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Abstract: In gene quantification and expression analysis, issues with sample selection and processing
can be serious, as they can easily introduce irrelevant variables and lead to ambiguous results. This
study aims to investigate the extent and mechanism of the impact of sample selection and processing
on ribonucleic acid (RNA) sequencing. RNA from PBMCs and blood samples was investigated in
this study. The integrity of this RNA was measured under different storage times. All the samples
underwent high-throughput sequencing for comprehensive evaluation. The differentially expressed
genes and their potential functions were analyzed after the samples were placed at room temperature
for 0h, 4h and 8h, and different feature changes in these samples were also revealed. The sequencing
results showed that the differences in gene expression were higher with an increased storage time,
while the total number of genes detected did not change significantly. There were five genes showing
gradient patterns over different storage times, all of which were protein-coding genes that had not
been mentioned in previous studies. The effect of different storage times on seemingly the same
samples was analyzed in this present study. This research, therefore, provides a theoretical basis for
the long-term consideration of whether sample processing should be adequately addressed.

Keywords: blood sample processing; RNA-Seq; sample heterogeneity; time-sensitive genes

1. Introduction

At present, there is plenty of evidence that RNA-sequencing (RNA-Seq) results can
be used to assist in early cancer diagnosis, to provide references for precision medication
and to reduce the occurrence of adverse drug reactions; these are benefits of the high
level of accuracy of next-generation sequencing, which can reach 99.99% [1–5]. At the
same time, the continuously decreasing cost of RNA-Seq lowers the barrier of application
of sequencing data. Furthermore, many stable and accurate software applications and
packages for the bioinformatic analysis of RNA-Seq data have emerged since the first RNA-
Seq was performed in 2006 [6–10], opening the way for a period of rapid development.
However, there is still no gold standard on how the samples for RNA-Seq are processed
according to different needs.

The factors that affect the quality of RNA sequencing data include RNA extraction and
storage, from samples to subsequent sequencing [10]. Generally speaking, obtaining RNA-
sequencing data from samples requires a process of sample acquisition, transportation,
storage, RNA extraction, library construction, sequencing and analysis. During these
sample preparation procedures, new neglected variables may be introduced, which can
then affect the precision of the RNA-Seq results [11–13]. Researchers have found that
PBMCs stored for different amounts of time have different transcriptome results, which
hinder the identification and interpretation of cancer-specific alterations [14]. The tumor
and development-process marker genes LEF1 and PHF20 have a tendency to change
depending on storage time, which will affect the accuracy of correct tumor-marker screening
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or early screening. Dvinge and colleagues [14] pointed out that incubating samples on
ice significantly reduced the rate of transcriptome changes over time. After being placed
on ice for 48 h, the amplitude of differential gene expression and alternative splicing
was approximately equivalent to the change after 4 h at room temperature. Pogosova
et al. concluded that cryopreserved acute myeloid leukemia (AML) samples had extensive
heterogeneity in terms of the survival rate, the percentage of non-leukemia cells and the
overall differentiation status of leukemia cells [15]. Fowles and colleagues found that
elderly and young patients with polycythemia vera had different genomic characteristics.
The frequency of JAK2 V617F allele mutations in the elderly population was significantly
higher than that in the younger population. This also shows that, when using different
individuals for the control group and experimental group is unavoidable, we should try to
maintain the consistency of gender, age and other characteristics [16].

In general, research on the influencing factors of RNA sequencing quality has not been
elaborated yet. There are many problems waiting to be optimized and discussed. Among
them, one often-overlooked aspect is the sample preparation process, which may bring
potential variations and deviations into RNA-Seq experiments.

The commonly used technique for the extraction of RNA from blood requires the
separation of PBMCs. This process increases the complexity of the entire extraction. The
more steps there are in such a process, the easier it is to accumulate errors and the more
time-consuming labor there is. At this stage, mature commercial kits for separating PBMCs
from blood have not yet been developed. The commonly used method is to remove
the white membrane layer after centrifugation, which results in low reproducibility and
large differences in operations between different experimenters. This has little effect on
qualitative experiments but has an impact on quantitative experiments. Because additional
steps will introduce new variables, the accuracy of quantitative experiments, such as
RNA-Seq, will be affected by the added variables.

The reagent kit for extracting whole blood is relatively thorough. Although it is more
convenient and faster to extract RNA directly from the blood instead of isolating PBMCs,
different kits may affect the quality of RNA data, thereby affecting the quality of different
batches. This can lead to uncertain research conclusions being drawn from the experimental
results. Therefore, it is necessary to use whole blood as a material to explore the influence
of other processes on sequencing results.

As a supplement to the above study and to discover the mechanism behind these
traits, our study aims to explore whether different storage times and processing methods
for the same sample affect transcriptional expression results, and to thus provide a sample
processing method recommendation for researchers.

2. Materials and Methods
2.1. Sample Collection and Processing

All samples were taken from healthy subjects at the School Hospital of Southeast
University, who were aged between 20 and 30. All subjects reviewed and signed an
informed consent form.

PBMCs from one individual (500 µL) were extracted using a Ficoll-Hypaque gradient
after 0, 1, 4 and 8 h, at the usual centrifugation speed (1500× g) at room temperature. The
samples included a male and two donors from the GEO database.

The blood samples were collected in accordance with regulations. Blood samples were
collected in a K2-EDTA anticoagulant tube and incubated in a 4 ◦C constant-temperature
refrigerator for 0, 4, 8, 24 or 32 h. The samples were from three males and three females.

All details about the samples are shown in Table 1.
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Table 1. Samples from healthy donors.

Donor Sex Sample Type Treatment Hours Million Reads RIN

01 XY PBMCs room temperature

0 23.9 8.8
1 24.0 9.1
4 24.0 9
8 23.9 9

02 1 XX PBMCs room temperature
0 35.4 9.0
4 33.0 8.8
8 36.9 8.8

03 1 XY PBMCs room temperature
0 48.2 9.0
4 45.1 9.1
8 46.3 9.1

04 XX blood 4 ◦C

0 45.4 8.9
4 48.0 9.0
8 49.0 8.7

24 48.2 8.0

05 XX blood 4 ◦C

0 48.7 8.8
4 47.0 8.9
8 48.7 8.6

24 47.0 8.3

06 XX blood 4 ◦C

0 48.1 9.0
4 46.1 8.7
8 47.4 8.7

24 47.1 8.5
32 45.9 7.9

07 XY blood 4 ◦C

0 45.5 8.9
4 47.2 8.7
8 47.0 8.5

24 47.3 8.5
32 46.0 8.0

08 XY blood 4 ◦C

0 46.1 9.2
4 48.7 9.1
8 48.6 8.7

32 46.8 7.8

09 XY blood 4 ◦C
0 45.7 9.1
4 47.5 9.0
8 45.9 8.6

1 Donors from the GEO database.

2.2. Ribonucleic Acid (RNA) Isolation and Complementary Deoxyribonucleic Acid (cDNA)
Library Construction

Total RNA from PBMCs (including samples from the GEO database) was extracted
using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA), and blood RNA
was extracted using the AM1928 RiboPure-Blood kit (Thermo Fisher Scientific, Waltham,
MA, USA). RNA integrity numbers (RINs) were measured using the Agilent 2100 (Agilent
Technologies, Santa Clara, CA, USA). The quality was classified from one to 10, where
one represents the most serious degradation and 10 represents no degradation. Different
degrees of RNA degradation would affect the transcriptome results; the high-quality
standard for RNA sequencing requires the minimum value to be eight [10,17,18].

The cDNA library-construction method was consistent with our previously published
articles [19]. Firstly, 1 µg RNA was purified with 1.8 × RNA Clean Beads (Vazyme, China)
to remove the genomic DNA and rRNAs. The cDNA library was constructed using a
NEBNext® UltraTM II Directional RNA Library Prep Kit for Illumina® (New England
Biolabs GmbH, Ipswich, MA, USA); the first cDNA strand and the second cDNA strand
were synthesized, the end repair process and adapter ligation steps were undertaken, and
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finally, the polymerase chain reaction (PCR) enrichment of the adaptor-ligated DNA was
undertaken. PCR products were purified using NEBNext Sample Purification Beads (New
England Biolabs GmbH, Ipswich, MA, USA). Finally, the library was sequenced on an
Illumina HiSeq X10 PE150 platform (Illumina, Inc. US Illumina, San Diego, CA, USA)
with a paired-end pattern and insert sizes of 300 bp. The sequencing reads of all samples
(including samples from the GEO database) are presented in Table 1. In addition, the
sequencing read length of the samples from the GEO database was also 300 bp, which was
consistent with the sequencing strategy in this study.

2.3. Bioinformatics Analysis

We used the fastp (v0.23.2) tool to perform sequencing quality control and filtering
on the raw reads, resulting in clean reads. The clean reads were then aligned to the Hg19
reference genome using Hisat2(v2.1.0) with default parameters. Later, the reads number of
every gene were counted using featureCounts (v2.0.1); the gene set we used was obtained
from The Human GENCODE Gene Set and the version is consistent with the reference. The
matrix of different gene counts in different samples was exported into an R package named
edgeR (3.38.2). Zero-count genes in all of the samples were discarded, and each sample
was divided into groups for comparison. Only those with log2 fold changes greater than
1 and adjusted p-values less than 0.05 were reserved.

We used RSEM (v1.3.1) tools to quantify gene expressions. RSEM uses the relationship
between paired end, the length of reads, the length distribution of fragments and the quality
value to establish the maximum likelihood abundance estimation model, based on the
maximum expectation algorithm, in order to distinguish which transcripts are different
subtypes of the same gene.

2.4. Analysis of the Similarities and Differences

We aimed to explore the impact of sample processing on blood RNA sequencing
and the extent of the impact, and to explore the impact of commonly used bioinformatics
analysis methods on the results. These variables are not completely uniform samples;
they have been or are being used as standard samples for scientific research, and these
conventional analysis methods are used to obtain seemingly credible results.

Based on these methods, similarity and difference analyses and regular extraction
should be carried out on RNA sequencing results obtained using different sample pro-
cessing methods but from the same individual, so as to clarify whether sample processing
methods have an impact on sequencing results and, if so, the extent of their impact.

2.4.1. Correlation Analysis

The correlation of gene expression level among samples is an important index to test
the reliability of the experiment and the rationality of sample selection. The closer the
correlation coefficient is to one, the higher the similarity is. According to the quantitative
results of FPKM, we calculated the correlation between the two samples, and made a heat
map of the correlation. The degree of similarity is indicated by the color depth. The deeper
the red color is, the greater the difference between the two samples is. The lighter the red
color is, the more similar it is.

2.4.2. Gene Clustering

We used the Euclidean distance algorithm to calculate the expression distance of each
sample gene, and used the dispersion squared (Ward) algorithm to calculate the distance
between samples, using the default parameters of hierarchical clustering from R studio. We
established a clustering map, according to distance, that can intuitively reflect the distance
relationship between the samples to show the difference between them.
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2.4.3. Differential Gene Screening

Referring to the sequencing-based differential gene detection method published by
Audic S. et al. [20], in our analysis, the default definition of a differential expression gene
is FDR ≤ 0.001, and multiple difference is defined as more than two times, based on a
Poisson distribution.

2.4.4. Time-Sensitive Genes

In order to find time-sensitive genes, we used the edgeR package (3.38.2) to find
the intersections of two different genes between samples 0, 4 and 8, with three different
storage time periods. Then, five genes with the most significant changes over time were
selected. In order to further verify the accuracy of the results, we performed the same
operation for other GEO sequencing data and focused on whether these five genes met the
expected trend.

2.4.5. Gene Enrichment Analysis

Based on the genome annotation information, genes with the same or similar functions
are enriched to reduce their dimensionality. We used the clusterProfiler package (4.4.1) to
perform GO and KEGG analyses on the selected differential genes; please refer to official
documents for the detailed operations.

3. Results
3.1. Gene Expression Changes along with Storage Times

The RNA integrity numbers (RINs) among PBMC samples did not differ significantly.
All of them were between 8.5 and 9.5 (Figure 1A), which meant the RNA quality was
sufficiently maintained. By comparing the transcriptome gene differences for different
treatments, we found that the gene expression difference was higher for the same genes
with an increased storage time, and this difference was most obvious at the 8-h point, while
there was no significant change in the total number of RNAs within 8 h.

The correlation analysis (Figure 1B) showed that the correlation between the total
genes within 8 h was greater than 0.97, and that the minimum was 0.978 within 8 h. When
comparing the overall sequencing differences in PBMCs that were extracted from blood
samples stored within 8 h, the results of the above correlation analysis showed that there
were no significant differences at four distinct time points. However, Dvinge concluded
that sample processing caused widespread genomic alterations [14]; nonetheless, this is not
contradictory because, while the overall results are similar, this does not necessarily mean
that the gene expression results of the samples are the same.

For the whole blood samples, it can be seen from the sample cluster graph that, within
the first 8 h, the difference between different individuals is greater than the difference in
storage time. At the same time, even if some individuals exceed 8 h, the basic expression
gap is greater than the storage time. In general, the difference in gene expression within
8 h of storage time is mainly due to individual differences, and, after 8 h, it is mainly due
to storage time. There was no significant change among the samples with the increase in
storage time (Figure 1C).

Briefly, the gene expression differences gradually rose with the increasing storage time,
while there was no significant change in the total number of RNAs within 8 h.
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Figure 1. RNA integrity and correlation of differential treated samples. (A) The RNA integrity
number extracted from PBMCs samples. The gray line represented donor 01. The blue and orange
lines represented donor 02 and donor 03. (B) Correlation coefficient diagram of PBMCs samples
from donor 01. The intensity of the color represented the similarity. (C) Gene clustering of RNA-Seq
data from whole blood samples (F means female, M means male, 1–3 represent the numbers of
different donors).

3.2. Five Genes Are Significantly Different within Eight Hours in Peripheral Blood Mononuclear
Cells (PBMCs)

To our surprise, there were still five genes with regular significant differences in gene
expression following a short period of 8 h. All of them belonged to the genes encoding
protein. These may be related to a series of stress responses after the cells are isolated
in vitro. As shown in Figure 2A below, the expression levels of five genes gradually
increased over time. These five genes were as follows: peptidase inhibitor 3 (PI3), alkaline
phosphatase, bio-mineralization associated (ALPL), Fc fragment of the IgG receptor IIIbF (FCGR3B),
TNF receptor superfamily member 10c (TNFRSF10C) and membrane metalloendopeptidase (MME).
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Figure 2. Five selected genes’ expression levels and their changes with different storage times.
(A) The five genes showed significantly different FPKM within 8 h of PBMCs from donor 01;
(B,C) The five genes showed significantly different FPKM within 24 h from donor 02 and donor 03.

The PI3 gene encodes an elastase-specific inhibitor as an antimicrobial peptide against
Gram-positive and Gram-negative bacteria and fungal pathogens. The protein contains
four disulfide core (WFDC) domains of the WAP type, so it is a member of the WFDC
domain family. Most of the WFDC gene members are located in the following two
clusters on chromosome 20q12-q13: centromere and telomere. The gene belongs to the
centromere cluster.

The ALPL gene encodes a protein of the alkaline phosphatase family, which plays a
key role in bone mineralization by regulating the level of diphosphate (PPI). The product of
this gene is a membrane-bound glycosylase, which is not expressed in any specific tissue.
There are at least four different, but related, alkaline phosphatases, as follows: intestinal,
placental, placental and liver/bone/kidney (tissue-nonspecific).

The protein encoded by the FCGR3B gene is a low-affinity receptor in the Fc region of
γ immunoglobulin (IgG). As a monomer, the coding protein can bind to the monomeric or
aggregated IgG. In contrast to FCGR3A, it cannot mediate antibody-dependent cytotoxicity
and phagocytosis and may capture immune complexes in peripheral circulation.

The protein encoded by the TNFRSF10C gene is a member of the tumor necrosis factor
receptor superfamily. This receptor cannot induce apoptosis, and is considered to be an
antagonistic receptor, which can protect cells from TRAIL-induced apoptosis. This gene is
expressed in many normal tissues, but not in most tumor cell lines, which may explain the
specific sensitivity of tumor cells to TRAIL-induced apoptosis.

The protein encoded by the MME gene is a type II transmembrane glycoprotein and
a common acute lymphocytic leukemia antigen. It is an important cell surface marker
for the diagnosis of acute lymphocytic leukemia. The protein is a neutral endopeptidase,
which can cleave peptides on the amino side of hydrophobic residues and inactivate several
peptide hormones, including glucagon, enkephalin, substance P, neurotensin, oxytocin
and bradykinin.

Among the above genes, three genes (FCGR3B, TNFRSF10C and MME) that changed
greatly with the storage time were directly related to the immune and apoptosis pathways.
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This may indicate that the blood cells can still maintain a long period of activity under the
protection of anticoagulants after blood isolation. However, under the stimulated in vitro
environment, they may induce some self-protection functions and a sacrificial apoptosis
mechanism of the PBMCs, so as to ensure the maintenance of the basic vitality of cells. At
the same time, this result suggests that the expression of some genes changes significantly
with storage time. If we do not control the time and method of sample acquisition, it
may lead to inconsistent sequencing results, or even interfere with the accuracy of disease
feature signal molecules acquisition.

The important metabolic pathways and enrichment analysis of these five genes
are briefly described in Table 2, the information in which was taken from the website
‘Gene cards’.

Table 2. Metabolic characteristics and diseases related to five genes.

Name Description Diseases Pathways GO Annotations

PI3 Peptidase Inhibitor 3

Adult Respiratory
Distress Syndrome;

Bacterial Infectious Disease;
Cystic Fibrosis;

Inflammatory Bowel Disease;
Joubert Syndrome 7;

Lung Disease;
Pasteurellosis;

Preterm Premature Rupture
of The Membranes;

Skin Disease

Keratinization;
Innate Immune

System; Defensins;
Nervous system development

endopeptidase
inhibitor activity;

serine-type endopeptidase
inhibitor activity;

structural constituent
of skin epidermis;

peptidase inhibitor activity

ALPL
Alkaline Phosphatase,

Biomineralization
Associated

Hypophosphatasia, Childhood;
Hypophosphatasia, Infantile;

Hypophosphatasia, Adult;
Prenatal Benign

Hypophosphatasia;
Primary Bone Dysplasia

Endochondral ossification with
skeletal dysplasias;

Metabolism of proteins;
Phenytoin Pathway,
Pharmacokinetics;
NAD metabolism;

Post-translational modification:
synthesis of

GPI-anchored proteins;
FGF23 signaling in

hypophosphatemic rickets and
related disorders;
Netrin-UNC5B

signaling pathway;
NOTCH1 regulation of

endothelial cell calcification;
OSX and miRNAs in
tooth development

alkaline phosphatase activity;
inorganic diphosphate
phosphatase activity;
calcium ion binding;

protein binding;
pyrophosphatase activity

FCGR3B Fc Fragment of IgG
Receptor IIIb

Paroxysmal Nocturnal
Hemoglobinuria;

Neutropenia;
Cryptococcosis;
Poliomyelitis;

Hemoglobinuria;
Hypersensitivity Vasculitis;

Peritonitis

Innate Immune System;
Metabolism of proteins;

GPCR Pathway;
Fc-GammaR Pathway;

RhoGDI Pathway;
Integrin family cell
surface interactions;

Post-translational modification:
synthesis of

GPI-anchored proteins

transmembrane signaling
receptor activity;

IgG receptor activity;
IgG binding;

GPI anchor binding
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Table 2. Cont.

Name Description Diseases Pathways GO Annotations

TNFRSF10C
TNF Receptor
Superfamily
Member 10c

46, Xy Sex Reversal 8;
Ovarian Cancer;

Myelodysplastic Syndrome;
Prostate Cancer;

Myeloma, Multiple

Gene expression (Transcription);
Akt Signaling;

TGF-β Pathway;
MIF Mediated

Glucocorticoid Regulation;
TNFR1 Pathway;

TP53 Regulates Transcription of
Cell Death Genes;

PAK Pathway;
ERK Signaling;
Death Receptor

Signaling Pathway;
Regulation by c-FLIP

transmembrane signaling
receptor activity;
protein binding;
TRAIL binding

MME Membrane Metalloen-
dopeptidase

Spinocerebellar Ataxia 43;
Charcot-Marie-Tooth Disease,

Axonal, Type 2t;
Charcot-Marie-Tooth Disease,

Axonal, Type 2e;
Membranous Nephropathy;

Peripheral Nervous
System Disease

Innate Immune System;
Cardiac conduction;

Peptide hormone metabolism;
Alzheimer’s disease and

miRNA effects;
ACE Inhibitor Pathway,

Pharmacodynamics;
Metabolism of proteins;

A-β Plaque Formation and
APP Metabolism;

peptidase activity
metallopeptidase activity;

protein binding;
cardiolipin binding

We analyzed the GEO sequencing (Accession nos. GSE58335) data from the same
individuals but under different storage times, based on the same bioinformatics proto-
cols, and found that the trend of FPKM over time was consistent with the above results
(Figure 2B,C). When the storage time lasts approximately 8 h, there will be a peak in gene
expression; and, as the storage time continues, the read counts will gradually decrease to
close to 0. This suggests that PBMCs may have a stress-enhancing response for a period of
time in vitro, and that some specific genes may be inactivated after they play a role. This
is also consistent with the results we found earlier; these five genes are mainly related to
immune and apoptotic pathways. After blood separation, blood cells can still maintain
long-term activity under the protection of anticoagulants. However, under the stimulation
of the external environment, some self-protection functions of PBMCs can be induced,
sacrificing the mechanism of cell apoptosis, and thereby ensuring the maintenance of basic
cell vitality; but, over time, these genes gradually become inactive.

3.3. Sequencing Differences between Whole Blood and Peripheral Blood Mononuclear
Cells (PBMCs)

Using the same bioinformatics processing method for different samples and using
the edgeR package (3.38.2) to analyze whole blood and PBMC sequencing samples, the
p value was set to 0.05, and 595 differential genes were found. Among them, 114 genes were
upregulated and 481 genes were downregulated. There were no significant differences
between 14,624 genes. As shown in Figure 3 below, it is not difficult to see that even samples
from the same individual, using different sample processing methods, still have large
differences; these results are likely to affect the conventional differential gene expression
screening and lead to erroneous results.

Then, GO and KEGG analyses were performed on these differential genes (Figure 4).
The gene function annotation analysis showed that, in the biological process, neutrophils
activate, mediate and participate in immune response and degranulation the most, and the
type I interferon and its signaling pathways and cellular reactions are second. These are
followed by the negative regulation of the virus cycle, oxygen transport and gas transport.
The different gene functions of the cellular component mainly focus on the secretion of
granular membranes, cyst cavity and cytoplasm cyst cavity, with other secretion-related
components. The differences in the composition of molecular functions mainly focus on the
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binding of immunoglobulins to chemokines and transferase activity. The KEGG pathway
analysis showed that differential genes were enriched in metabolic pathways related to
phagosomes, malaria, viruses, cytokines and receptors, and Leishmaniasis.
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4. Discussion

In previous studies, as long as the same person’s sample was used as a biological
experiment and as a control sample, the influence of time and treatment method was rarely
considered. In the above experiments, PBMCs were used to extract blood samples from the
same person after different storage times. The results showed that the preservation of the
samples within 8 h had little effect on most gene expression screening.

However, there are still some genes sensitive to preservation time that need special
attention. We screened five time-sensitive genes and found that they are not only related
to leukemia, immune neutropenia and other hematological processes, but also related
to immune diseases and inflammatory reactions. This suggests that we should not only
consider the changes in disease type and normal type, but also consider the change in
preservation itself. Therefore, the research of related disease and cancer needs strict
control time.

The same blood can use different extraction methods to obtain very different results.
If the standard experimental procedure does not pay attention to the unification of sample
pre-processing, it is likely to obtain deviating or misleading results. Since whole blood has
a lot more hemoglobin than PBMCs, its differential genes may be related to hemoglobin
production and oxygen transport. Neutrophils, chemokines, disease and virus-related
genes and metabolic pathways may be related to the stress of PBMCs in vitro.

Our research suggests that sample preservation and processing in scientific research
should not be an evasive issue, especially when looking for differential molecules and
cancer treatment targets. This also means that the source of the sample should be as strict
as possible. Sometimes, the overall difference is not large, but individual details may cause
errors in the results.

This study has summarized a set of blood sample processing strategies to reduce
the impact of sample processing on the results of RNA sequencing. The strategies are
summarized as follows:

1. Try to select individuals with similar age ranges, genders and health statuses as blood
sequencing samples. It is necessary to classify and discuss them when conducting research;

2. After the blood sample is collected, try to extract RNA as soon as possible. If the
experiment cannot be carried out immediately, it can be stored in an ice box at about 4
◦C and added later with stabilizer RNA and anticoagulant;

3. When studying genes or diseases related to leukemia, immune neutropenia and other
blood and immune diseases and inflammatory reactions, the consistency of storage
time should be strictly controlled;

4. When extracting RNA from whole blood, try to select a reagent kit that can remove
hemoglobin as much as possible.
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