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Abstract: Galium genus belongs to the Rubiaceae family, which consists of approximately 14,000 species.
In comparison to its well-known relatives, the plastomes of the Galium genus have not been explored
so far. The plastomes of this genus have a typical, quadripartite structure, but differ in gene content,
since the infA gene is missing in Galium palustre and Galium trfidum. An evaluation of the effectiveness
of using entire chloroplast genome sequences as superbarcodes for accurate plant species identification
revealed the high potential of this method for molecular delimitation within the genus and tribe. The
trnE-UUC—psbD region showed the biggest number of diagnostides (diagnostic nucleotides) which
might be new potential barcodes, not only in Galium, but also in other closely related genera. Relative
synonymous codon usage (RSCU) appeared to be connected with the phylogeny of the Rubiaceae
family, showing that during evolution, plants started preferring specific codons over others.
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1. Introduction

The Rubiaceae family is found on almost all continents. It consists of about 611 gen-
era that include around 14,000 species [1,2]. These species include all forms of vascular
plants: trees and shrubs such as Cinchona officinalis or Coffea arabica, herbaceous perennials
(e.g., Galium verum) that dominate other forms, and annual herbs (e.g., Galium aparine).
The great diversity of this very interesting family has made it a target for research in
many fields, such as biochemistry, medicine, ecology, and phylogenetics. This has led
to numerous studies conducted by taxonomists all over the world. For example, a very
interesting feature is the difference in the number of P-leaves in leaf whorls between Rubi-
aceae genera [3]. Because of these differences, Limnosipanea ternifolia was thought to be a
separate species from Limnosipanea sprucea because of the smaller number of leaves in a
whorl [4]. Nowadays, L. ternifolia is considered the same species as L. sprucea. This situation
is evidence that morphological classification is sometimes insufficient. The alternative way
to explore taxonomic and phylogenetic relationships among Rubiaceae is to study bioactive
compounds. Plants included in this family are rich in secondary metabolites (e.g., C. arabica
produces caffeine) that can be used in chemotaxonomic research. Biochemical compounds,
distributed between different taxonomic groups, have shown a correlation that supports
the evolutionary theory that Rubioideae is the oldest subfamily, followed by Ixoroideae
and then Cinchonoideae [5]. Another method used in taxonomic studies is molecular char-
acteristics, interspecific and intraspecific differences, distributed across the plastome. The
use of single-nucleotide polymorphisms (SNPs), indels (insertions/deletions), rearrange-
ments, and translocations increases the possibility of carrying out studies on phylogenetics,
barcode analysis, species recognition, population genetics, or endangered species conserva-
tion [6]. Nowadays, many molecular studies employ chloroplast DNA (cpDNA), including
work on the family Rubiaceae, especially the subfamily Ixoroideae, to which the coffee tree
belongs. For example, plastome structural variations (PSVs) appeared to be very abundant
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among the Coffeae alliance tribes [7]. To sum up, it is crucial for phylogenetic scientists to
explore the genetic structures of plants.

The Rubioideae subfamily is the richest group of species, with around 8000 species,
followed by Ixoroideae with around 4000 species and Cinchonoideae with 1700 species.
However, studies on phylogenetics based on complete chloroplast genomes for this sub-
family are still rare [6]. The Rubieae tribe, which includes around 1000 species (most
genera) from the subfamily Rubioideae, is distributed worldwide and is common in vari-
ous habitats, ranging from cold temperate regions to tropical forests [8]. Early molecular
analyses focused on only one or few regions in the plastid genome [9]. These studies have
shown a problematic characteristic of the Rubioideae subfamily, in that it contains many
non-monophyletic relationships. For example, Galium species create a common clade with
Asperula species, although they are morphologically different.

Advances in DNA sequencing technology have provided scientists with a high-
efficiency and cost-effective method of obtaining complete chloroplast genome sequences,
which are typically inherited uniparentally, lack recombination, and are compact in size.
Plastomes, in contrast to plant mitogenomes, have a stable structure, at least at the family
level, with the rare presence of heteroplasmy and horizontally transferred regions [10,11].

The use of complete plastome sequences can significantly improve the resolution at
lower taxonomic levels in plant phylogeny, phylogeography, and population genetics [12].
The application of whole-chloroplast genome sequences as superbarcodes for plant species
identification has emerged as a powerful tool in the field of plant taxonomy and biodiversity
studies. It can be used to differentiate species or varieties and to identify admixtures as
well as field contaminants [13,14]. However, besides crops and other industrially important
species of Rubiaceae, some genera have poorly developed genetic resources.

These advances in technology are significant for many plant groups, such as the tribe
Rubieae, in fields such as ecology and plant conservation. G. trifidum is an endangered
species in Poland [15]. While G. palustre is a very common species for wetlands in Cen-
tral and East Europe, it can be easily mistaken for G. trifidum because these species are
very similar. Actually, the recognition of these species is only possible when flowers are
developed. Superbarcodes might be very helpful for resolving these kinds of problems
because new technology allows for rapid and efficient sequencing, which may aid scientists
in species recognition.

Therefore, during our research, chloroplast genomes of Galium species, which have
never been published before, were sequenced and assembled. This is the first work which
embraces most complete chloroplast sequences of Galium species, including two isolates of
G. trifidum, two isolates of G. palustre, one of Galium odoratum, and one of G. verum. We aimed
at the characterisation of plastomes of Rubioideae and the identification of the most efficient
loci in the plastomes for resolving phylogenetic relationships at lower taxonomic levels
within this clade, and tested for an association between relative synonymous codon usage
(RSCU) and the evolution of Rubiaceae. Newly assembled sequences and data available
online aided in the comparison of plastomes across the whole Rubieae tribe, allowed for
the identification of specific genomic regions as the main sources of diagnostic nucleotides,
and indicated a connection between RSCU and the phylogeny of the Rubiaceae family.

2. Materials and Methods
2.1. DNA Extraction

Total genomic DNA was extracted from leaf tissue added to silica gel using the
DNeasy® Plant Mini Kit (Qiagen, Hilden, Germany). Stems were ground with silica
beads using a MiniBead-Beater tissue disruptor for 50 s, and they were subsequently
processed using the manufacturer’s protocol. DNA quantity was estimated with a Qubit
fluorometer system (Invitrogen, Carlsbad, NM, USA) using a Quant-IT ds-DNA BR Assay
Kit (Invitrogen). For the library construction of G. trifidum, previously extracted DNA was
used [16].
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2.2. Library Preparation and Assembly

The genomic library was constructed with a TruSeq Nano DNA kit (Illumina, San Diego,
CA, USA) and was sequenced using HiSeqX (Illumina) to generate 150 bp paired-end reads
at Macrogen Inc. (Seoul, Republic of Korea) with a 350 bp insert size between paired ends.
The raw reads were evaluated by a Trimmomatic 0.39 tool [17] in the quality check process
with following parameters: PHRED score > 20, a 150 bp trimmed sequence length, number
of Ns < 1%. The filtered reads were transferred to the de novo plastome assembly of two
G. trifidum isolates (ID1 and ID2) and two G. palustre isolates (ID1 and ID2). The assembly
was performed by NOVOPlasty 4.3 software [18] with default settings and rbcL gene as the
seed. The NOVOPlasty software enables the de novo assembly of short circular genomes.
Meanwhile, raw reads of G. odoratum and G. verum were downloaded from the Sequence
Read Archive (SRA) and also assembled with NOVOPlasty (Table S1). In the next steps, the
assembly of all plastomes was verified manually in Geneious Prime 2023.2.1 (Biomatters,
Auckland, New Zealand), which allowed us to conduct a comprehensive sequence analysis
(visualisation, alignment, annotation editing, and mapping). The circular sequence of each
genome was remapped by the Geneious Prime 2023.2.1 mapping algorithm with custom
parameters (minimum overlap = 80 bp and minimum overlap identity = 96%). After full
plastome completion, the sequences were annotated according to G. aparine (NC_036969.1;
chloroplast NCBI record) with the support of the Transfer Annotation option in the Geneious
Prime 2023.2.1 software.

2.3. Chloroplast Genome Visualisation, Phylogenetic Analysis, Nucleotide Diversity, and
Species Delimitation

The chloroplast genome of the selected representative of the Galium genus (NC_082337)
was visualised in the organellar genome map drawer—the OGDRAW 1.3.1 web tool [19].
The three representants of the Galium (NC_082337), Rubia (NC_047470), and Leptodermis
(NC_049160) genera were compared to obtain details about the boundaries, length, and
structure of large single-copy regions (LSCs), small single-copy regions (SSCs), and inverted
repeat (IR) regions using Irplus 1.0 [20]. The reason why only single representatives were
used in Irplot was the high similarity of the LSC, SSC, and Irs structures within each genus.

The phylogenetic analysis was carried out on 44 chloroplast genomes from Rubi-
aceae tribes and Exacum aphine belonging to the Gentianaceae family (Table S2). The
phylogenetic tree was calculated using the Maximum Likelihood (ML) method with the
TVM+F+I+G4 model chosen according to the Bayesian Information Criterion (BIC). The
whole process was conducted using the Phylogenetic and Molecular Evolution (PhaME)
pipeline [21]. The MAFFT (File S1) alignment used for the PhaME pipeline was created
in Geneious Prime 2023.2.1 with the following parameters: automatic algorithm, scoring
matrix: 200 PAM/k = 2, gap open penalty: 1.53, offset value: 0.123 [22]. The final view
of the phylogenetic tree was created with the ggtree 3.10.1 [23] and ggplot2 3.5.1 [24] R
environment packages [25]. Using these packages, RSCU (relative synonymous codon
usage) was added on the right side of the phylogenetic tree. The aim of this procedure was
to visualise changes in RSCU values for GCC, GCT, TTC, GGT, GGG, and TAG codons
between the analysed species. Statistical differences between the tribes Rubieae, Paederieae,
and Morindeae for codons were calculated with Kruskal–Wallis test and confirmed with
a post hoc Dunn test (Table S3). A divergence time tree was created in Mega11 11.0.13
software [26]. The phylogenetic tree generated during this research and 10 calibration con-
straints were used to calculate the time tree with the RelTime method [27,28]. Calibration
constraints were taken from the published article [29]. The visualisation was carried out in
the ape 5.7-1 and strap 1.6-0 R packages [30,31].

For diversity insight within the Rubieae tribe, two parameters were estimated—
diagnostic nucleotides and nucleotide diversity (π). The investigation was performed
based on MAFFT alignments generated in Geneious Prime 2023.2.1 software. The spider
1.5.0 R package was applied to calculate diagnostides between Galium, Rubia, and Leptoder-
mis species [32]. Next, nucleotide diversity was estimated to describe less or more divergent
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regions within the plastome genome using the PopGenome 2.7.7 R package [33]. Both esti-
mators (diagnostic nucleotide and π) were calculated in a 500 bp frameshift window. The
computations of both divergence parameters were focused on the LSC (long single-copy),
SSC (short single-copy), and only one of the IR (inverted repeat) regions. Additionally,
the SNP (single-nucleotide polymorphism) and indel (insertion/deletion) variants were
identified based on the Galium genus alignment using the Variant Calling subprogram in
Geneious Prime 2023.2.1 software (with cut-off, p-value < 10× 10−7). Finally, all divergence
variables were visualised in a Circos plot [34].

2.4. Relative Synonymous Codon Usage

The seqinr 4.2 R package was used to calculate the RSCU, which is considered to be the
ratio of the observed codon frequency to the expected frequency that would be observed if
all synonymous codons for a given amino acid were used with equal frequency [35]. To
determine the differences in codon usage between genera, the RSCU values were calculated
separately for each genus and presented together using the ggplot2 3.5.1 package in the
form of a bar plot. The ComplexHeatmap 2.18.0 library was used to plot the heatmap from
the RSCU values for each codon in all species used in the investigation [36].

3. Results
3.1. Characteristics of Galium Chloroplast Genomes

The chloroplast genome of G. trifidum 1 (Figure 1, Tables S1 and S2) is 154,611 bp
long and contains four regions typical of most vascular plants [37]. The large single-copy
(LSC) region is 84,976 bp long, the small single-copy (SSC) region is 17,127 bp long, and
inverted repeat regions (IRA and IRB) are 26,254 bp long (Table S3). The LSC contains
81 genes, of which 59 genes are protein-coding and 22 are tRNA-coding. The SSC region
includes 12 genes—11 protein and 1 tRNA coding. Inverted repeat region A has five
protein-coding genes, seven tRNA-coding genes, and four rRNA genes. In the case of
inverted repeat region B, there is the same number of rRNA and tRNA genes as in IRA.
However, IRB harbours eight protein-coding genes. It is interesting to note that both the
IRB and IRA regions share two copies of the ycf1 gene with the SSC region, and the shorter
one is a pseudogene (Figure S1). The ndhF gene marks the boundary between IRB and SSC,
while the rps19 gene marks the boundary between IRB and LSC. The assembled plastomes
of G. trifidum 2, G. palustre 1, and G. palustre 2 have an identical structure and the same
number of genes as the described genome. G. verum and G. odoratum have one additional
protein-coding gene (infA). All newly assembled sequences have a GC content of around
37% (G. trifidum and G. palustre: 37%, G. verum: 37.2%, G. odoratum: 37.3%). Generally, the
chloroplast genome contains 81 protein-coding genes, 30 transfer RNA genes, and 4 rRNA
genes, while 18 genes are duplicated in the IR regions.

Visualising the boundaries of chloroplast genome junction sites can reveal general
differences between species or genera (Figure 2). In the case of Leptodermis scabrida, junction
site B (between the LSC and IRB regions) is located 13 bp from the rps19 gene located in
LSC, while in the remaining sequences, the boundary is located within the rps19 gene.
Another distinction is observed between the IRB and SSC regions in L. scabrida where the
boundary is located within the ndhF gene (76 bp belongs to the IRB region and 2207 bp to
the SSC). In G. trifidum, JSB (the junction site between IRB and SSC) is located 29 bp from
the beginning of the ndhF gene, while in Rubia cordifolia, it is only 3 bp from the start. In the
case of L. scabrida, JSB is located outside of the ycf1 gene. It is worth noting that the trnH
gene in L. scabrida is located in the IR regions. The trnH gene of the remaining species is
located in the LSC region, 27 bp from the JLA (junction site between LSC and IRA regions)
in the case of R. cordifolia, and 13 bp in the case of G. trifidum.
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3.2. Intraspecific Variation of Plastid Genomes of Galium, Leptodermis, and Rubia

The biggest aggregations of SNPs can be found in two regions: one between rps16
and trnQ-UUG (192) and the other within ycf1 (426), situated in the SSC region (Figure 3,
Tables S4 and S5). In the case of indels, these type of changes are mostly concentrated
in the vicinity of noncoding regions: trnK-UUU—rps16 (61), rps16—trnQ-UUG (81), trnE-
UUC—trnT-GGU (67), and trnT-UGU—trnL-UAA (76) (Tables S6 and S7). Upon examining
the nucleotide diversity (π diversity) plots, it is clear that Galium exhibits significantly
higher values than the other two genera. The highest values are located in ycf1 in SSC
(0.0052), while the second highest value is created by two peaks that are very close to each
other between trnD-GUC and trnE-UUC (0.0048) (Table S8). In the case of Rubia, the most
characteristic peak is located at the beginning of the sequence, in the psbA gene (0.004).
Leptodermis species have significantly lower values in comparison to Galium and Rubia,
with the highest point in rps2 (0.0016). The percentage values of SNPs and indels between
Galium species look as follows: the matK gene has approximately 7.3% of SNPs which is
the highest value among all coding regions (Table S9). The intron of trnG-GCC has the
highest percentage of indels, at approximately 1.3% (Table S10). The noncoding region
with the highest percentage of SNPs is the spacer trnD-GUC—trnY-GUA (almost 9.5%),
and it is worth noting that this region is very short (Table S11). The trnE-UUC—trnT-GGU
region includes approximately 6.6% of indels, which is the highest value in noncoding
regions (Table S12). The plots show little differentiation in the IR region (from rps19 to
ndhF), although there is one orange peak located in the trnI-GAU gene.

3.3. Molecular Delimitation of Galium, Leptodermis, and Rubia

One method used in molecular taxonomy involves defining diagnostic characteristics
in specific regions between species. To retrieve the necessary data, diagnostides (a new
name for diagnostic nucleotides) should be identified across the studied plastomes. We
calculated diagnostides for each genus to find regions with high potential for phylogenetic
analyses of Rubioideae at shallow evolutionary scales (Figure 3, Table S13). Galium species
showed the highest peak in the trnE-UUC—psbD region (52), followed by a peak in the
rps16 (51) and rps16—trnQ-UUG noncoding region (50). The Rubia species has surprisingly
high values in the leading region, rps16—trnQ-UUG (139). In Leptodermis, the location with
the highest abundance of diagnostides is between trnS-GCU and trnG-GCC (37), while
in Rubia, it is the second highest peak (129). Moreover, the trnS-GCU—trnG-GCC region
is the only location where Galium, Rubia, and Leptodermis possess relatively high value,
which means that the intergenic region can delimitate the intrageneric relations of these
three members. Other interesting regions include rps4, psbB—psbT, and rps3—rpl22, where
Galium and Rubia generated similar peaks.

3.4. Codon Usage

The relative synonymous codon usage (RSCU) plot (Figure 4a, Table S14) shows pref-
erences of codon usage in different genera. Clear changes are observed, e.g., in valine (Val),
where the GTA codon is more preferred than the GTC codon in Galium and Pseudogalium
species. This trend is slightly different in other genera, especially Exacum, Ophiorrhiza,
Lasianthus, and Psychotria, where they clearly use more GTC codons than Galium and Pseu-
dogalium, simultaneously decreasing the number of GTA codons in exons. On the other
hand, the RSCU heatmap (Figure 4b) shows that valine has similar GTA usage across all
species included in the analysis, which may indicate that this difference is not significant.
The heatmap is useful for presenting the preference of some triplet usages that might be
overlooked in Figure 4a. For example, most species prefer the TTA codon for leucine (Leu)
over other codons, as shown in the heatmap. Oldenladnia brachypoda and Saprosma merrilli
are particularly prominent in their usage of TTA. Additionally, plants belonging to the
Rubieae tribe exhibit a greater preference for TTA than those in the Paederieae tribe.
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Figure 3. Comparisons of the collection of data of Galium species plastomes for three different genera.
In the first plot (the outermost layer beneath gene names) are presented SNPs for eight Galium
species (grey scatter plot—number of SNPs per 100 bp, red—number of SNPs for genic and intergenic
regions). The second layer presents indels that are labelled as yellow dots—number of indels per
100 bp—and green dots—number of indels in genic and intergenic regions. The next two layers
show nucleotide diversity (Galium—red, Leptodermis—blue, Rubia—light green) and the number
of diagnostides (Galium—orange, Leptodermis—purple, Rubia—dark green), respectively. The first
histogram contains information about the percentage of SNPs (dark green) and indels (light green) in
coding regions. The second histogram shows the percentage of SNPs (dark blue) and indels (light
blue) in noncoding regions.
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has a different colour) summed for each genus used in this research with genera listed alongside.
(b) The RSCU heatmap shows species preference of codon usage: dark blue and light blue colours
represent less preferred codons, white colour represents codons that are neither less preferred nor
more preferred, and light green and dark green colours represent more preferred codons. The left
side of the figure (y axis) shows phylogenetic relationships, and the upper side of the figure (x axis)
shows RSCU relationships.

3.5. Phylogenetic Analysis

Our phylogenetic tree is divided into 10 tribes (Figure 5). Exacum affine, belonging
to the Exaceae tribe, was chosen as an outgroup. This tribe belongs to the Gentianaceae
family, and the rest of the species belong to the Rubiaceae family. Only two nodes have
bootstrap values below 100: the node connecting Saprosma ternata and the Rubieae tribe
(88) and the node connecting Rubia podantha and R. cordifolia (96). Furthermore, S. merrillii
is not grouped with Saprosma ternata, while Gynochthodes nanlingensis groups far away
from other Gynochthodes species. An additional analysis was performed by mapping
sequences of genes available in the National Center of Bioinformatics (NCBI) database to
both S. merrillii and S. ternata (trnH—psbA, matK, rps16, trnS—trnG, rpoB—trnC, trnL, rbcL,
ndhF). The comparison revealed moderate differences between S. merrillii and the mapped
regions, whereas in S. ternata, only few substitutions were observed. This observation may
explain the unexpected localisation of S. merrillii taxa on the phylogenetic tree. To validate
G. nanlingensis, sequences of the marker genes matK, rbcL, and ndhF were extracted and
mapped to the reference genome of Gynochthodes parviflora (NC_054151), along with genes
from other Gynochothodes species available in the NCBI database. It was found that the
genes of G. nanlingensis differ from the reference genome and mapped sequences, raising
questions about the identification of this species. In addition, the divergence time tree
was constructed using fossil data (Figure S2) [29]. The estimated divergence times show
connections with the RSCU values presented in Figure 5. The RSCU values of GCC and TTC
decrease in clades that diverged later. For example, most species from the tribe Rubieae,
which diverged later than the genus Leptodermis, have lower RSCU values. In the case of
GCT, GGT, and TAG codons, RSCU values increase in taxa that diverged later.

The statistical analysis showed significant differences between Rubieae and Morindeae
in the codons GCC, GCT, TTC, GGT, and GGG (Figure 6a–e, Table S15). None of these
codons showed statistical differences between Rubieae and Paederieae, but all codons sig-
nificantly differed between Paederieae and Morindeae. The TAG codon is very interesting
because the RSCU value is very dynamic between genera, so a larger number of genera in
Rubieae and Morindeae may influence the evolutionary trend shown by RSCU, making
this trend random (Figure 6f).

RSCU clustering is a method which allow scientists to visualise the Euclidean distance
(calculated from RSCU values) between species (Figure 7). Usually, cluster trees based on
RSCU do not reflect phylogenetic trees. However, in the case of the tribes Rubieae and
Paederieae, the relationships between clusters and clades are similar, and they mostly differ
between interspecies relationships. In the case of the tribe Rubieae, Kelloggia chinensis is the
only species which left the Rubieae cluster. RSCU clustering showed a close relationship
of this species with Paederia scandens, which did not group with the tribe Paederieae. The
Morindeae group also differed, in the tree comparison, with one species—Gynochthodes
officinalis—which grouped outside the Morindeae cluster.
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lines connect species that were not used in the RSCU comparison with phylogenetic relationships.

4. Discussion

Except for a few exceptions, the gene content of the chloroplast genome is stable
across Galium. All species have a quadripartite structure without clear differences between
LSC, SSC, and IR. Early studies on the plastome of Galium sp. indicated that the infA
gene likely has been transferred to the nuclear genome [38]. The absence of this gene was
confirmed in the case of newly sequenced G. trifidum and G. palustre plastomes, but G. verum
and G. odoratum plastomes contain this gene, as well as Galium mollugo (NC_036970).
Pseudogenized forms of infA caused by frameshift have been found in partially sequenced
G. odoratum and in G. aparine (NC_036969) [39]. The infA gene is present in the recently
published chloroplast genome of Galium spurium, which additionally has four more transfer
RNA genes than G. trifidum [40]. The number of protein-coding genes among species
belonging to the Rubieae tribe varies from 79 (Rubia yunnanensis) to 87 (K. chinensis), and the
number of tRNA genes from 30 (R. yunnanensis and Galium sp.) to 37 (K. chinensis) [41,42].
The GC content of the plastid genome seems to be stable in Rubioideae, ranging from
36.98% in R. yunnanensis to 37.1% in K. chinensis, showing no clear evolutionary pattern.
Important data derived from the analysis of cpDNA are aggregations of changes between
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species of specific genera. The π diversity is one of the parameters used to measure such
differences. Thirteen Leptodermis plastomes have shown nucleotide diversity hotspots in
LSC: trnS—trnG, rps2—rpoC2; IR: ycf2—ndhB; and SSC: ndhF, rpl32—ccsA, ccsA—ndhD,
ndhA [43]. The highest peak of the Leptodermis samples in our analysis was located very
close to the rps2—rpoC2 region, while between trnS and trnG, our plot turned out to be very
low. Other hotspots similar to our results are close to ycf1—ndhF, ndhF, and ccsA. The peak
in rps2 is covered by a peak in Galium individuals, and the peak inside the two genes (ycf1
and ndhF) is covered by both the Galium and Rubia genera. The highest points of nucleotide
diversity in Galium coincide with the largest hotspots of SNPs and indels in ycf1 and the
trnD-GUC—trnE-UUC region. These regions are very distinct in comparison to Rubia and
Leptodermis, but matching hotspots can be found in all the genera mentioned: the beginning
of rps16, trnT-UGU—trnL-UAA, ycf1—ndhF, and ccsA. Regions that show high nucleotide
diversity in other Rubiaceae genera are, e.g., in Ophiorrhiza, petA—psbJ, trnH-GUG—psbA,
trnS-GCU—trnR-UCU, psbM—trnD-GUC, and ndhC—trnM-CAU, and one of these regions
is also highly variable in the Galium genus (trnD-GUC) [44].

Phylogenetic trees based on complete chloroplast genomes usually show strong clade
support in their bootstrap values [45]. The sequencing of complete plastid genomes is still a
relatively laborious approach, and for this reason, plastome-based trees tend to have fewer
species than those derived from single markers. Two trees (parsimony and Bayesian) based
on three chloroplast regions: rpoB—trnC, trnC—psbM, and trnL—trnF—ndhJ, included most
of the species used in our research (except G. trifidum), but their bootstrap values were low
in the parsimony tree [45]. However, their Bayesian posterior probability (PP, >0.95) values
resolved questionable relationships generated by the first tree. [45]. Both trees show similar
relationships for Galium species used in our analysis (Figure 5). Other works confirmed the
non-monophyly of the Galium genus, which is formed of clades that place Asperula species
between Galium species [8,45,46]. The Galium relationships presented by our phylogram
correlate with trees generated in other studies [8,45,46].

Except for single nuclear and chloroplast regions, and whole chloroplast genomes,
the target enrichment method was used in the Rubiaceae family to analyse phylogenetic
relationships [47]. The analysis of the Rubiaceae phylogeny using exonic regions ob-
tained by target enrichment sequencing resulted in a well-resolved phylogenetic tree. This
method also performed well in the Cinchonoideae and Ixoroideae subfamilies, confirming
that target enrichment sequencing is a powerful tool in phylogenetic relationship analy-
ses, especially when it is difficult to obtain good-quality molecular data from herbarium
specimens [48].

Nuclear genes are often used for phylogenetic analysis separately or alongside chloro-
plast genes [49]. Nuclear genes can provide highly resolving phylogenetic trees. For
instance, phylogenetic trees based on huge nuclear gene sets have shown 100% resolving
force for Rubiaceae species [50]. Although the number of Rubiaceae species is much smaller
than in our study, the phylogenetic relationships remain similar.

Other problems with the Rubiaceae family are the occurrence of non-monophyletic
genera, e.g., Saprosma ternatum (S. ternata) appeared in the phylogenetic tree far away from
S. crassipes, which was grouped with Lithosanthes biflora and Lasianthus species [51]. On
the other hand, the genus Gynochthodes is usually monophyletic, which was not confirmed
by our phylogenetic tree like in the case of the Saprosma genus [52,53]. Further analyses
and the usage of new methods are needed to ensure that Saprosma and Gynochthodes are
non-monophyletic. In the case of Galium, it is not possible to confirm that this genus is
non-monophyletic with whole chloroplast genomes because plastomes of Asperula species
are needed.

The relative synonymous codon usage (RSCU) in chloroplast genomes shows a pref-
erence for using specific codons that might be a result of natural selection or mutational
pressure [54]. Evolution might affect chloroplast genomes by changing their structure,
content, and creation of nucleotide differences. Most plastome codons end with A or T
(we are using a thymine instead of uracil for a convenience because our analysis is based
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on DNA material), which might be an effect of many million years of development of
chloroplast genomes [43,54–58]. However, the RSCU is sometimes very similar in the case
of specific codons. Our results are consistent with a Theaceae species investigation, which
describe a preference of AGA, GCT, and TTA codons (RSCU > 1.8) for arginine, alanine, and
leucine, respectively [59]. Moreover, the use of a bigger data set in our study than the one
used in the Theaceae species analysis allowed for the observation that RSCU might change
during the evolution of plant groups. Although, the correlation of RSCU with phylogeny
is not clear. The comparison of RSCU distribution and the CDS-based phylogenetic tree
of Prunus species has shown clustering inconsistencies [60]. Our analysis also showed
differences between RSCU clusters and phylogenetic clades, but in the case of the tribes
Rubieae and Paederieae, the species composition of clusters differ only with one species:
K. chinensis in the case of Rubieae and P. scandens in the case of Paederieae. Furthermore,
these species appear to be very similar in terms of RSCU.

The organellar genomes of Rubiaceae species have never been used as superbarcodes,
and scientists have mainly worked with nuclear DNA fragments such as internal tran-
scribed spacers (ITS) and single genes or regions of plastome: matK, trnH—psbA, rbcL, rps16,
ndhF, petD, and trnT—trnF [60–63]. Normally, superbarcodes should be diverse enough to
distinguish interspecies differences, so the mitochondrial genome is very rarely used in
plant species delimitation. However, the mitogenomes of Calypogeia species can be used
as superbarcodes in super-mitobarcoding [64]. The highest condensations of diagnostic
nucleotides were found within the most variable regions such as spacers: nad2—rps12 and
nad3—nad7, pseudogenes (nad7) or genes (e.g., rpl2). It is interesting that in other work, the
plastid genome of Calypogeia species appeared to be less diverse than its mitogenome [13].
The largest aggregations of diagnostic nucleotides were found at window positions 30,000
and 55,000. In another work on liverwort species, terrestrial and water forms of Apopellia
endiviifolia were compared in terms of their plastomes; their diagnostic nucleotides were
much more numerous in this case than in the Calypogeia plastome, and the chloroplast
genome was able to separate two different forms of Apopellia [65]. One of the most diag-
nostic regions in Apopellia was ycf 1, which performs well as a DNA barcode in vascular
plants [66]. However, our analysis shows that ycf 1 is quite weak for species delimitation in
all three genera (Galium, Rubia, Leptodermis), despite the high nucleotide diversity in this
region. Most studies concerning Galium genus use other plastid regions that enable the
separation of species in the phylogenetic tree, e.g., atpB—rbcL, rpoB—trnC, trnC—psbM,
trnL—trnF—ndhJ, rps16, and rpl32—trnL [8,45,46]. Most of these regions performed well in
our species delimitation, except atpB—rbcL and rpoB—trnC. Additionally, the best region
we found was trnE-UUC—psbD, which is not mentioned in any phylogenetic studies of the
Galium genus. Many scientists focus on mainstream genes in their studies, and they can
omit regions that are crucial for a specific taxonomic group. For instance, the trnL—trnF
region, the petD gene, and two nuclear markers were previously successfully used for
species delimitation of the Chiococceae tribe (Cinchonoideae, Rubiaceae) [67]. The trnL-
UAA—trnF-GAA region creates a clear peak of diagnostic nucleotides followed by high
nucleotide diversity in Galium, and it might provide valuable information for molecular
studies of this genus. The overwhelming number and diversity of organisms included in
the Rubiaceae family forces botanists to find new molecular markers that allow for the
successful identification of species. Comparisons of our results show that Galium and
Rubia have similar regions that, together, effectively separate species. Research about the
Leptodermis genus showed six variable regions that could be used as potential cpDNA
markers: trnS—trnG, rps2—rpoC2, ycf2—ndhB, ndhF, rpl32—ccsA, ccsA—ndhD, ndhA [43].
The diagnostic nucleotides calculated by us show that a characteristic concentration is
located only in the trnS-GCU—trnG-GCC region that can be used as a potential molecular
marker. This region has previously been used to resolve phylogenetic relationships inside
the Ixoroidae subfamily [49].



Genes 2024, 15, 562 15 of 18

5. Conclusions

This research enabled us to obtain insights into four never-described chloroplast
genomes of G. trifidum, G. palustre, G. odoratum, and G. verum. These genomes were com-
pared with other available Galium plastomes, revealing regions with potential barcodes.
Moreover, the relative synonymous codon usages of particular codons showed clear differ-
ences between three different tribes: Rubieae, Paederieae, and Morindeae. New chloroplast
genomes might be useful in future phylogenetic studies, along with superbarcoding and
molecular delimitation, because the region trnE-UUC—psbD appears to be a new potential
genetic marker for the genus Galium.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15050562/s1, Table S1: The studied plastomes, Table S2: The
origin of the assembled genomes, Table S3: Plastome differences, Table S4: SNPs per 100 bp, Table S5:
SNPs per region, Table S6: Indels per 100 bp, Table S7: Indels per region, Table S8: Nucleotide
(π) diversity, Table S9: SNP % in coding regions, Table S10: Indel % in coding region, Table S11:
SNP % in noncoding regions, Table S12: Indel % in noncoding regions, Table S13: Diagnostides per
100 bp, Table S14: RSCU, Table S15: post hoc table for selected species, Figure S1: The alignment
of ycf 1 pseudogene and ycf 1 functional gene, Figure S2: The divergence time tree. File S1: The
FASTA alignment.
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