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Abstract: Reliable short-term wind speed prediction is one of the core technologies in the strong
wind warning system for railway applications, which is of great significance for ensuring the safety
of high-speed train operations and ancillary railway facilities. To improve forecasting accuracy,
decomposition-based methods have attracted extensive attention due to their superior ability to
address complex data characteristics (e.g., nonstationarity and nonlinearity). Currently, there are
two pre-processing schemes for decomposition-based methods, i.e., one-time decomposition and
real-time decomposition. In order to apply them better, this paper first expounds the difference
between them, based on a combination of DWT (discrete wavelet transform) and CKDE (conditional
kernel density estimation). The results show that although the one-time decomposition-based method
has an unexceptionable accuracy, it only can provide offline prediction and thus may not be practical.
The real-time decomposition-based method possesses stronger practicability and is able to provide
online prediction, but it has limited accuracy. Then, an improved ensemble strategy is developed by
optimizing the selection of appropriate decomposed components to conduct the prediction on the
basis of real-time decomposition. This improved ensemble strategy provides an effective guidance
for this selective combination, including taking historical information into consideration in the data.
Finally, numerical examples and practicality analysis using two groups of measured wind speed data
demonstrate that the proposed method is effective in providing high-precision online wind speed
prediction. For example, compared with CKDE, the average degrees of improvement achieved by the
proposed method in terms of MAE, RMSE, and MRPE, are 16.25%, 17.66%, and 16.93, respectively,
while those compared with the traditional real-time decomposition method are 17.11%, 18.54%, and
16.84, respectively.

Keywords: wind speed prediction; one time decomposition; real time decomposition; improved
ensemble strategy; discrete wavelet transform; conditional kernel density estimation

1. Introduction

In recent years, a large number of high-speed rail projects have been constructed
around the world, and the corresponding scale of development is very rapid [1,2]. Accord-
ing to a statistical report by China Railway, China’s railway service length had reached
155,000 km, including 42,000 km of high-speed railways, by the end of 2022. However,
due to the light weight of high-speed train carriages and their high operating speeds,
operational high-speed trains inevitably encounter large lift forces under the action of
strong winds. Therefore, they are highly susceptible to derailment and overturning [3–5],
which can lead to significant casualties and huge economic losses [6,7]. Meanwhile, safety
and reliability of structures (e.g., bridges and transmission Lines) under the action of strong
winds have also become an increasingly serious topic [8–15]. One of effective methods to
addressing this predicament is the accurate prediction of strong winds (i.e., short-term wind
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speed prediction), which will enable the railway dispatching system to adjust dispatch
plans in a timely manner [16]. Therefore, short-term wind speed prediction is one of the
most important techniques in high-speed railway warning systems, which also plays a
significant role in ensuring the operational safety of high-speed trains [17–19].

To perform short-term wind speed prediction, many attempts have been made to gen-
erate a plethora of forecasting methods [20,21]. Generally, these methods can be categorized
into four different kinds, including physical models, statistical models, artificial intelligence-
or machine learning-based models, and hybrid models [22]. Physical models mainly utilize
meteorological data (such as temperature, humidity, air pressure, etc.) to carry out wind
speed prediction. One representative model is the numerical weather prediction model
(numerical weather prediction, NWP) [23]. However, this type of model requires a large
amount of meteorological data and computational resources and is merely suitable for
long-term wind speed prediction [24]. Statistical models (i.e., time series models) can
directly analyze the linear relationship between historical wind speed records, from which
the corresponding forecasting models are established. These models generally possess
a simple and effective structure, and have been widely used in short-term wind speed
prediction. They include the auto-regressive (AR) model, moving average (MA) model,
auto-regressive moving average (ARMA) model, and difference auto-regressive integrated
moving average (ARIMA) model [25,26]. However, these models usually perform well
under the assumption of stationary time series and cannot address the prediction of wind
speed data with high nonlinear features [27]. Fortunately, artificial intelligence- or machine
learning-based models, such as Kalman filters [28], artificial neural networks (ANN) [29],
fuzzy logic [30], support vector machines (SVM) [31], deep learning (DL) [32], etc., can
effectively explain the nonlinear features embedded in the data. These models have been
successfully applied in the field of wind speed prediction. However, the before-mentioned
models mostly belong to the parametric model category and generally include complex
parameter optimization processes [33,34]. Meanwhile, they easily fall into the problems of
local optimization, overfitting, and low rate of convergence [35]. Recently, conditional ker-
nel density estimation (CKDE) has been able to determine the probability density function
(PDF) of the target variable and use it as a basis for addressing the time series prediction
problem [36]. This method has data-driven attributes and can directly use the sample
data to estimate the PDF without any parametric assumption. In addition to the simple
single-modal density distribution problem, it can effectively deal with problems of multi-
modal or skewed density distributions [22]. Therefore, the CKDE model can not only avoid
errors and computational resources caused by parameter optimization processes, but also
respond well to the non-linear and non-Gaussian characteristics hidden in wind speed time
series [37]. Considering the advantages of CKDE, the integration of this method into wind
speed prediction may be promising and challenging.

According to [38–43], wind speed time series usually present multiple characteristics
(e.g., linearity, nonstationarity, nonlinearity, etc.). In this scenario, the above-mentioned
single models may not provide satisfactory forecasting results. To pursue higher forecasting
accuracy, the combination of different component methods (i.e., hybrid models) has at-
tracted more and more attention. These hybrid methods can take advantage of the strength
of each component model. There are four different hybrid models including decomposition-
based models, parameter optimization-based models, weight allocation-based models, and
error correction-based models [44]. Due to strong volatility and stationarity of wind speed
time series, hybrid models based on signal pretreatment techniques are extensively em-
ployed. These pretreatment techniques main are empirical mode decomposition (EMD) [16],
fast ensemble EMD (FEEMD) [45], discrete wavelet transform (DWT) [46], wavelet packet
decomposition (WPD) [47], empirical wavelet transform (EWT) [48], variational mode
decomposition (VMD) [49], and their developed versions. Generally, these types of hybrid
models first apply signal pretreatment techniques to decompose the raw wind speed data
into different stationary and regular subsequences. Then, one or several appropriate models
are established for training each subsequence and performing the corresponding prediction.
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Finally, the summation of all individual predictions in a linear manner can be regarded
as the target prediction result [50]. For example, Liu et al. [51] used four different decom-
position techniques (i.e., EMD, FEEMD, DWT, and WPD) and extreme learning machine
(ELM) to implement the prediction of short-term wind speeds, and the forecasting result
indicated that the accuracy of these decomposition-based models was superior to that of
single models. In most relevant studies, the decomposition is only conducted once for the
original data, and each decomposed subsequence is divided into training and testing sets
(i.e., one-time decomposition). Although one-time decomposition-based models feature
extremely high accuracy, the decomposition takes the future information into consideration
and can only provide offline prediction [52]. Therefore, this method may not be practical. In
contrast, the real-time decomposition-based method has a stronger practicability and is able
to provide online prediction, but it forecasting accuracy is generally limited and sometimes
even inferior to that of single models [50]. The possible reasons for this limited accuracy
may be ascribed to the effect of the endpoint effect, mode mixing, improper or varying
decomposition level number, and illusory components [24]. Meanwhile, the ensemble
pattern (i.e., the direct summation of all individual predictions) may not be effective, while
the selective ensemble of several individual predictions generally presents satisfactory
results [53]. However, the difference between one-time decomposition-based methods
and real-time decomposition-based methods is rarely reported, and the selective ensemble
pattern in these methods sometimes depends on the user’s experience, which generally
lacks a theoretical basis.

From the above literature review, several main problems in the current methods of
short-term wind speed prediction are summarized below: 1© Physical models require a
large quantity of meteorological data and computational resources, and are merely suit-
able for long-term wind speed prediction; 2© statistical models only can perform well for
the prediction of wind speed time series with strong linear and stationary characteristics;
3© artificial intelligence or machine learning models can capture linear and complex nonlin-

ear characteristics in the wind speed data, but they cannot effectively address nonstationary
characteristics in the data and their performance is vulnerable to model parameters; 4© al-
though two kinds of decomposition-based methods have been widely used, the differences
between then are rarely clarified, which sometimes brings about unsuitable applications.
Meanwhile, forecasting accuracy is strongly related to the ensemble pattern of subsequence
predictions, which generally lack a theoretical basis.

This paper first introduces the nonparametric CKDE model as the predictor and
reviews the details of two traditional decomposition-based models and the differences
between them on the basis of DWT. Then, the performance evaluation of these two methods
is conducted based on measured wind speed data. Further, an improved ensemble-strategy-
assisted real-time decomposition method is developed for short-term wind speed predic-
tion, which can optimally select the decomposed components for ensemble predictions.
Finally, numerical examples are performed to illustrate the performance of the proposed
method. The forecasting results show that this improved method has higher prediction
accuracy in comparison with traditional real-time decomposition-based models and the sin-
gle CKDE model. For example, compared with CKDE, the average degrees of improvement
realized by the proposed method in terms of MAE, RMSE, and MRPE are 16.25%, 17.66%,
and 16.93, respectively, while those compared with the traditional real-time decomposition
method are 17.11%, 18.54%, and 16.84, respectively.

2. Methodology
2.1. Discrete Wavelet Transform

As a convenient and efficient technique of multiscale signal processing, discrete
wavelet transform (DWT) has been widely used in the analysis of nonlinear and non-
stationary signals [54]. This technique can decompose the signal into specified quantity
subsequences with different frequency bandwidths by employing a group of basis func-
tions. These basis functions generally result from a series of translation and expansion
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operations based on the pre-specified mother wavelet function [54]. For the original wind
speed time series {v1, v2, . . . , vn} (denoted as v[n]), DWT can decompose this signal into a
number of approximation and detail components, i.e., [55]

v[n] = D1 + D2 + ... + Dk + Ak (1)

where n represents the number of original data points; k + 1 represents the specified
decomposition level of DWT; D1, D2,..., Dk represent the detail components; and Ak stands
for the approximation component.

With the augmentation of decomposition level numbers, the frequency on the cor-
responding subsequence gradually decreases, and thus the frequency overlap between
two adjacent subsequences can be addressed to some extent [54]. Meanwhile, the number
of decomposition levels can be set in advance. Therefore, this technique has the ability
to address the time-frequency analysis of both single-channel data and multi-channel
data [56]. In this technique, the critical problem is determining the mother wavelet function.
According to [54], the Daubechies 10 wavelet has exhibited superiority in analyzing the
wind speed time series, which is still used for the decomposition and reconstruction in this
paper. The detailed illustration of DWT can be found in [55].

2.2. Conditional Kernel Density Estimation

After the decomposition by DWT is completed, the CKDE model is established for
every decomposed subsequence. In this model, any assumption regarding the relationship
between input and output variables can be avoided [57]. In addition to having the ability
to describe the linear characteristics in the data, this model embodies an obvious advantage
in addressing the data with multimodal or skewed probability distributions, and thus can
explain the nonlinear or non-Gaussian characteristics in the wind speed time series [44].
The following gives the detailed modeling process of CKDE in wind speed prediction.

For any decomposed subsequence {x(t), t = 1, 2, 3, . . . , n}, a series of input–output
pairs with the L-step ahead forecasting task can be constructed, i.e.,

x1
...

xi
...

xN

 =



x(1) · · · x(m)
...

...
...

x(i) · · · x(i + m− 1)
...

...
...

x(N) · · · x(n− L)

;



y1
...

yi
...

yN

 =



x(m + L)
...

x(i + L + m− 1)
...

x(n)

 (2)

where {xi, i = 1, 2, . . . , N; N = n−m− L + 1} denotes the m-dimensional input variable
and {yi} stands for the one-dimensional output variable. On this basis, the joint probability
density distribution of (x, y) can be expressed as:

f̂ (x, y) =
1

N · |HX| · |HY|

N

∑
i=1

{
Km

[
H−1

X (x− xi)
]
· K
[

H−1
Y (y− yt)

]}
(3)

where Km[·] is the m-dimensional kernel function and the Gaussian function is commonly
used because of its simple structure and easy application; HX and HY are the diagonal
bandwidth matrixes for input and output variables, respectively [36]. These bandwidth
matrixes are critical for ensuring modeling quality, and generally can be obtained via the
normal reference criterion (NRC), i.e., [44]

HX = diag
[
Hq
]
;

HY = σY · (4/(m + 2)N)1/(m+4);
Hq = σq · (4/(m + 2)N)1/(m+4), q = 1, 2, · · · , m;

(4)



Atmosphere 2023, 14, 1787 5 of 19

in which σq and σY correspond to sample standard deviations regarding the time series
of {x(q), x(q + 1), . . ., x(q + n-m-L), q = 1, 2, . . ., m} and {x(m + L), x(m + L + 1), . . ., x(n)},
respectively.

Based on conditional probability theory, the density distribution of the output variable
on the basis of the input variable can be defined as:

f̂ (y |x ) =
N

∑
i=1

[
ωi(x) ·

1
|HY|

· K
(

H−1
Y (y− yi)

)]
(5)

ωi(x) =
Km

(
H−1

X (x− xi)
)

N
∑

i=1
Km

(
H−1

X (x− xi)
) (6)

and then the expectation of the output variable y can be given by

y =
∫

y f̂ (y |x )dy =
N

∑
i=1

ωi(x) · yi (7)

When the input variable x is updated to {x(n−m + 1), x(n−m + 2), . . . , x(n)}, which
can be marked as xn+L, the expectation provided by Equation (7) can be considered to be
the L-step ahead forecasting value, i.e., [44]

x̂(n + L) =
N

∑
i=1

ωi(xN+L) · yi (8)

where x̂(n + L) is the L-step ahead forecasting value of x(n + L). More information about
this CKDE model can be found in [36].

2.3. Evaluation Metrics

For the sake of evaluating the prediction performance of the model intuitively, three
commonly used evaluation indicators are employed, i.e., mean absolute error (MAE), root
mean square error (RMSE), and mean relative percentage error (MRPE). Their calculation
formulas are given as follows [20]:

MAE =
1
n1

n+n1

∑
i=n+1

|vi − v̂i| (9)

RMSE =

√√√√ 1
n1

n+n1

∑
i=n+1

(vi − v̂i)
2 (10)

MRPE =
1
n1

n+n1

∑
i=n+1

∣∣∣∣vi − v̂i
vi

∣∣∣∣× 100% (11)

where n1 represents the number of the data used to evaluate the performance of the
model, and for one-step ahead prediction, n1 is equal to the number of the testing data
(i.e., n1 = 75). v̂i denotes the predicted value of the measured wind speed vi. In order
to further exhibit the performance comparison, three indexes regarding the improved
percentage between different forecasting methods in terms of the above indicators are
defined as [16]:

PMAE =
MAE1 −MAE2

MAE1
× 100% (12)

PRMSE =
RMSE1 − RMSE2

RMSE1
× 100% (13)
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PMRPE =
MRPE1 −MRPE2

MRPE1
× 100% (14)

where MAE1, RMSE1, and MRPE1 are evaluation indicators of the method under consider-
ation, while MAE2, RMSE2, and MRPE2 are those of the compared method.

3. Review of Traditional Decomposition-Based Prediction Models

There are two kinds of decomposition-based models in the field of wind speed predic-
tion. This section takes the combination of DWT and CKDE to review the details of these
two models and their differences. The specific illustration is presented below.

3.1. Steps of Traditional Prediction Methods

According to [52], there are two kinds of pretreatment manners in the traditional
decomposition-based forecasting methods, i.e., the one-time decomposition-based fore-
casting method and the real-time decomposition based forecasting method. The main
steps of the one-time decomposition-based forecasting method are shown in Figure 1a.
In this method, DWT is employed only once to decompose all original wind speed data
{v1, v2, . . . , vn} into a number of subsequences with a fixed quantity, and then each de-
composed subsequence is divided into the training set and the testing set for modeling
and performance evaluation (i.e., the decomposition occurs before data set partitioning).
The summation of all training sets is regarded as the training data, while that of all testing
sets is considered to be the testing data. From Figure 1a, it can be seen that the one-time
decomposition scheme simultaneously decomposes the known (training) data and the
unknown (testing) data, i.e., the decomposition introduces an assumption that the expected
data are available in advance. After the decomposition is completed, an appropriate fore-
casting model (i.e., CKDE) is established for training each decomposed subsequence and
then performing the individual prediction. On this basis, the aggregation of all individual
predictions, generally in a linear manner, is regarded as the final prediction. Updating all
training sets using the corresponding testing set, the prediction is conducted based on the
above procedures until all forecasting tasks are finished. Limited by the decomposition
strategy, the one-time decomposition-based forecasting method can only provide offline
prediction, and thus may not be directly applied in practice.

Differing from the above method, the real-time decomposition-based forecasting
method can provide online prediction, and thus this method may have potential for railway
strong wind warning systems. However, the performance of this method is unstable, and
sometimes cannot generate satisfactory results because of the flaws of its component models,
such as the end effect, mode aliasing, and redundancy in decomposition and the limited
ability of the selected predictor. Figure 1b gives the details of the real-time decomposition-
based forecasting method. In this method, all original data are divided into the training
data and the testing data beforehand, and then the decomposition is implemented for the
training data rather than all of the original data (i.e., the summation of the training data
and the testing data), i.e., the decomposition occurs after data set partitioning. Therefore,
the training data is equal to the training set and the testing data is equal to the testing set.
Further, an appropriate predictor (i.e., CKDE) is selectively established for training and
predicting each decomposed subsequence, and all individual predictions are summated to
yield the final prediction. With the prediction being completed, the training data should
be updated by inputting the testing data. Obviously, the decomposition is conducted in
real-time and no future information is contained in the decomposition.

3.2. Experimental Data Illustration

In order to illustrate the performance of the traditional decomposition-based fore-
casting methods, wind speed data measured by an ultrasonic anemometer the along one
of the high-speed rail lines in China are employed as the experimental data. According
to [16], sampling with a one-minute time interval is enough for the wind speed time series
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in high-speed rail wind warning systems. On this basis, the measured wind speed data
with continuous 5 h records in 2014 are used where the sampling time interval still adopts
a one-minute interval, and thus a total of 300 wind speed data points are contained in the
experimental data. Among them, the first 225 data points are used as the initial training
data for model training, while the later 75 data points are used as the testing data for
model performance evaluation. Figure 2 presents the details of the experimental data in a
visual way and these data may have a weak nonstationary characteristic. Table 1 gives the
statistical features of these data. From the table, it can be seen that these statistical features
of all the original data and the training data are similar, and are slightly different from
those of the testing data. Their differences may contribute to reflecting the performance of
traditional decomposition-based forecasting methods.
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Table 1. Statistical analysis of the experimental wind speed data.

Statistics Mean (m/s) Standard Deviation (m/s) Maximum (m/s) Minimum (m/s) Skewness Kurtosis

All Original Data 9.33 2.79 16.82 0.76 −0.22 3.10
Training Data 9.54 2.94 16.82 0.76 −0.48 3.09
Testing Data 8.69 2.17 15.54 3.74 0.63 3.89

3.3. Performance Comparison of Traditional Decomposition-Based Forecasting Methods

Based on the experimental wind speed data (see in Figure 2), the above two traditional
decomposition-based forecasting methods (i.e., a hybrid of one-time DWT decomposition
and CKDE, and a hybrid of real-time DWT decomposition and CKDE) are used to perform
short-term wind speed predictions. Taking one-step ahead prediction as an example,
the impact of the decomposition level number on forecasting accuracy is preliminarily
analyzed, where the number of decomposition levels changes from 3 to 11. The results show
that the optimal numbers of decomposition levels for the one-time decomposition-based
forecasting method and real-time decomposition-based forecasting method were 8 and 9,
respectively.

Figure 3 gives the decomposed results with two different decomposition schemes,
where the number of decomposition levels is nine. In the figure, the solid line represents
the decomposition in the one-time decomposition scheme for all original data, while the
dashed line indicates the decomposition in the real-time scheme for the data in the testing
set. Meanwhile, it can be observed that the decomposed results (i.e., the dashed lines in the
right quarter) in the real-time decomposition scheme are significantly different from those
in the one-time decomposition scheme, especially for the low-frequency items which exhibit
stronger volatility than those of the one-time decomposition scheme. Figure 4 shows the
forecasting results of these two decomposition-based forecasting methods, where both of
them take their correspondingly optimal number of decomposition levels. Table 2 presents
the corresponding error analysis results.

Atmosphere 2023, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 3. Subsequences from one-time decomposition (blue) and real-time decomposition (red). 

 
Figure 4. Forecasting results of the two traditional DWT-CKDE methods. 

Table 2. Comparison of the two traditional DWT-CKDE methods. 

Error Indicators One-Time DWT-CKDE Real-Time DWT-CKDE Absolute Error 
MAE 0.23 1.69 1.46 
RMSE 0.30 2.15 1.85 

MRPE/% 2.78 19.69 16.91 

From Figure 4 and Table 2, it can be seen that the forecasting results of the one-time 
decomposition-based forecasting method are almost consistent with the trend of the ac-
tual wind speed, with the evaluation indexes of MAE, RMSE, and MRPE being 0.23, 0.30, 
and 2.78%, respectively. Compared with those indicators for the real-time decomposi-
tion-based forecasting method, the one-time decomposition-based forecasting method 
can realize an approximately 86% improvement in terms of these three indicators. On 

0 100 200 300
-5

0

5

D
1

0 100 200 300
-5

0

5

D
2

0 100 200 300
-5

0

5

D
3

0 100 200 300
-5

0

5

D
4

0 100 200 300
-5

0

5

D
5

0 100 200 300
-2

0

2

D
6

0 100 200 300
-1

0

1

D
7

0 100 200 300
-2

0

2

D
8

0 100 200 300
-2

0

2

D
9

0 100 200 300
5

10

15

A 9

226 240 250 260 270 280 290 3002

6

12

16

Time Interval (One-minute)

W
in

d 
Sp

ee
d 

(m
/s

)

 

 

Measured Data
One-time DWT-CKDE
Real-time DWT-CKDE

Figure 3. Subsequences from one-time decomposition (blue) and real-time decomposition (red).



Atmosphere 2023, 14, 1787 9 of 19

Atmosphere 2023, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 3. Subsequences from one-time decomposition (blue) and real-time decomposition (red). 

 
Figure 4. Forecasting results of the two traditional DWT-CKDE methods. 

Table 2. Comparison of the two traditional DWT-CKDE methods. 

Error Indicators One-Time DWT-CKDE Real-Time DWT-CKDE Absolute Error 
MAE 0.23 1.69 1.46 
RMSE 0.30 2.15 1.85 

MRPE/% 2.78 19.69 16.91 

From Figure 4 and Table 2, it can be seen that the forecasting results of the one-time 
decomposition-based forecasting method are almost consistent with the trend of the ac-
tual wind speed, with the evaluation indexes of MAE, RMSE, and MRPE being 0.23, 0.30, 
and 2.78%, respectively. Compared with those indicators for the real-time decomposi-
tion-based forecasting method, the one-time decomposition-based forecasting method 
can realize an approximately 86% improvement in terms of these three indicators. On 

0 100 200 300
-5

0

5

D
1

0 100 200 300
-5

0

5

D
2

0 100 200 300
-5

0

5

D
3

0 100 200 300
-5

0

5

D
4

0 100 200 300
-5

0

5

D
5

0 100 200 300
-2

0

2

D
6

0 100 200 300
-1

0

1

D
7

0 100 200 300
-2

0

2

D
8

0 100 200 300
-2

0

2

D
9

0 100 200 300
5

10

15

A 9

226 240 250 260 270 280 290 3002

6

12

16

Time Interval (One-minute)

W
in

d 
Sp

ee
d 

(m
/s

)

 

 

Measured Data
One-time DWT-CKDE
Real-time DWT-CKDE

Figure 4. Forecasting results of the two traditional DWT-CKDE methods.

Table 2. Comparison of the two traditional DWT-CKDE methods.

Error Indicators One-Time DWT-CKDE Real-Time DWT-CKDE Absolute Error

MAE 0.23 1.69 1.46
RMSE 0.30 2.15 1.85

MRPE/% 2.78 19.69 16.91

From Figure 4 and Table 2, it can be seen that the forecasting results of the one-time
decomposition-based forecasting method are almost consistent with the trend of the actual
wind speed, with the evaluation indexes of MAE, RMSE, and MRPE being 0.23, 0.30, and
2.78%, respectively. Compared with those indicators for the real-time decomposition-based
forecasting method, the one-time decomposition-based forecasting method can realize
an approximately 86% improvement in terms of these three indicators. On the surface,
this method seems to have high potential. However, the decomposition in the one-time
decomposition-based forecasting method takes the changing trend of unknown data into
consideration, and thus fails to generate the actual required online prediction.

Fortunately, the real-time decomposition-based forecasting method can provide online
prediction because the decomposition in this method takes the real-time pattern. However,
its forecasting performance is not very stable, and sometimes even underperforms that
of a single method. Table 3 summarizes the performance comparison between the real-
time DWT-CKDE method and CKDE. It can be seen that the three error indicators of the
former are 1.69, 2.15, and 19.69%, respectively, while those of the latter are 1.56, 2.01, and
18.28%, respectively, i.e., the decomposition brings out an obvious performance degradation.
Therefore, in practical situations, the real-time decomposition-based forecasting method
may not have an advantage. Although the decomposition scheme reduces the nonstationary
and nonlinear characteristics hidden in the data, it may introduce other critical problems,
such as strong volatility at the end of subsequences (see Figure 3), interferences of modal
mixing and illusive components, which have some adverse effects on the performance of
the involved predictor.

Table 3. Comparison of the real-time DWT-CKDE method and CKDE.

Error Indicator CKDE Real-Time
DWT-CKDE Absolute Error PMAE, PRMSE,

PMRPE

MAE 1.56 1.69 −0.13 −7.69%
RMSE 2.01 2.15 −0.14 −6.51%

MRPE/% 18.28 19.69 −1.41 −7.16%
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4. The Proposed Forecasting Method

This section first illustrates the details of the proposed method, then a numerical exam-
ple based on the measured data in Figure 2 is conducted to exhibit the performance of this
method. Finally, practicality analysis based on the other measured wind speed time series
is carried out. The specific illustrations regarding these three parts are presented below.

4.1. Processes of the Proposed Method

Considering that not all of the decomposed subsequences are beneficial to the overall
prediction accuracy of the real-time decomposition-based forecasting method, prediction
based on the combination of certain or several subsequence predictions may provide a
satisfactory result [20,53]. However, in most existing investigations, the summation of all
subsequence predictions in a linear manner is the main ensemble strategy to generate the
final prediction, and relevant studies aiming at the ensemble strategy are rarely reported.
On this basis, this study explores the combination pattern (CP) of subsequence predictions
and develops an improved ensemble-strategy-assisted DWT-CKDE method. This improved
ensemble strategy can provide optimization selection for decomposed subsequences for
prediction. The specific processes of this developed method are shown in Figure 5, and the
corresponding main modeling steps are listed as follows:

(1) Divide the original wind speed time series {v1, v2, . . . , vn; n = 300} into an initial
training set {v1, v2, . . . , v225} and a testing set {v226, v2, . . . , v300};

(2) Perform the DWT decomposition on the initial training samples (the specified number
of decomposition levels is set as 9, i.e., k = 8) to obtain the approximation compo-
nent Ak and k detailed components {D1, D2, . . . , Dk}. Then, the CKDE model is
established for training each decomposed subsequence and implementing individual
one-step ahead prediction. The predicted values of all subsequences are combined
based on the following combination pattern (CP), i.e.,

(
D̂1 + D̂2 + . . . + D̂k + Âk

)
,(

D̂2 + D̂3 + . . . + D̂k + Âk
)
, . . .,

(
D̂k + Âk

)
,
(

Âk
)
. On this basis, it is obvious that

there k + 1 different CPs (i.e., ensemble strategies) are reserved for ensemble predic-
tion in the next moment (i.e., the result of v̂226). In above CPs, D̂j, (j = 1, 2, . . . , k)
denotes the one-step ahead forecasting value of the detailed component Dj and Âk
stands for the one-step ahead forecasting value of the approximation component Ak;

(3) When the actual value of v226 is known, the ideal ensemble strategy (marked as the
CP r2) in Step (2) can be identified from k + 1 different CPs based on the minimum
absolute deviation criterion, i.e., the prediction based on the ideal ensemble strategy
has the smallest deviation with its corresponding actual value;

(4) Update the training set to {v2, v3, . . . , v226} (i.e., the known value of v226) and perform
the corresponding DWT decomposition where one approximation component A8
and eight detailed components {D1, D2, . . . , D8} can be obtained. Then, the CKDE
model is established to yield nine individual one-step ahead predictions and nine
different CPs. With these predictions and the previous CP r2, the one-step ahead
prediction of the wind speed data point v227 (i.e., the result of v̂227) can be generated;

(5) When the actual value of v227 is known, the ideal ensemble strategy (marked as the
CP r3) in Step (3) can also be identified, and it has a similar deterministic process with
that of CP r2. This CP r3 provides an ensemble strategy for the forecasting result v̂228;

(6) Similarly, update the training set to {vi, vi+1, . . . , vi+224; i = 3, 4, . . . , 76} and repeat
Step (4) and combine the ensemble strategy CP ri to yield the forecasting result v̂i+225.
When the actual value of vi+225 is known, the ensemble CP ri+1 can be obtained via a
similar process with Step (5), which provides an ensemble strategy for the forecasting
result v̂i+1+225, otherwise the prediction should be terminated. Note that the ideal
combination pattern at the previous moment is regarded as the ensemble strategy at
the current moment;

(7) As for the predicted value of v̂226 and CP r1, they can be obtained by the following
procedures: 1© perform the DWT decomposition for the wind speed time series
{v1, v2, . . . , v224} and establish the CKDE model for training and predicting each
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decomposed subsequence, thereby yielding nine different CPs; 2© with the available
of the value of v225, the ideal ensemble strategy CP r1 can be identified; 3© update the
training set to {v1, v2, . . . , v225} and repeat Step (4), then the predicted value of v̂226
can be generated;

(8) Perform the error analysis based on the performance evaluation indictors given in
Section 3.1.

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 5. Flowchart of the proposed model. 

4.2. Numerical Example 
Based on the experimental data in Figure 2, the one-step ahead wind speed predic-

tion is performed. Figure 6 takes the wind speed time series { }2 3 226, ,...,v v v  as example 
to exhibit the decomposed results of DWT. In the figure, it is obvious that the decom-
posed subsequences are more stationary and regular than the original data. Therefore, 
the use of DWT to perform the pre-processing operation is effective in reducing the non-
stationarity of the original data, which can lay a strong foundation for the application of 
statistical models, artificial or machine learning models for the prediction. For the sake 
of exhibiting the effectiveness of the selected combination, Table 4 presents the real-time 
prediction taking the ideal CP (i.e., each prediction adopts the optimal ensemble strategy 
which can make the prediction have the smallest deviation from its correspondingly ac-
tual value). Meanwhile, the influence of the number of decomposition levels on the 
forecasting accuracy is also examined. Table 5 gives the comparison of the prediction in 
the optimal ensemble strategy, real-time DWT-CKDE, and CKDE. 

Figure 5. Flowchart of the proposed model.

From the above illustration, the proposed method is a hybrid of the real-time DWT
decomposition, CKDE, and an improved ensemble strategy. Differing from traditional
decomposition-based forecasting methods that generally require all decomposed subse-
quences involved in the prediction, this method has an ability to take a selective com-
bination of individual predictions. The improved ensemble strategy provides effective
guidance for this selective combination with consideration of the historical information
in the data. Considering that the updating of training sets may lead to changes in data
characteristics and the implied original information of each decomposed subsequence, the
ensemble strategy may not be always the same. Therefore, it is necessary to update the
combination pattern of the selected individual components in every real-time prediction.
This time-varying ensemble strategy and the real-time decomposition scheme may be more
beneficial to reflecting the actual complex wind environment.
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4.2. Numerical Example

Based on the experimental data in Figure 2, the one-step ahead wind speed prediction
is performed. Figure 6 takes the wind speed time series {v2, v3, . . . , v226} as example to
exhibit the decomposed results of DWT. In the figure, it is obvious that the decomposed
subsequences are more stationary and regular than the original data. Therefore, the use of
DWT to perform the pre-processing operation is effective in reducing the nonstationarity of
the original data, which can lay a strong foundation for the application of statistical models,
artificial or machine learning models for the prediction. For the sake of exhibiting the
effectiveness of the selected combination, Table 4 presents the real-time prediction taking
the ideal CP (i.e., each prediction adopts the optimal ensemble strategy which can make the
prediction have the smallest deviation from its correspondingly actual value). Meanwhile,
the influence of the number of decomposition levels on the forecasting accuracy is also
examined. Table 5 gives the comparison of the prediction in the optimal ensemble strategy,
real-time DWT-CKDE, and CKDE.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Decomposed subsequences of the wind speed time series { }2 3 226, ,...,v v v . 

Table 4. Forecasting results by the ideal CP considering the effect of decomposition level number. 

Error Indicator 3 4 5 6 7 8 9 10 11 
MAE 1.05 1.00 0.95 0.87 0.84 0.77 0.73 0.78 0.86 
RMSE 1.52 1.47 1.41 1.35 1.32 1.23 1.21 1.24 1.37 

MRPE/% 12.52 11.90 11.30 10.41 10.10 9.37 8.99 9.21 10.19 

Table 5. Performance comparison of the ideal CP, CKDE, and real-time DWT-CKDE. 

Error Indicator Ideal Ensemble 
CKDE Real-Time DWT-CKDE 

Result Absolute Error Improved Degree Result Absolute Error Improved Degree 
MAE 0.73 1.56 0.83 53.21% 1.69 0.95 56.21% 
RMSE 1.21 2.01 0.80 39.80% 2.15 0.94 43.72% 

MRPE/% 8.99 18.28 9.29 50.82% 19.69 10.70 54.34% 

From Tables 4 and 5, it can be observed that the parameter of 8k =  (i.e., the num-
ber of decomposition levels is nine) corresponds to the minimum value of the evaluation 
indictors, and the prediction in the optimal ensemble strategy presents a higher accuracy 
than those of the real-time DWT-CKDE method and the CKDE method. For example, the 
values of three evaluation indicators in terms of the optimal ensemble strategy are 0.73 
(MAE), 1.21 (RMSE), and 8.99% (MRPE), respectively. Meanwhile, the corresponding 
improved degrees of PMAE, PRMSE, and PMRPE in comparison with the real-time 
DWT-CKDE method are 56.21%, 43.72%, and 54.34, respectively, while those compared 
with CKDE are 53.21%, 39.80%, and 50.82%, respectively. Obviously, these results 
demonstrate that the selective ensemble strategy (i.e., the selective combination of sever-
al individual predictions) is an effective way to improve the traditional real-time de-
composition-based forecasting method. However, due to the lack of selection criteria, it 
is impossible to obtain an ideal CP in every time prediction. 

The improved ensemble strategy provides effective guidance to determine the se-
lection criterion. In this strategy, the ideal CP for the previous moment is regarded as the 
ensemble pattern for the current moment. Table 6 presents all the subsequence predic-
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Figure 6. Decomposed subsequences of the wind speed time series {v2, v3, . . . , v226}.

Table 4. Forecasting results by the ideal CP considering the effect of decomposition level number.

Error Indicator 3 4 5 6 7 8 9 10 11

MAE 1.05 1.00 0.95 0.87 0.84 0.77 0.73 0.78 0.86
RMSE 1.52 1.47 1.41 1.35 1.32 1.23 1.21 1.24 1.37

MRPE/% 12.52 11.90 11.30 10.41 10.10 9.37 8.99 9.21 10.19

Table 5. Performance comparison of the ideal CP, CKDE, and real-time DWT-CKDE.

Error Indicator Ideal Ensemble
CKDE Real-Time DWT-CKDE

Result Absolute Error Improved Degree Result Absolute Error Improved Degree

MAE 0.73 1.56 0.83 53.21% 1.69 0.95 56.21%
RMSE 1.21 2.01 0.80 39.80% 2.15 0.94 43.72%

MRPE/% 8.99 18.28 9.29 50.82% 19.69 10.70 54.34%

From Tables 4 and 5, it can be observed that the parameter of k = 8 (i.e., the number of
decomposition levels is nine) corresponds to the minimum value of the evaluation indictors,
and the prediction in the optimal ensemble strategy presents a higher accuracy than those
of the real-time DWT-CKDE method and the CKDE method. For example, the values
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of three evaluation indicators in terms of the optimal ensemble strategy are 0.73 (MAE),
1.21 (RMSE), and 8.99% (MRPE), respectively. Meanwhile, the corresponding improved
degrees of PMAE, PRMSE, and PMRPE in comparison with the real-time DWT-CKDE method
are 56.21%, 43.72%, and 54.34, respectively, while those compared with CKDE are 53.21%,
39.80%, and 50.82%, respectively. Obviously, these results demonstrate that the selective
ensemble strategy (i.e., the selective combination of several individual predictions) is an
effective way to improve the traditional real-time decomposition-based forecasting method.
However, due to the lack of selection criteria, it is impossible to obtain an ideal CP in every
time prediction.

The improved ensemble strategy provides effective guidance to determine the selection
criterion. In this strategy, the ideal CP for the previous moment is regarded as the ensemble
pattern for the current moment. Table 6 presents all the subsequence predictions D̂j,
(j = 1, 2, . . . , 8) and Â8 where the training set is updated to {v2, v3, . . . , v226}, i.e., the
prediction of v̂227. In the table, it can be seen that the idea combination strategy in this
moment is D̂8 + Â8 (i.e., r3) when the value of v227 is known, which can be used for
the prediction of v̂228. To show the superiority of the proposed method, the real-time
DWT-CKDE method and CKDE are used for comparison. Figure 7 intuitively shows the
forecasting results of these three methods and the corresponding evaluation indicators
are summarized in Table 7. From the figure, it can be seen that there is an apparent time-
delaying effect in the prediction, and the proposed method is least affected. Meanwhile,
the statistical results in Table 7 also demonstrate that the proposed method outperforms
those compared methods. For example, the improved degrees realized by the proposed
method in comparison with the real-time DWT-CKDE method regarding the indexes PMAE,
PRMSE, and PMRPE are 19.05%, 16.74%, and 16.66%, respectively, while those in comparison
with CKDE are 12.82%, 10.95%, and 11.40%, respectively.

Table 6. Forecasting results of all decomposed subsequences and the ideal CP.

Subsequences ^
D1

^
D2

^
D3

^
D4

^
D5

^
D6

^
D7

^
D8

^
A8

True Value v227

Prediction −0.69 0.55 −0.19 −1.85 −0.81 0.53 1.18 −1.06 9.70
8.76 m/sIdeal CP D̂8 + Â8 =8.64 m/s
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Table 7. Performance comparison of the proposed method, CKDE, and real-time DWT-CKDE.

Error Indicator Proposed
Method

CKDE Real-Time DWT-CKDE

Result Absolute Error Improved Degree Result Absolute Error Improved Degree

MAE 1.36 1.56 0.20 12.82% 1.68 0.32 19.05%
RMSE 1.79 2.01 0.22 10.95% 2.15 0.36 16.74%

MRPE/% 16.41 18.28 1.87 11.40% 19.69 3.28 16.66%

4.3. Practicality Analysis

In order to further express the practicability of the proposed method, an additional
case study based on the measured wind speed date is performed. Figure 8 and Table 8 give
some illustrations regarding the experimental data. From Table 8, it can be seen that the
data characteristics in this experiment are significantly different from those in Figure 2 and
Table 1. By comparison, these data may have stronger nonstationarity and non-Gaussianity.
This difference is conducive to demonstrating the superiority of the proposed method in a
more comprehensive way.
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Table 8. Statistical analysis of the additional wind speed data.

Statistics Mean (m/s) Standard Deviation (m/s) Maximum (m/s) Minimum (m/s) Skewness Kurtosis

All Original Data 10.34 3.02 17.54 5.55 0.50 2.17
Training Data 11.10 3.08 17.54 5.55 0.12 1.94
Testing Data 8.09 1.16 10.28 5.77 0 2.10

Based on these wind speed data, the one-step ahead prediction is performed, on
the basis of which the forecasting performance comparison between CKDE, real-time
DWT-CKDE, and the proposed method is also conducted. Figure 9 intuitively presents
the forecasting results of these methods, where all of them reflect the main trend of the
actual wind speed. By comparison, the proposed method exhibits a higher consistence with
the actual wind speed data. Table 9 quantificationally lists the forecasting performance
comparison in terms of the evaluation indictors used in this paper. From the table, it
can be seen that the proposed method has a higher forecasting accuracy than the other
compared methods. For example, the indexes MAE, RMSE, and MRPE of the proposed
method are 0.43, 0.54, and 5.38%, respectively, while those of CKDE are 0.54, 0.71, and
6.94%, respectively. Interestingly, in this experiment, the real-time DWT-CKDE method
outperforms the single CKDE method, which is the opposite of the corresponding observa-
tion in Table 3. The reason for this observation may be ascribed to the advantages of the
real-time DWT method (e.g., a good time frequency ability to address nonstationarity and
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nonlinearity), which contributes more to the forecasting accuracy than the adverse effect of
the disadvantages of the real-time DWT on the accuracy (e.g., the adverse impacts of the
end effect, modal aliasing, and illusory components).
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Figure 9. Forecasting results of the proposed model, real-time DWT-CKDE, and CKDE.

Table 9. Performance comparison of the proposed method, CKDE, and real-time DWT-CKDE.

Error Indicator Proposed Method
CKDE Real-Time DWT-CKDE

Result Absolute Error Improved Degree Result Absolute Error Improved Degree

MAE 0.43 0.54 0.11 19.67% 0.51 0.08 15.17%
RMSE 0.54 0.71 0.17 24.36% 0.68 0.14 20.33%

MRPE/% 5.38 6.94 1.56 22.46% 6.48 1.10 17.01%

Computational complexity is another index by which to evaluate the practicality of
the model. To this end, Table 10 gives a comparison of the computational costs of all of
the involved models in each time prediction, where the time consumption is the average
value of 10 operations. From the table, it can be found that the CKDE model generally
has the lowest computational cost, while the proposed method possesses the largest time
consumption. The reason for this observation is that the proposed method has the highest
model complexity. Meanwhile, the difference in computation between one-time DWT-
CKDE and real-time DWT-CKDE is very small, indicating that the DWT operation in the
experiment takes very little time. Indeed, this time consumption will increase with increases
in the amount of wind speed data. In addition, the computational burden of one-time
DWT-CKDE is approximately equal to nine times the calculation time of CKDE, i.e., nine
different CKDE models are, respectively, established for the corresponding subsequences
in the one-time DWT-CKDE.

Table 10. Performance comparison of the proposed method, CKDE, and real-time DWT-CKDE.

Methods One-Time DWT-CKDE Real-Time DWT-CKDE CKDE Proposed

Time (s) 4.72 4.80 0.52 4.95

5. Conclusions

Short-term wind speed prediction is critical for the safe operation of high-speed
railways and many methods have been put forward to improve forecasting accuracy.
Among them, decomposition-based forecasting methods are widely applied due to their
better data processing ability. On this basis, this paper first clarifies the procedures of
traditional decomposition-based forecasting methods (i.e., the one-time decomposition-
based method and real-time decomposition-based method) as well as their differences
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based on the commonly used discrete wavelet transform (DWT) and conditional kernel
density Estimation (CKDE). To further enhance forecasting accuracy, the paper proposes
an improved ensemble-strategy-assisted forecasting method, which is a hybrid of real-
time DWT, CKDE, and an improved ensemble strategy. Finally, a numerical example
and practicality analysis based on two groups of measured wind speed time series are
employed to demonstrate the superiority of the proposed method. Some main observations
and conclusions are summarized below.

(1) The one-time decomposition-based forecasting method has an extremely good fore-
casting performance. However, this method cannot provide online prediction because
the one-time decomposition operation takes future data into consideration.

(2) The real-time decomposition-based forecasting method can provide online prediction,
and thus may have the potential to be implemented in practice. However, the forecast-
ing accuracy of this method is not stable and is sometimes unsatisfactory. Although
decomposition methods reduce the nonstationary and nonlinear characteristics of
data, they may also greatly increase the volatility of decomposed subsequences (espe-
cially for the end part of subsequences), thereby increasing the difficulty of prediction
and ultimately leading to poor forecasting results.

(3) CKDE is still effective in the prediction of short-term wind speeds. This method can
be regarded as the nonparametric model to some extent, and thus has a powerful
applicability in addressing the time series problem. The numerical case in this paper
shows that it even performs better than the decomposition-based forecasting method
in some scenarios.

(4) The combination of several individual predictions (i.e., the prediction of each decom-
posed subsequence) may have a higher accuracy than the summation of all predictions
in the short-term wind speed prediction. Along with this design concept, an improved
ensemble strategy is developed which can perform selective combination prediction
by analyzing information in the historical data. The experimental results indicate
this strategy can clearly improve the forecasting accuracy of real-time decomposition-
based methods and the single method. For example, compared with CKDE, the
average degrees of improvement realized by the proposed method in terms of MAE,
RMSE, and MRPE are 16.25%, 17.66%, and 16.93, respectively, while those in compari-
son with the traditional real-time DWT-CKDE method are 17.11%, 18.54%, and 16.84,
respectively. Therefore, the proposed method may have great potential for railway
strong wind warning systems.

Although the proposed method can provide satisfactory forecasting accuracy, it re-
quires the largest computational burden because it possesses the highest model complexity,
and its time consumption will increase with increases in the amount of wind speed data.
Meanwhile, this method ignores the impact of the inherent limitations of DWT (e.g., the end
effect, modal aliasing, illusory components, etc. [19]) on prediction accuracy. In addition, it
fails to perform probabilistic prediction, which is critical for risk-orientated decision-making
and safety scheduling in high-speed railways.
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