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Abstract: Future climate change is expected to impact the natural systems. This study used future
climate data of general circulation models (GCMs) to investigate the impacts of climate change during
the future period (2062–2095) relative to the historical period (1981–2014) on the hydrological system
of the Minjiang river watershed, China. A previously calibrated soil and water assessment tool
(SWAT) was employed to simulate the future hydrology under the impacts of changes in temperature,
precipitation, and atmospheric CO2 concentration for four shared socioeconomic pathways (SSP 1,
2, 3, and 5) of the CMIP6. The study revealed that the impacts of increase in future temperature,
i.e., increase in ET, and decrease in surface runoff, water, and sediment yield will be countered
by increased atmospheric [CO2], and changes in the hydrological parameters in the future will be
mostly associated to changes in precipitation. Data of the GCMs for all the SSPs predicts increase in
precipitation of the watershed, which will cause increase in surface runoff, water yield, and sediment
yield. Surface runoff will increase more in SSP 5 (47%), while sediment and water yield will increase
more in SSP 1, by 33% and 23%, respectively. At the seasonal scale, water yield and surface runoff
will increase more in autumn and winter in SSP 1, while in other scenarios, these parameters will
increase more in the spring and summer seasons. Sediment yield will increase more in autumn in
all scenarios. Similarly, the future climate change is predicted to impact the important parameters
related to the flow regime of the Minjiang river, i.e., the frequency and peak of large floods (flows >
14,000 m3/s) will increase along the gradient of scenarios, i.e., more in SSP 5 followed by 3, 2, and 1,
while duration will increase in SSP 5 and decrease in the other SSPs. The frequency and duration
of extreme low flows will increase in SSP 5 while decrease in SSP 1. Moreover, peak of extreme low
flows will decrease in all scenarios except SSP 1, in which it will increase. The study will improve the
general understanding about the possible impacts of future climate change in the region and provide
support for improving the management and protection of the watershed’s water and soil resources.

Keywords: Minjiang river watershed; climate change; SWAT model; water balance; soil erosion

1. Introduction

According to the intergovernmental panel on climate change (IPCC) [1], global at-
mospheric concentrations of greenhouse gases, i.e., carbon dioxide (CO2), methane, and
nitrous oxide, have increased substantially due to economic and population growth. The
effect of increasing greenhouse gases is detected throughout the climate system and is the
dominant cause of the observed warming since the middle of the 20th century. Limiting
climate change would mainly require reductions in greenhouse gas emissions which, to-
gether with adaptation, can limit climate change risks [1]. With the increased awareness of
the impacts of greenhouse gas emissions on the global climatic system, the policy world
under the Paris agreement has embraced the limiting of greenhouse gas emissions by
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gradually adopting alternative socioeconomic and development strategies. The depen-
dance of the global climate system on greenhouse gas emissions and socioeconomic and
development strategies makes the future climate and its impacts on the natural systems
uncertain. Shared socioeconomic pathways (SSPs) based on alternative socioeconomic
development policies are constructed to facilitate the future climate change and impact
studies, i.e., SSP 1 leads gradually toward a sustainable and green development, SSP 5
leads toward the continuation of fossil fuel development, whereas SSP 2, 3, and 4 are
intermediate scenarios [2].

General Circulation Models (GCMs) developed in the Coupled model intercomparison
project (CMIP) of the world climate research programme (WCRP) are the tools for under-
standing the mechanisms of past climate and projecting possible future climate change
under idealized emission assumptions. GCMs generate meteorological variables such as
precipitation, temperature, solar radiation, wind speed, relative humidity, etc., for different
climate change scenarios, by solving the primitive equations of thermodynamics, mass,
and momentum [3]. However, numerous studies have reported that climate simulations
of the GCMs contain biases and uncertainties [4,5]. Uncertainty in process representation
and error propagation, as well as in specified greenhouse gases, aerosol emissions, land
use change, and sensitivity to resolution, affect model results. These biases vary from one
model to another for certain variables, but no individual model clearly emerged as ‘the best’
overall [6]. Hence, their direct use as inputs for impact models is inadvisable since they
might lead to inaccurate conclusions. Therefore, to use climate data from GCMs for impact
assessment, bias correction is a prerequisite step. Bias correction is the adjustment of biased
simulated data to observations. Several bias correction methods have been developed
ranging from simple scaling approaches to distribution mapping [7].

Apart from the role in climate change as a greenhouse gas, elevated atmospheric CO2
concentration decreases stomatal conductance, thus reduces the leaf loss of water [8,9].
Therefore, increased atmospheric CO2 concentration together with climate change are
expected to alter hydrological systems worldwide. The most widely used method for the
impact assessment of climate change on hydrological processes involve forcing watershed-
scale hydrological models such as the soil and water assessment tool (SWAT) with the
outputs of GCMs. The SWAT model is a watershed-scale, physically based, continuous-
time hydrologic and water quality model [10]. Recently several studies have employed
the SWAT model to estimate the impacts of future climate change on watershed systems
worldwide. For example, the authors of [11] evaluated the impacts of future climate change
using the SWAT model in the Jhelum river basin and found a general increase in streamflow.
The authors of [12] simulated the impacts of future climate change on the hydrology of the
Krishna river basin and found an increase in surface runoff, streamflow, and water yield.
The authors of [13] simulated the impacts of future climate change in the Ndembera river
watershed and found that the warmer future climate will increase evapotranspiration and
decrease water yield.

The Minjiang river watershed is a humid, subtropical, forest-dominated and one of
the largest watersheds in China. It is an ecologically and economically important, abun-
dant water resource. It plays a great role in socio-economic development and provides
opportunities for hydroelectricity generation, navigation, irrigation, fishing, recreation,
and biodiversity conservation [14]. Therefore, it is very important to evaluate the im-
pacts of future climate change on the hydrological system of the watershed to support
the management and climate change adaptation strategies. The objective of this study
is to evaluate the impacts of future precipitation, temperature, and atmospheric [CO2]
individually and combinedly on different hydrological components of the Minjiang river
watershed for multiple SSP scenarios. The study will improve the general understanding
about the possible impacts of future climate change in the region and provide support for
improving the management and protection of the watershed’s water and soil resources in
this context.
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2. Methodology
2.1. Minjiang River Watershed

The Minjiang River watershed is located between 116◦30′ and 119◦30′ E and 25◦20′

and 28◦25′ N in the Fujian province of China (Figure 1). It is the largest watershed in the
province, covering an area of about 60,900 km2. Its elevation ranges from 0 to 2158 m.
The main channel of the Minjiang river flows through Nanping, Fuzhou into the Taiwan
strait. Tributary channels flow through Shunchang, Sanming, Jianou, Youxi, Gutian, and
Yongtai counties. The Minjiang river watershed is situated in a humid subtropical climate,
influenced by the east Asia monsoon. Temperature ranges from 5 to 10 ◦C in January and
from 25 to 30 ◦C in July. The soil type of the watershed is mainly red soil, and the terrain is
hilly and steep, prone to soil erosion and landslides. More than 50% of the land is covered
by coniferous forests; other dominant landcover classes are evergreen broad-leaved forest,
mixed coniferous and broad-leaved forests, shrub/grasslands, croplands, wetlands, and
urban land.
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2.2. SWAT Model Setup and Calibration

In this study, we used a previously calibrated SWAT model. A detailed description
about the setup, calibration, and performance of the model in the Minjiang river watershed
can be found in our previous article [15]. Here, we give a brief introduction of the input
data, the calibration strategy, and performance of the model.

The SWAT model is GIS based with interfaces for ArcGIS and QGIS. Structurally, the
model divides a watershed into sub basins; the input values for each sub basin are grouped
into climate, Hydrologic response units (HRUs), main channel, and ponds/reservoirs.
The HRUs are lumped land units which are the product of a distinct combination of land
use, slope, and soil type within the sub basin. To set up the model for the Minjiang river
watershed, input data from multiple sources were used, i.e., a digital elevation model
(DEM) from the shuttle radar topography mission (SRTM) with a resolution of 30 m, daily
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scale meteorological data from “The China meteorological assimilation driving datasets for
SWAT” (CMADS L V 1.0), for the period 1979–2018 [16–18], a soil map from the harmonized
world soil database (HWSD) from the food and agriculture organization (FAO) [19], four
landcover maps from the European space agency climate change initiative (CCI-LC) [20],
and ponds/reservoirs identified using digital maps and images. ArcSWAT version 2012
was used for the model setup, which delineated the watershed into 35 subbasins and
4100 HRUs. The SWAT land use tool (SWAT-LUT) [21] was used for dynamic updating of
landcover on a yearly basis.

For the model calibration and performance evaluation, we used monthly observed
streamflow data of one location (Mingqin), and yearly data of four locations (Yontai,
Shunchang, Sanming, and Jianou) (Figure 1). Moreover, yearly sediment loading data of
the above-mentioned five stations within the watershed were used to assess the model
performance in terms of simulating the soil erosion and sediment transport. The observed
stream flow and sediment loading data were provided by the Fujian department of water
resources. The calibration and validation period was 1989–2018 with a warmup period of
ten years (1979–1988). Sequential uncertainty fitting (SUFI-2) in SWAT-CUP software [22]
was used for sensitivity analysis and calibration of the model. Two objective functions
were used for evaluating the performance, i.e., the Coefficient of determination (R2) and
the Nash–Sutcliffe efficiency [23]. Overall, the performance of the model was within the
acceptable range according to the statistical criteria described in previous studies, i.e., the
R2 and NSE values for streamflow ranged from 0.8 to 0.9 and from 0.7 to 0.9, respectively,
and for sediment loadings, the R2 and NSE values ranged from 0.6 to 0.8 and from 0.6 to
0.7 during calibration and from 0.7 to 0.9 and 0.7 to 0.9 during validation, respectively. The
performance was higher when simulating streamflow than sediment loadings, which was
largely influenced by the reservoirs. The calibrated parameters’ descriptions and fitted
values for the five locations within the watershed are given in Table 1. More detailed
discussion about the model performance can be found in our previous study [15].

Table 1. Calibrated parameter descriptions and fitted values.

Parameter Description Fitted Value
Mingqin Shunchang Sanming Jianou Yongtai

Reservoirs hydraulic conductivity 0.33 0.28 0.2 0.37 0.33
Reservoirs normal sediments concentration 50 195 92 70 142

Tributary channels Manning’s “n” value 0.1 0.11 0.08 0.09 0.07
Main channel cover factor 0.00 0.29 0.25 0.31 0.39

Main channel erodibility factor 0.00 0.38 0.29 0.44 0.68
Main channel Manning’s “n” value (roughness) 0.018 0.036 0.022 0.021 0.015

Main channel peak-rate adjustment factor 0.55 1.16 1.09 0.67 0.78
Main channel exponent for sediment routing 1.5 1.47 1.5 1.28 1.07

Main channel maximum reentrainable sediment quantity 0.0001 0.00013 0.00019 0.0001 0.0002
Tributary channels factor, peak-rate adjustment (ADJ_PKR) 0.56 0.56 0.56 0.56 0.56

2.3. Evaluating the Impacts of Future Climate Change

To evaluate the impacts of future climate change on the hydrological components of
the watershed, this study was divided into three steps. The steps are given in the workflow
diagram (Figure 2) and described below:
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Figure 2. Workflow diagram of the evaluation of the impacts of future climate change.

In step 1, we downscaled and bias corrected the historical temperature and precip-
itation data of ten GCMs from CMIP6 [24] (Table 2), and evaluated their agreement to
the reference datasets, i.e., CMADS’ temperature and precipitation monthly time series
(1979–2014) using Pearson correlation. All of the GCM data were downloaded from the
website; https://cds.climate.copernicus.eu (accessed on 22 September 2021). We selected
the temperature data of one GCM with the bias correction method that showed the highest
agreement with the reference data. Due to the importance of precipitation in the watershed
and the reported uncertainties, we selected precipitation data from four GCMs with the
bias correction methods, which showed the highest agreement to the reference time series
(CMADS) for use in the further steps.

Table 2. List of GCMs evaluated in the study.

Model Resolution (lon × lat) Institute

CMCC-ESM2 1.3 × 0.9 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy [25]
BCC-ESM1 2.8 × 2.8 Beijing Climate Center, China [26]

ACCESS-CM2 1.9 × 1.3 Commonwealth Scientific and Industrial Research Organization, Australia [27]
FGOALS-g3 2 × 2.3 Institute of Atmospheric Physics, Chinese Academy of Sciences, China [28]

CanESM5 2.8 × 2.8 Canadian Center for Climate Modeling and Analysis, Canada [29]
MPI-ESM1-2-LR 1.9 × 1.9 Max Planck Institute for Meteorology, Germany [30]
BCC-CSM2-MR 1.1 × 1.1 Beijing Climate Center, China [31]

MIROC6 1.4 × 1.4 Atmosphere and Ocean Research Institute, University of Tokyo, Japan [32]
EC-Earth3-Veg-LR 0.7 × 0.7 Irish Centre for High-End Computing [33]

MRI-ESM2-0 1.1 × 1.1 Meteorological Research Institute, Japan [34]

In step 2, we used the selected precipitation and the selected temperature data of
GCMs, and different atmospheric CO2 concentrations (350, 550, 700, and 800 ppm), for four
shared socioeconomic pathways’ SSPs, i.e., 1, 2, 3, and 5 (Table 3) separately in the SWAT
model for the future period (2062–2095) to evaluate their individual impacts. We used the
2nd half of the 21st century to evaluate the impacts on hydrology because the uncertainty
among different SSPs would be maximal in that period.

https://cds.climate.copernicus.eu
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Table 3. SSP scenarios considered in the study.

Name RCP Pathway Approx. Atmospheric [CO2] during (2060–2100)

SSP 1 Update of RCP 1.9 Sustainability 350 ppm
SSP 2 Update of RCP 4.5 Middle of the road 550 ppm
SSP 3 Gap filling scenario Regional rivalry 700 ppm
SSP 5 Update of RCP 8.5 Fossil fuel development 800 ppm

In step 3, we used the precipitation along with temperature data of the selected GCMs,
and different CO2 concentrations (350, 550, 700, and 800 ppm), for four SSPs together in the
SWAT model to evaluate the combined impacts on the hydrology of the watershed. The
historical period was 1981–2014, while the future period was 1962–2095. A warmup period
of two years was considered during the simulation of both the intervals.

2.4. Downscaling and Bias Correction

We used the CMhyd tool [35] for downscaling and bias correction. Three bias cor-
rection methods were used for temperature and precipitation data individually, i.e., dis-
tribution mapping (DM) and linear scaling (LS) for both temperature and precipitation,
and power transformation (PT) for precipitation and variance scaling (VS) for temperature
only. All these methods correct the data on a monthly scale. Detailed descriptions of the
equations used by the CMhyd tool are given in [7].

2.5. Hydrological Parameters
2.5.1. Basin Parameters

We evaluated the impacts of future climate change on four hydrological parameters
simulated by the SWAT model, i.e., evapotranspiration (ET mm), water yield mm, surface
runoff mm, and sediment yield t/ha. ET is the loss of water to the atmosphere. Three
different methods for the estimation of ET are available in the SWAT model. We selected
the Penman–Monteith method, which is widely used, because it considers the effect of
atmospheric CO2 concentration. The SWAT model simulates the effects of atmospheric CO2
concentration on plant canopy resistance and radiation use efficiency. Generally, a doubling
of CO2 concentration leads to a general decrease of 40% in stomatal conductance [36]. Water
yield is the water leaving the watershed in the form of surface, lateral, and groundwater
flow. Surface runoff or overland flow is the water flowing over soil, vegetation, or other
ground cover instead of infiltrating. The SWAT model uses the SCS curve number method
for surface runoff estimation. Sediment yield refers to the amount of sediment exported
along with flowing water by a watershed over a period. The SWAT model uses the
Modified Universal Soil Loss Equation (MUSLE) for the estimation of soil erosion. A
detailed description of the methods and equations used by the SWAT model is given in the
SWAT theoretical documentation [37].

2.5.2. River Flow

We used the indicators of hydrologic alteration (IHA) tool for estimation of the extreme
low flows (peak, duration, and frequency), minimum/maximum flow peaks (1, 3, 7, 30, and
90 days), and small/large floods (peak, duration and frequency) at the watershed outlet.
All the parameters were the mean values of that period. The IHA tool allows calculation
of the floods and extreme low flows parameters using three different methods, i.e., year
return interval, percent of daily flows, and cubic meters per second (m3/s). We selected the
third option, m3/s, because our study period was divided into two intervals and separate
analysis was carried out for each period. Therefore, in order to make a comparison between
the two separate intervals, uniform threshold values were set for the analysis. Thresholds
for different flow parameters were set according to the data extremes, i.e., extreme low
flows were less than 500 m3/s, small floods were higher than 9000 m3/s, and large floods
were flows greater than 14,000 m3/s.
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3. Results
3.1. GCM Data and Bias Correction Performance
3.1.1. Temperature

Temperature data of the GCMs showed a great agreement with the reference time
series. All the bias correction methods improved the agreement. The correlation was higher
than 0.95 for all the GCMs after bias correction (Table 4). The marginal plot between the
reference and EC-Earth average temperature monthly time series (1979–2014) shows a tight
relationship and almost similar distribution of the data points (Figure 3). We randomly
selected EC-Earth with variance scaling for use in further sections of the study.

Table 4. Correlations between temperature reference data and GCMs data with different bias correc-
tion methods.

Model Raw LS VS DM

CMCC 0.97 0.97 0.97 0.96
BCC-EMS 0.81 0.95 0.96 0.95

Access 0.96 0.97 0.97 0.97
Fgoals 0.96 0.97 0.97 0.97
CAN 0.75 0.96 0.97 0.97
MPI 0.95 0.96 0.96 0.96

BCC-CMS 0.97 0.97 0.97 0.97
MIR 0.96 0.97 0.97 0.97

EC-Earth 0.96 0.97 0.97 0.97
MRI 0.95 0.96 0.96 0.96
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3.1.2. Precipitation

Precipitation data from all the GCMs showed large uncertainties. The performance
of bias correction was different among the GCMs and methods (Table 5). Overall, the raw
data of EC-Earth showed the highest agreement with the reference time series; however,
the similarity was still not enough to simulate the actual future hydrology with minimum
uncertainties (Figure 4). However, we can use the GCM data and extract the variation
between the historical and future hydrological data. This way, we can conclude that the
variation that is present is caused by the influencing factors included in the GCM, i.e.,
rising greenhouse gases, etc. This method is commonly used in impact studies, and is
known as delta change correction. However, in delta change correction, delta is extracted
on a monthly scale, and thus, the daily scale variations simulated by GCM are ignored. To
minimize uncertainties among different GCMs, we used an ensemble mean of multiple
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GCMs, i.e., Fgoals and BCC-CMS with power transformation, MRI with linear scaling, and
raw data of EC-Earth. The BCC-CMS data for SSP 1 was not available; therefore, data from
three GCMs was used for this SSP.

Table 5. Correlations between precipitation reference data and GCMs data with different bias
correction methods.

Model Raw LS PT DM

CMCC 0.50 0.53 0.53 0.55
BCC-ESM 0.36 0.37 0.42 0.44

Access 0.44 0.56 0.56 0.55
Fgoals 0.44 0.56 0.57 0.54
CAN 0.44 0.30 0.39 0.34
MPI 0.56 0.52 0.52 0.52

BCC-CMS 0.40 0.53 0.58 0.54
MIR 0.55 0.56 0.56 0.56

EC-Earth 0.6 0.58 0.51 0.53
MRI 0.55 0.57 0.56 0.56
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Figure 4. Marginal plot between reference precipitation monthly time series (OBS) and raw EC-Earth
data.

3.2. Impacts of Future Climate Change and Atmospheric [CO2]
3.2.1. Individual Impacts of Future Precipitation, Temperature, and atmospheric [CO2]

Increase in precipitation across the SSPs, with more increase in SSP 1 followed by
2, 5 and 3, will increase the surface runoff, water yield, and sediment yield. Increase in
temperature and [CO2] will have smaller impacts than precipitation on the hydrological
parameters, with the exception of ET. The impacts of temperature and [CO2] will be
opposite to each other, i.e., an increase in temperature will increase ET, while increase in
[CO2] will decrease it. Similarly, an increase in temperature will decrease surface runoff,
water yield, and sediment yield, while increase in [CO2] will increase surface runoff, water
yield, and sediment yield. Thus, the impacts of temperature will be countered by increase
in [CO2], with the exception of sediment yield, because the magnitude of the decrease in
sediment yield in response to temperature will be more than its increase in response to
[CO2] (Figure 5).
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3.2.2. Combined Impacts of Future Precipitation, Temperature, and Atmospheric [CO2]
Basin Parameters

Surface runoff will be the most influenced hydrological parameter in the watershed.
In the case of SSP 5, the annual surface runoff will increase by 48%, while in the case of the
other SSPs it will increase by 33–40%. Sediment yield will be the second most influenced
parameter. In the case of SSP 1, the annual sediment yield will increase by 33%, while in
the case of the other SSPs, it will increase by 20–25%. The annual average water yield will
increase by 23% in the case of SSP 1, while it will increase by 10–17% in the remaining SSPs.
The ET will decrease by 5% and 3% in the case of SSP 5 and 3, respectively, while it will
slightly increase in SSP 1 and 2 (Figure 6).

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 6. Combined impacts of precipitation, temperature, and atmospheric [CO2] at an annual 
scale. 

Seasonally, spring surface runoff will increase by 30–42% with little difference among 
SSPs. In summer, it will increase by 70% in the case of SSP 5, while in the other SSPs, it 
will increase by 40–50%. In autumn and winter, surface runoff will increase more, by 88 
and 46%, respectively, in the case of SSP 1. Water yield will follow the pattern of surface 
runoff, i.e., in summer, it will increase more in the case of SSP 5, while in autumn and 
winter, it will increase more in the case of SSP 1. ET will increase in all the seasons in the 
case of SSP 1, while in the case of SSP 5, it will increase only in autumn. In the other SSPs, 
ET will experience comparatively smaller impacts across the seasons. In summer and au-
tumn, sediment yield will increase more in the case of SSP 5 and 3, while in winter and 
spring, it will increase more in SSP 1 and 2 (Figure 7). 

 
Figure 7. Impacts of precipitation, temperature, and atmospheric [CO2] at seasonal scale. 

Figure 6. Combined impacts of precipitation, temperature, and atmospheric [CO2] at an annual scale
(% change).



Atmosphere 2022, 13, 12 10 of 16

Seasonally, spring surface runoff will increase by 30–42% with little difference among
SSPs. In summer, it will increase by 70% in the case of SSP 5, while in the other SSPs, it will
increase by 40–50%. In autumn and winter, surface runoff will increase more, by 88% and
46%, respectively, in the case of SSP 1. Water yield will follow the pattern of surface runoff,
i.e., in summer, it will increase more in the case of SSP 5, while in autumn and winter, it
will increase more in the case of SSP 1. ET will increase in all the seasons in the case of
SSP 1, while in the case of SSP 5, it will increase only in autumn. In the other SSPs, ET
will experience comparatively smaller impacts across the seasons. In summer and autumn,
sediment yield will increase more in the case of SSP 5 and 3, while in winter and spring, it
will increase more in SSP 1 and 2 (Figure 7).
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River Flow Parameters

The peaks of extreme low flows (<500 m3/s) will increase in the case of SSP 1, while it
will decrease in other SSPs, with the largest decrease in SSP 5. The peaks of small floods
(>10,000 m3/s) will increase across the SSPs with little difference, while the peaks of large
floods (>14,000 m3/s) will increase largely in SSP 5 followed by 3 and 1. The duration of
extreme low flows will decrease in case of SSP 1, while it will slightly increase in SSP 3 and
5. The duration of small floods will decrease across the SSPs, with the largest decrease in
SSP 5 and 1. The duration of large floods will increase in the case of SSP 5, while it will
decrease in the other SSPs. The frequency of extreme low flows will slightly decrease in the
case of SSP 1, while it will increase in SSP 5. The frequency of small floods will increase
across the SSPs with little difference. The frequency of large floods will increase across the
SSPs with the largest increase in the case of SSP 5 followed by 3, 2, and 1. The minimum
flows will increase largely in the case of SSP 1, while the maximum flows will increase
across the SSPs with a greater increase in the case of SSP 5 (Figure 8).
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4. Discussion

The objectives of this study were to evaluate the individual and combined impacts
of changes in three influencing factors, i.e., precipitation, temperature, and atmospheric
CO2 concentration, for four future SSP scenarios. Individually, the impacts of changes in
precipitation relative to temperature and carbon dioxide will be very large on all the studied
hydrological parameters except ET. However, it is widely reported that global warming
and elevated atmospheric CO2 concentration have opposing influence on plant transpira-
tion [38,39]. Increased temperature enhances the biophysical driving force of transpiration,
thereby contributing to increasing transpiration rates, while partial stomatal closure under
elevated atmospheric CO2 concentration decreases the leaf loss of water [8,9,40]. Therefore,
changes in the hydrological parameters in response to the combined impacts of the three
influencing factors will be mostly associated with changes in precipitation.

Uncertainties in the precipitation data of the GCMs are widely reported [5,11,41–43].
Large uncertainties existed in precipitation data even after using the bias correction meth-
ods. The raw data of EC-Earth showed the highest agreement with the reference precipi-
tation monthly time series; however, the similarity of the hydrological data obtained was
not enough to simulate the actual future hydrology with minimum uncertainties, i.e., the
data could not be compared to the observed historical hydrological data (Tables 6 and 7).
Therefore, we only extracted the difference between the historical and future hydrology; to
minimize uncertainties among different GCMs, we used an ensemble mean or average of
the precipitation data from four GCMs for SSP 2, 3, and 5, and from three GCMs for SSP 1,
as discussed above. Extraction of the difference between the historical and future data of
the GCMs does not minimize the uncertainties; however, it enables the impact studies to
use the environment simulated by the GCM, i.e., rising greenhouse gases, etc. This method
is widely used, and is known as delta change correction [42,44,45].
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Table 6. Mean values of the actual historical (1981–2014) basin hydrological data simulated using
CMADs and GCMs precipitation data.

Parameters CMADS BCC-CMS FGOALS EC-Earth MRI-ESM Average

Precipitation 1710.1 1645.3 1631 1913.5 1663.5 1713.33
Surface runoff 184.83 170.41 171.67 132.44 150.68 156.3

Water yield 951.61 957.87 969.78 1205.19 969.5 1025.59
ET 733.3 666.8 640.5 688 671.8 666.78

Sediment yield 13.52 11.51 12.57 8.7 10.9 10.92

Table 7. Mean values of the actual historical (1981–2014) river flow data simulated using CMADs
and GCMs precipitation data.

Parameter CMADS BCC-CMS FGOALS EC-Earth MRI-ESM Average

Mean annual flow 1841 1861 2320 1863 1810 1963.5
1-day minimum 158.3 173.9 427.2 191.5 158.8 237.85
3-day minimum 162.4 179.3 435.1 195.3 164.6 243.57
7-day minimum 172.8 189.9 454.8 206.5 177.7 257.23

30-day minimum 249.4 275.8 579.8 294.2 257.8 351.9
90-day minimum 617.5 735.4 934 651.4 613.9 733.68
1-day maximum 9597 9309 7632 8638 9865 8861
3-day maximum 8614 8387 7071 7962 8690 8027.5
7-day maximum 6844 6800 6175 6480 6794 6562.3

30-day maximum 4423 4462 4870 4415 4337 4521
90-day maximum 3494 3482 4143 3521 3481 3656.8
Extreme low peak 260.8 286.8 311.9 229.1 277.4 276.3

Extreme low duration 47.58 34.27 33.06 54.84 38.5 40.2
Extreme low freq. 1.52 1.68 1.03 1.59 2 1.57
Small Flood peak 11,220 11,640 10,520 10,910 10,400 10,867.5

Small Flood duration 56.29 74.07 108.3 46 29.21 64.4
Small Flood freq. 0.21 0.41 0.12 0.06 0.42 0.25
Large flood peak 16,600 15,250 13,790 22,410 16,430 16,970

Large flood duration 56.4 63.67 154 43.33 54.6 78.9
Large flood freq. 0.15 0.09 0.03 0.09 0.28 0.12

The data of the GCMs of all the SSPs predicted increase in precipitation of the water-
shed. Increased precipitation will increase the surface runoff, water yield, and sediment
yield. While using the GCMs data, several other studies reported an increase in future
precipitation and runoff in watersheds around the globe [12,41,46,47]. The Minjiang river
watershed is situated in a humid climate, and is an abundant fresh water resource. The
abundant water resources of the watershed support several economic and social activities,
such as electricity generation, recreation, and navigation. Increase in precipitation and
water yield will increase the watershed’s capacity to support such activities. However,
several ecological problems associated with precipitation, i.e., surface runoff, soil erosion,
floods, and landslides, will become more intense.

Intense weather conditions have widespread harmful implications for natural systems
and communities. Flash floods associated with storm runoff extremes are expected to
become more frequent and severe due to climate change [48]. About 84% of the population
in Fujian province is directly threatened by flash floods [49], and has experienced severe
flash flood disasters. In our previous study [15], we found that surface runoff in the
watershed increased during the recent past. Surface runoff will increase in the future.
Increased surface runoff will enhance the damage risk during high-intensity precipitation
and flood events in the watershed. Moreover, the water quality will deteriorate in the form
of eutrophication due to more water flowing above the land surface into streams and rivers.
This problem of surface runoff will be more severe in the case of the high carbon emission
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scenario (SSP 5), which is also predicted to exhibit the largest increase in large floods’ peaks,
durations, and frequencies.

Each year, about 75 billion tons of soil is eroded from the world’s terrestrial ecosys-
tems [50]. This is a severe challenge to the productivity of land [51]. The chemicals,
contaminants, and heavy metals transported together with soil particles disturb the aquatic
ecosystems by causing water eutrophication [52]. Moreover, sediment can reduce the
storage capacity and disturb the operations of hydroelectric power plants [53]. In our
previous study [15], we found that soil erosion in the watershed increased during the recent
past. Soil erosion in the watershed is predicted to increase in the future. The problem of
soil erosion will be more severe in the case of the low carbon emission scenario (SSP 1).
The most likely reason is the substantial increase in winter precipitation because winter
temperature is not suitable for plant growth and bare soil is more prone to erosion. Increase
in temperature will decrease soil erosion to some extent, especially in the spring season of
SSP 5, where despite increased water yield and surface runoff, sediment yield is simulated
to decrease, most likely due to an increase in temperature.

Periodic water shortage is another most important and widely discussed hydrological
problem that is commonly associated with future climate change. It was reported by the
authors of [6] that future climate change can cause chronic and periodic water shortages.
Our previous study [15] reported an increase in the severity of extreme low water yield in
the Minjiang river watershed during the recent past. This study revealed that the problem
of periodic water shortages (extreme low flows) in the watershed will become more severe
in the future—except in the low carbon emission scenario (SSP 1)—in the form of intensity
(peaks), duration, and occurrence (frequency).

5. Conclusions

Future climate change is expected to impact the natural systems around the globe.
This study used future climate data of general circulation models of CMIP6 to investigate
the impacts of climate change during the future period (2062–2095) relative to the historical
period (1981–2014) on the hydrological system of the Minjiang river watershed. The soil and
water assessment tool (SWAT) was employed to simulate the future hydrology under the
impacts of changes in temperature, precipitation, and atmospheric [CO2] for four scenarios
(SSP 1, 2, 3, and 5) of the CMIP6.

Several bias correction methods were used for downscaling of the GCM data. The
temperature data of GCMs showed a great accuracy while the precipitation data showed
large uncertainties. Bias correction performed differently for different GCMs and improved
the accuracy of precipitation data to some extent. However, the accuracy was not enough
to simulate the actual future hydrology with minimum uncertainties. Therefore, we only
extracted the variation between the historical and future hydrology.

The results of the study revealed that the individual impacts of increase in future
temperature, i.e., increased ET, and decrease in surface runoff, water, and sediment yield,
will be countered by an increase in [CO2], and changes in the hydrological parameters in
the future will be mostly associated with precipitation. Data of the GCMs for all the SSPs
predicts increase in precipitation of the watershed, which will increase the surface runoff,
water yield, and sediment yield. Evapotranspiration will increase only in SSP 1. Surface
runoff will increase more in SSP 5, while sediment and water yield will increase more in
SSP 1. On a seasonal scale, water yield and surface runoff will increase more in autumn
and winter in SSP 1, while in other scenarios, these parameters will increase more in the
spring and summer seasons. Sediment yield will increase more in autumn in all scenarios,
while in it will increase more in summer in SSP 5 and in winter in SSP 1.

Similarly, the future climate change is predicted to impact the important parameters
related to the flow regime of the Minjiang river, i.e., floods and extreme low flows. The
frequency and duration of small floods (flows > 10,000 m3/s) will increase, while the
duration will decrease in all scenarios with little difference. The frequency and peak of
large floods (flows >14,000 m3/s) will increase along the gradient of scenarios, i.e., more in
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SSP 5 followed by 3, 2 and 1, while the duration will increase in SSP 5 and decrease in the
other SSPs. The frequency and duration of extreme low flows will increase in SSP 5, while
these parameters will decrease in SSP 1. Moreover, peak of extreme low flows will decrease
in all scenarios except SSP 1, in which it will increase.
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