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Abstract: High-dimensional biomedical datasets have become easier to collect in the last two decades
with the advent of multi-omic and single-cell experiments. These can generate over 1000 measure-
ments per sample or per cell. More recently, focus has been drawn toward the need for longitudinal
datasets, with the appreciation that important dynamic changes occur along transitions between
health and disease. Analysis of longitudinal omics data comes with many challenges, including type
I error inflation and corresponding loss in power when thousands of hypothesis tests are needed.
Multivariate analysis can yield approaches with higher statistical power; however, multivariate
methods for longitudinal data are currently limited. We propose a multivariate distance-based
drift-diffusion framework (MD3F) to tackle the need for a multivariate approach to longitudinal,
high-throughput datasets. We show that MD3F can result in surprisingly simple yet valid and
powerful hypothesis testing and estimation approaches using generalized linear models. Through
simulation and application studies, we show that MD3F is robust and can offer a broadly applicable
method for assessing multivariate dynamics in omics data.

Keywords: multivariate analysis; longitudinal omics; drift-diffusion model; microbiome

1. Introduction

Modern high-throughput assays, including transcriptomics, genomics, metagenomics,
and metabolomics, provide a detailed lens into biologic systems and have accelerated
biomarker discovery [1,2]. Longitudinal omics study designs are feasible in many settings
now and allow for comparison before, after, and during treatments, across disease states
or clinical conditions (drug resistance, etc.). For example, studies with a pre vs. post
design have allowed for insights into the innate immune response to SARS-CoV2 in infants
compared to adults, how gut dysbiosis and plasma metabolites contribute to amyotrophic
lateral sclerosis, and the transcriptomic phenotypes that are associated with therapy-
resistant multiple myelomas [3–5]. Longitudinal omics studies are further advantageous
because they allow for the consideration of both within-subject variability and between-
subject variability, as stated in Kodikara et al. [6]. This means one can understand both how
a subject-level omics profile changes with time as well as understand differences in disease
states within the same experiment. Further, extending experiments beyond two consecutive
collection times can yield insights into whether and how omics profiles evolve with time.
Herein, we propose a framework to model the evolution of a multivariate system for studies
with two or more repeated omics measures. We define a multivariate system as one where
multiple measures (e.g., gene expressions of multiple genes or microbial abundances of
several bacteria) are collected from each experimental sample and where understanding
the simultaneous changes of multiple variables is considered [7]. To demonstrate the utility
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of our model, we focus on microbiome data because of the inherent community dynamics
that have a known tendency to respond to disease states [8–10].

Many studies have sought to measure the overall stability of the microbiome using a
cross-sectional study design [11–15]. However, cross-sectional studies have their limitations,
including a lack of ability to account for the noise introduced by microbiomes changing
over time. Although there is a growing number of publications that include longitudinal
collection times, the methods by which one can assess community stability are limited and
inconsistent [6,16–20]. Typically, univariate changes in single species or genera are analyzed
across time; however, these types of analysis do not answer how individual taxa contribute
to the overall community dynamics due to a lack of accounting for correlated responses.
Another longitudinal approach is OmicsLonDA, a non-parametric approach developed by
Metwally et al. for omics studies [17]. This method considers longitudinal omics data
and identifies the time intervals where omics profiles vary between study groups using a
univariate approach [17]. Our model takes a different principled approach by combining
multivariate, distance-based analysis with stochastic process modeling of longitudinal
changes in high-dimensional datasets.

Distance-based approaches have shown utility in omics and multi-dimensional data
analysis. In microbiome data, these methods allow for quantification of the similarity
and dissimilarity between microbial communities and comparisons across different condi-
tions, environments, and treatments. One of the most common distance-based methods is
principal coordinate analysis (PCoA). PCoA is a dimensionality-reduction technique that
projects high-dimensional arbitrary distance matrix onto a Euclidean space and allows for
a lower-dimensional representation of the data along coordinates, maximizing the variance
explained by the first few coordinates [21,22]. PCoA preserves the original pairwise dis-
tances between the samples and gives a representation of the data in a Euclidean space.
This allows for the visualization of the relationships between samples in a more intuitive
way and the identification of groups of samples (or different conditions) that are similar to
each other. PCoA plots are often accompanied by statistical test results that quantify and
assess the statistical significance of group differences in distance matrices, including the
T2

W and W∗
d tests [23,24]. The T2

W test offers a multivariate distance-based implementation
of the Welch t-test of two means with unequal variance, and thus is suitable for two-group
comparisons [23]. T2

W was developed to overcome challenges with alternative testing
procedures, which were shown to have inflated type I error rates under heteroscedastic and
unbalanced conditions. When used with Euclidean distances, T2

W provides a permutation-
based unequal variance Welch equivalent of the Hotelling’s T-squared test. The W∗

d test
offers an extension to compare more than two groups simultaneously [24,25]. Similarly,
when Euclidean distances are used, W∗

d is a permutation-based Welch’s MANOVA test.
Note that although PCoA is commonly used as a visualization for T2

W or W∗
d analyses, it is

not required for these tests.
Methods like T2

W and W∗
d allow for quasi-longitudinal designs by allowing for repeated-

measures (e.g., pre vs. post) comparisons using restricted permutations to determine signif-
icance values. However, this approach is limited because it does not easily accommodate
multiple time points or variability in the interpoint times across observations. Nonetheless,
irregular time series commonly occur in practice due to variation in sample collection inter-
vals across subjects. To address this, we propose a multivariate drift-diffusion framework,
MD3F, that takes a distance-based approach to model multivariate data over arbitrary-
length time intervals using a drift-diffusion stochastic process. We show that inference
and estimation of the magnitude of drift can be obtained based on just pairwise distance
summary statistics of the multivariate data. Surprisingly, inference and estimation can be
accomplished within by fitting generalized linear models.

In this paper, we describe the derivation of key estimates under the MD3F, a simulation
study to explore type 1 error and statistical power characteristics of our approach. We
further apply our method to two different microbiome datasets. The first are gut samples
collected from infants predisposed to Type 1 diabetes [26]. The second are oral swabs
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collected from head and neck cancer patients before and after their treatment. The results
of these applications support that the methodology will help understand the multivariate
trajectories for high-dimensional patient data and how this can vary between patient
groups or on a subject level. Overall, we determined that MD3F is a robust method for
high-dimensional longitudinal datasets, but further work for biologic applications should
be better characterized in future studies.

2. Materials and Methods
2.1. Model Description

To describe longitudinal evolution of a multivariate microbiome composition (de-
scribed using a β-diversity dissimilarity), we distinguish between two types of random
walks. First is a pure diffusion random walk, which causes the composition to change posi-
tion randomly over time. These random walks do not have a specific preferred direction
of change. Second is a drift-diffusion random walk, which, in addition to the first type
of change, involves is a systematic force to change the composition in a specific direction.
Thus, the drift-diffusion random walk includes both a random and a systematic component.
The systematic component of such random walks is called the drift, which is a vector quan-
tity and is thus characterized by a direction and a magnitude. MD3F is concerned primarily
with the magnitude of the drift. In practice, the systematic component may consist of
the tendency for certain microbial abundances to increase in composition and some other
microbial abundances to decrease in a time-dependent manner. The motivation for our
framework can be drawn from the illustration in Figure 1, which shows hypothetical steps
of analysis of trajectories that do or do not have a drift. Our statistical goal is to establish
the presence of the drift and, if possible, to estimate its magnitude. In this process, we are
not necessarily concerned with determining the direction of the drift. It is sufficient to just
establish that it is present. In Figure 1, Panel A, two trajectories are demonstrated, one
with and one without drift. If we take a naïve approach to our problem, we may fit linear
models along each dimension (x and y) regressed onto time and determine whether there is
a drift in each dimension based on a coefficient test. This approach, however, is somewhat
problematic not only because it may be prone to false positives and needs to be properly
adjusted for multiple comparisons but also because it is not unique. Our answer may be
different based on which projections of the data we consider. Figure 1, Panel B, shows a
different projection of the same random walks in an orthonormal basis that puts the true
drift (according to our simulation parameters) along the x axis. The MD3F approach is
to calculate summary statistics-based interpoint distances across time intervals and use
those statistics for an omnibus inference on the presence of drift and an estimation of its
magnitude (Figure 1C).

More formally, let Ms track the values of measured features (microbiome compo-
sition, gene expression, etc.) at time s following a drift-diffusion process in p dimen-
sions (Figure 1A). Then, the change in finite time t, Xt = Ms+t − Ms is distributed as
N (αtW, Ξ), where α ≥ 0 is the magnitude of the drift or the speed with which the change
is happening, the direction of the change is unit vector W such that WTW = 1, and Ξ is
the variance–covariance matrix for the features. Without loss of generality, we conduct
a change of basis transformation of Xt such that the change vector is V = (1, 0, . . ., 0)
(Figure 1B). We call this variable Yt ∼ N (αtV, Σ). This transformation only changes the
axes along which we view the change but does not alter the distances between points
of the random walk trajectory. Then we can write the Euclidean distance of the features
between time t as a standard quadratic form, which represents it in terms of standard
normal random variables U ∼ N (0, I):

dist(Ms, Ms+t)
2 = (Ms+t − Ms)

T(Ms+t − Ms) = XT
t Xt = YT

t Yt = (U + b)TΛ(U + b),

where the original variance covariance is decomposed via diagonalization Σ = PTΛP such
that PTP = PPT = I; Λ = diag

(
λ1, . . . , λp

)
, where λi are eigenvalues and P is the matrix of
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eigenvectors; and b = αtPΣ−1/2VΣ = PTΛP. Let us consider the expansions of the terms
of the equation (U + b)TΛ(U + b) = bTΛb + UTΛU + UTΛb + bTΛU :

1. bTΛb =
(

αtPΣ− 1
2 V

)T
ΛαtPΣ− 1

2 V = α2t2VTΣ− 1
2 PTΛPΣ− 1

2 V = α2t2VTΣ− 1
2 Σ

1
2 Σ

1
2 Σ

− 1
2 V

= α2t2VTV = α2t2.
2. UTΛU = ∑

p
j=1 λjU2

j = ∑
p
j=1 G

(1
2 , 2λj

)
≈ ∑

p
j=1 N

(
λj, 2λ2

j
)
= ∑

p
j=1 λj +N

(
0, ∑

p
j=1 λj

)
,

where G
(

1
2 , 2λj

)
is a Gamma random variable. Here, the approximation is based on

convergence of the Gamma distribution to the Gaussian distribution for large λj. The
consequence of this approximation is that we can write this term as a scalar equation
UTΛU ≈ r +N (0, x), consisting of an intercept r and a normal error, neither of which
is dependent on α.

3. Finally, note that UTΛb and bTΛU are linear combinations of uncorrelated Gaussian
distributions with a mean of 0, e.g.,

UTΛb = αtUTΛPΣ−1/2V = αt


λ1U1
λ2U2

...
λpUp


T

PΣ− 1
2


1
0
...
0

 = αt∑
p
j=1 zjUj =

N
(
0, α2t2∑

p
j=1 zj

)
= N (0, z), where z is the variance.
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Figure 1. MD3F analysis of random walks. Panel (A) shows samples of pure diffusion (coral) and
drift-diffusion (teal) random walks both initiating at <0, 0> and evolving on a unit time grid. The
magnitude of the drift is set to 1 and it is pointed in the <1, 1> direction, indicated by faint teal lines.
In panel (B), the same random walks are represented in a different orthonormal basis, where the first
basis vector is in the direction of the drift (i.e., <1, 1>). The original basis is indicated by gray vectors.
For both panel A and panel B, there are 10 time points for each random walk. Panel (C) shows the
relationship between time-scaled squared interpoint Euclidean distances and the length of the time
interval from the start of the random walk. These are the input data to the MD3F. The results of
MD3F and univariate ordinary least-squares regression-based analyses of each of the random walks
are shown in the insets.
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Putting these derivations together, we can write:

dist(Ms, Ms+t)= r + βt2 + e, where e ∼ N
(

0, ϕ2
)

, and β = α2 (1)

For clarity, ϕ2 is the variance of regression errors e and r is the intercept that summa-
rizes the terms unrelated to time.

Note that because we can find a Euclidean representation of any distances using PCoA,
the result above is applicable to drift diffusion with arbitrary distances [25]. Further, any
dissimilarity can be used in place of a distance metric [27].

2.2. Inference and Estimation under the MD3F

The subsection above shows that the relationship between squares of interpoint dis-
tances and squares of time is linear. The corresponding linear estimator can be obtained
from ordinary least squares regression. We call it MD3Flinear2. It is interesting to evaluate
whether taking the squares is necessary; therefore, we also considered an estimator that
does not square either: MD3Flinear.

2.3. Alternative Inference Approaches

It was pertinent to test comparable methods against MD3F; therefore, we compared
two versions of the MD3F estimators (described in Section 2.2) to other bottom-up univari-
ate approaches. To do so, we considered several alternatives:

PCo1: The PCoA-based Euclidean representation of the data was obtained and the
first principal coordinate (PCo) was regressed on time to determine whether there was a
time dependence in the observations using the coefficient t-test.

PCo2: Similar to above, the significance values for the first two PCos were obtained
and the smallest of the two was used for overall significance.

PCoA: Similarly, all the minimums of all significance values for PCoA were used.
uFDR: Each variable/feature was regressed on time and the significance values were

calculated using the coefficient t-test. The minimum p-value adjusted for multiple compari-
son using the false discovery rate procedure was used as the overall significance values.

uHolm: Similar to above, the univariate p-values were obtained and adjusted for
multiple comparisons using Holm’s method.

2.4. Simulation Study

For simplicity and without loss of generality, we simulated multivariate data under
the pre vs. post longitudinal model with variable time between observations. We assumed
a baseline (pre) time of 0 and started by drawing a random sample of observation times s
for the post timepoint for each sample. Here, s is drawn from an exponential distribution
to allow for variability of interpoint times. Since ultimately only the distances between
observations matter without loss of generality, we assumed that the pre observation was
at the multivariate origin. Next, we generated the observations at the post by drawing
a d-dimensional uncorrelated multivariate normal sample with means of α × s/

√
d and

the covariance matrix Σ = s × I. Under Equation (1), this yielded a realization of the
drift-diffusion process over time interval s. Note that this choice ensures that the square of

the mean interpoint Euclidean distance is ∑d
i=1

(
α × s√

d

)2
= d × α2s2

d = (αs)2. Under this

scenario, without loss of generality, the drift vector is V = 1d/
√

d =
(

1√
d

, . . . , 1√
d

)
, which

means that the change associated with the process is propagating in equal magnitude along
every dimension of the space. This description is general up to the change of basis.

Given that we focused the application of our method to microbiome datasets, we did
not simulate our data with any missing values. The 16s rRNA gene amplicon sequencing-
based microbiome assays, although typically undersampled, generally do not contain
missing values in a strict sense. Further, if a dataset indeed has missing values, this may re-
strict one’s ability to calculate interpoint dissimilarities. Nonetheless, R statistical language
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has methods for handling missing values in dissimilarity calculations. An alternative ap-
proach may involve imputation; however, such methods have not been properly evaluated
in the context of distance-based multivariate analyses.

We conducted the simulations controlling for (i) the number of dimensions d (1, 10, 100,
and 1000), (ii) sample size n (10, 20, 50, 100), and (iii) drift magnitude α (0, 0.5, 1, 2, and
3). We replicated the simulation 10,000 times for each set of parameters. Each replicate
included a random walk trajectory that was analyzed simultaneously to infer the presence
and estimate the magnitude of the drift.

We used the fraction of rejected null hypotheses to evaluate the type I error (when α = 0)
and power. For estimation, we further evaluated the bias as (MD3F Coefficient—Actual Speed)
for MD3Flinear and (MD3F Coefficient—Square Actual Speed) for MD3Flinear2 models.

2.5. Reference Implementation and Code Availability

For our simulation study and all applications, we utilized R-studio (R version 4.1.3
and RStudio version 1.3.1093) [28]. Microbial data were organized and analyzed using the
R-package phyloseq (version 1.38.0). Plots were generated in R-studio (version 1.3.1093, R
version 4.1.3) with the ggplot2 package (version 3.3.5). Principal coordinate analysis was
conducted using R package ade4 (version 1.7.18). A coding sample for the processing of this
dataset and our application are both made available at (see Data Availability Statement).

2.6. Applications
2.6.1. Microbiome Changes in Diabetes Onset

Infant gut microbiome sequencing results were made publicly available in Kostic et al.
(https://doi.org/10.1016/j.chom.2015.01.001 (accessed on 29 March 2023)) [26]. The down-
loaded data were loaded into phyloseq without further preprocessing. We first considered
the microbial sample sums for each individual sample and noticed that a portion of the
samples had a total of less than 1. We decided to filter samples at a value of 0.8, dropping
from a total of 777 to 672 samples in 33 subjects. We performed a center-log transformation
on the OTU table before calculating the distance matrix. No other preprocessing was
performed on these data. The sample data included with the Kostic et al. data provided the
needed sample collection times. These data were modeled using MD3Flinear2 estimation.
A coding sample is provided; see the Data Availability Statement.

2.6.2. Microbiome Changes in Oral Mucositis Onset and Severity

Oral microbiome swabs were provided by our collaborators. Samples were collected
in relation to their HNC treatment and the development of oral mucositis, a side effect of
treatment. The first sample was collected just prior to the start of treatment, and the second
at the onset of oral mucositis. All patient identifiers, including age, race, and sex, were
eliminated. Oral microbiome samples were collected bilaterally from the buccal mucosa.
Genus-level taxonomy was utilized for distance measures.

3. Results
3.1. Empirical Evaluation of Statistical Properties of MD3F

We first evaluated the validity of our method by estimating the empirical type I error
rates with data simulated under the null hypothesis of α = 0. A drift of zero represents a
pure diffusion process, meaning there is no systematic direction to evolution of the data over
time. In Figure 2A, we show the null hypothesis rejection rates at significance level of 0.05
of all tested methods. A valid method is expected to result in rejection frequencies at this
nominal level. We observed that MD3F, both the squared and the non-squared version, were
able to control for type 1 error across the range of dimensions and sample sizes. This is in
contrast to the other methods tested, which failed to produce the expected rejected rates. We
then further evaluated the MD3F methods by comparing performance across the different
dimensions simulated. No clear patterns emerged based on the number of dimensions
(Figure 2B), suggesting that these methods were valid across all parameters tested.

https://doi.org/10.1016/j.chom.2015.01.001
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Figure 2. Type I error evaluation of MD3F and comparable methods. (A) Empirical type I error of
MD3F estimators against other methods. MD3Flinear fits the d ∝ αt linear regression model, whereas
MD3Flinear2 fits d2 ∝ α2t2. The methods are evaluated over 1, 10, 100, and 400-dimensional data
and sample sizes of n = 10, 20, 50, 100. The horizontal red dashed line at y = 0.05 is the acceptable
threshold where we would expect models to perform. The MD3F methods are the only two that
could control for type I error. (B) Empirical type I error of MD3Flinear and MD3Flinear2 estimators.
Overall, the empirical statistical performance of both MD3F methods appears to be similar. The
number of dimensions did not impact the performance for either method, except in univariate data,
where MD3Flinear2 may have slight type I error inflation in small samples.

3.2. Evaluation of Model Power & Bias

Next, we evaluated the power of the MD3F approaches. To test the power to detect
our alternative hypothesis, we simulated effect sizes (drift) of 0, 0.5, 1, 2, and 3. Non-zero
effect size indicates there is a drift, and therefore we would expect to reject the null at the
above-nominal significance level, which is what we see across all effect sizes in Figure 3A,B.
In both versions of the model, increasing the dimensions of the drift resulted in lower
power relative to smaller dimensional examples with the same number of observations
due to each dimension introducing additional noise. Likewise, the increasing magnitude of
the drift made it more detectable and resulted in higher estimated power in simulations.
Overall, the method appears to have power in realistic sample size and dimensionality
scenarios given an effect of appropriate magnitude was present.

Estimating the bias helped us to understand where performance faltered for the MD3F
model. We report the average bias across simulations. Unlike in our power analysis, we
observed a difference between the two MD3F methods when evaluating bias.

We observed that the MD3Flinear was more biased than the squared version, MD3Flinear2.
In the MD3FLinear case, we saw an increasing amount of bias with both the number of
dimensions and increased drift, whereas the squared version of the model seemed to act
consistently at the different effect sizes (Figure 3). In both cases, increasing the sample
size resulted in a reduction in model bias variance. Overall, the MD3Flinear2 approach
appeared to be unbiased; therefore, we proceeded forward with this version of our model
for biological applications.
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Figure 3. MD3F model performance. (A,B) Power to detect drift using MD3F. (A) MD3FLinear
results are reported. (B) MD3FLinear2 results are reported. The dotted line indicates nominal
significance level. Each panel represents the effect size or speed of the drift. We see that both
models have adequate power to reject the null. (C,D) MD3 Model bias assessment. (C) MD3FLinear
results reported. (D) MD3FLinear2 results reported. The dotted line is a y = 0, indicative of no bias.
MD3FLinear2 shows no evidence of bias. There also appears to be a relationship in MD3FLinear
where increasing the number of dimensions increases the bias.

3.3. Demonstration of MD3F through Application to Microbiome Datasets

We first applied our model to data publicly available from the Kostic et al. study con-
ducted in 2015 [26]. In this study, stool samples were collected for sequencing periodically
for 33 infants beginning at their birth. The purpose of this study was to determine whether
the gut microbiome had any relationship to the onset of type 1 diabetes. This offered an
ideal dataset to apply to our model, with there being a relatively high sample size for each
individual. Additionally, it allowed for us to consider the study question in a novel way:
How does each subject’s microbial composition change during early development? Such
insights can help answer whether there is a meaningful change in the gut microbiome prior
to type 1 diabetes onset. We plotted the estimated drifts for four individuals by diabetes
status, as seen in Figure 4A (all individual-level trajectories are provided in Figure A1). In
Figure 4B, we summarize the estimated drifts for all subjects by case status. Although no
significant difference (student’s t-test, p-value = 0.49) was observed in the estimated drifts
between groups, it is worth noting that there was an observed drift in most subjects. The
estimate of the average drift in controls was smaller than in cases, at 1.1597 and 1.1591,
respectively. Determining the drift across subjects helps to understand whether there is a
time-dependent change in the gut microbiome, meaning that we can understand whether
there is a natural evolution of the gut microbial community or one specifically associated
with a disease state.

Our second application was to oral microbiome swabs collected from head and neck
cancer patients before their cancer treatment beginning and at the onset of oral mucosi-
tis. This study had special interest in oral mucositis, as it is a detrimental side effect of
chemotherapy and radiation treatment. Rather than applying our method to all subjects in
this case, since we were focused on only two time points, we applied our model across all
subjects but found no detectible drift (Figure 5). However, we did observe an interesting
pattern where the patients with the earliest time to onset of oral mucositis (i.e., 14 days or



Genes 2024, 15, 582 9 of 13

less) had an overall larger interpoint distance between the two timepoints. In other words,
there was a larger change in the microbiome in a shorter period of time.
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Figure 4. Estimating the drift of infant gut microbiomes using MD3F. (A) Normalized distances
measured from four infant microbiome samples over time. The fitted model for each subject is
indicated with a blue line. The shadows represent the 95% confidence interval for each model. All
four subjects show a positive drift over time regardless of diabetes status. (B) MD3 predicted drift
estimates by diabetes status for all subjects. The estimated drift for each subject was recorded and
then compared to diabetes status. We do not observe a difference in the drift rates between groups.
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Figure 5. Application of MD3F to oral microbiome samples. Each dot represents an individual
subject. The population drift rate from baseline to the onset of oral mucositis was not significant
(estimate = 2.55, p-value = 0.79). Despite there being an obvious linear trend, it is notable that with an
earlier time to onset of oral mucositis (i.e., 14 days or less), there is generally a large change in the
distance moved from baseline.
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4. Discussion

We have developed a multivariate distance-based drift diffusion framework to model
multivariate changes in omics profiles over time. MD3F is based on a novel Gaussian
approximation of the relationship between the squares of the interpoint distances of the
omics profiles over time. Distance-based approaches are capable of handling the complexity
of multivariate spaces and trajectories, which was a motivation for our approach [29]. We
evaluated this approximation and found our model to control type 1 error and to be
powerful at detecting when effects are present in simulated data. The MD3F resulted in
unbiased drift estimates.

We were also able to apply our method to biological samples collected from patients.
Our model was applied to two different datasets, both of which were microbiome samples
collected from patients over time. The application of MD3F to infant gut microbiome data
helped determine that a time-dependent change in the microbial profile was not associated
with type 1 diabetes status. Despite this, we still observed that most individuals had a
detectible drift, but further analysis will help elucidate the significance of this finding. Our
results are further validated by the author’s initial observation that α-diversity increased
with time but did not vary between controls and cases for the majority of the study
time [26]. In the application of MD3F to head and neck cancer patients, we did not detect a
measurable drift. However, we did observe an interesting relationship in our data, which
was that those with the shortest time to onset of oral mucositis had the greatest change
in distance between timepoints. This finding supports that onset time of oral mucositis
is non-random: An earlier, larger change leads to a shorter time to the development of
a disease state. It is well characterized that the oral microbiome changes with head and
neck cancer treatment in general but also with the development of oral mucositis [30,31].
Thus, seeing an earlier change can intuitively be associated with an earlier development of
oral mucositis, supporting the basis of our methodology in this space. Although MD3F is
concerned with estimating the magnitude of the drift itself, understanding the direction of
the drift requires additional analyses. Some guidance for interpretability can be gleaned
from Felli et al., where differentiation trajectories were studied for hematopoietic stem
cells using transcriptomic data [32]. The authors use the Pearson correlation between
CD34+ progenitor cells at differentiation time points, so a stronger negative correlation
is associated with a more rapid differentiation [32]. It could be worth exploring how the
change in the multivariate space relates to specific bacteria that are indicative of a healthy
or diseased state.

It should be noted that although we chose to employ Euclidean and Aitchison (center-
log transformation used with Euclidean distances) distances in our approach, other β

-diversity and dissimilarities can be used with MD3F instead. Further, we utilized PCoA
for visualization, but other projection techniques could be useful in this space and are
worth exploring. Finally, although there is a magnitude of different approaches for lower
dimensional projections, MD3F does not work in lower dimensional projections.

We believe our model has robust potential for comparable studies. This is because
(1) there is no currently available method to our knowledge to assess individual, multi-
variate trajectories on a patient level; (2) we do not rely on unsupervised methods for
assigning patients to clusters, as in [33,34]; and (3) there is flexibility to compare aggregate
patient samples or individual trajectories. Despite the need for greater characterization in
biological data, we have shown that MD3F is robust to type I and type II error and that we
can leverage a distance-based approach for longitudinal data.
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