were enriched,
such as extracellular matrix organization, collagen formation, and angiogenesis. These
processes can influence characteristics such as stiffness, density, and tissue perfusion, which
are important factors in tumor progression [68–70]. Malanchi et al. (2011) found that cancer
stem cells expressing THY1 respond to increased matrix components at metastatic sites [71].
Moreover, Díaz Del Arco et al. (2022) showed that desmoplasia, a fibrotic process resulting
from accumulation of extracellular matrix components, is associated with intestinal gastric
cancer when compared to the diffuse type [72]. The Thy-1 protein, encoded by the THY1
gene, is involved in mechano-signaling, a pathway that results from interaction with matrix
components [73,74]. Thus, enrichment of these processes in THY1high IGC tumors along
with the EMT phenotype indicates a specific cellular and tissue context related to the
pathogenesis of these tumors. Given that the molecular signature has been shown to
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represent a consistent biological pattern between different cohorts, our findings revealed
the distinct molecular mechanisms by which the development and progression of THY1
high tumors may occur.

When verifying the association between the THY1high group and patient prognosis, we
first found that the relationship between THY1high tumors and clinicopathological staging
is heterogeneous, with most evaluated cohorts demonstrating an association between
THY1high tumors and advanced stages. The fact that we observed THY1high tumors in
all stages, as well as THY1low, strengthens our hypothesis that THY1high IGC tumors are
a particular subtype and not a more advanced stage of the same tumor. Then, through
survival analysis, we showed that patients with THY1high IGC tumors have poorer OS than
those with THY1low IGC tumors. Furthermore, THY1high IGC tumors also showed poor
RFS. This confirms a previous result from our group that showed high THY1 expression
as a marker of poor OS in IGC patients, but now using multiple cohorts, we have been
able to demonstrate that this is a consistent pattern [13]. These results agree with other
previous studies, which found that the level of expression of the THY1 gene in GC tumors
was a marker of poor prognosis, though not directly in IGC [14–16]. Furthermore, we
demonstrated the relationship between the THY1high expression group and poor RFS
among IGC patients, which had not been directly addressed by previous studies. These
data indicate that patients with THY1high IGC tumors are considerably more likely to
experience early recurrence events than those with THY1low IGC tumors, which is an
important factor in the prognosis of gastric cancer and thus highlights the importance
of THY1 as a possible prognostic marker [4]. Interestingly, a poor RFS was also found
for THY1high patients when observing only those who used the adjuvant chemotherapy
regimen. This fact may be related to the central role of EMT in THY1high IGC tumors, as
demonstrated by our previous results. The EMT process has already been shown to be
an important factor in resistance to cancer therapy [75,76]. Additionally, chemo-resistant
tumors have already shown high expression of THY1 in other types of cancer, although
there is no description in IGC [77]. In the study carried out by Oh et al. (2018), which
addressed a mesenchymal profile of GC that has high THY1 expression, a poor RFS in
patients who used the adjuvant chemotherapy regimen was also observed [62]. This could
indicate differences in the clinical benefit of adjuvant chemotherapy for this group of
patients, and further studies are needed to address this question.

There are some limitations in our study, such as the bulk transcriptome approach.
From these data, we cannot directly distinguish whether increased expression of the
THY1 gene in the tumor is a consequence of its increased expression in tumor cells, in
mesenchymal cells of the tumor microenvironment, or both. Thus, further studies are
needed to address the contribution of THY1 expression in each of these populations to
tumor biology. Nevertheless, this is one of the first studies to address the biological aspects
of IGC tumors with high THY1 expression, contributing to our understanding of the
significance of this increase in gene expression and the concomitant molecular changes that
occur in this context.

5. Conclusions

In this study, we identified a robust molecular signature of 35 genes for THY1high IGC
tumors, which highlights its distinct molecular pattern in relation to THY1low tumors. This
molecular signature was independent of possible methodological and population biases
and was able to successfully discriminate between tumors with high and low expression of
THY1. Our work sheds light on important processes underlying THY1high tumor patho-
genesis, such as the epithelial–mesenchymal transition and remodeling of the tumor tissue
composition. Moreover, the THY1high group showed a more advanced clinicopathological
staging and a poor OS and RFS. Therefore, our data seem to indicate that THY1high IGC
tumors may be a particular subtype of gastric tumors that have a molecular profile that can
explain the worse prognosis. We hope that these results will contribute to advancement of
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the current understanding of the THY1 gene in IGC tumor biology and its potential use as
a biomarker for the disease.

Supplementary Materials: The following supporting information can be downloaded at: https://
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