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Abstract: The monitoring of anthropogenic CO2 emissions, which increase the atmospheric CO2 con-
centration, plays the most important role in the management of emission reduction and control. With
the massive increase in satellite-based observation data related to carbon emissions, a data-driven
machine learning method has great prospects for predicting anthropogenic CO2 emissions. Training
samples, which are used to model predictions of anthropogenic CO2 emissions through machine
learning algorithms, play a key role in obtaining accurate predictions for the spatial heterogeneity of
anthropogenic CO2 emissions. We propose an approach for predicting anthropogenic CO2 emissions
using the training datasets derived from the clustering of the atmospheric CO2 concentration and
the segmentation of emissions to resolve the issue of the spatial heterogeneity of anthropogenic CO2

emissions in machine learning modeling. We assessed machine learning algorithms based on decision
trees and gradient boosting (GBDT), including LightGBM, XGBoost, and CatBoost. We used multiple
parameters related to anthropogenic CO2-emitting activities as predictor variables and emission
inventory data from 2019 to 2021, and we compared and verified the accuracy and effectiveness of
different prediction models based on the different sampling methods of training datasets combined
with machine learning algorithms. As a result, the anthropogenic CO2 emissions predicted by Cat-
Boost modeling from the training dataset derived from the clustering analysis and segmentation
method demonstrated optimal prediction accuracy and performance for revealing anthropogenic
CO2 emissions. Based on a machine learning algorithm using observation data, this approach for
predicting anthropogenic CO2 emissions could help us quickly obtain up-to-date information on
anthropogenic CO2 emissions as one of the emission monitoring tools.

Keywords: anthropogenic CO2 emissions; machine learning; clustering analysis; multi-source
data; XCO2

1. Introduction

Anthropogenic carbon dioxide (CO2) emissions, which account for 70% of the total
greenhouse gas emissions [1], are the main contributors to the increasing atmospheric
CO2 concentration. The continuous rise in the atmospheric CO2 concentration is causing
global warming and the frequent occurrence of climate extremes [2], which are seriously
impacting human life [3,4]. Consequently, controlling and reducing anthropogenic CO2
emissions has become the primary responsibility of every country in order to mitigate
global warming [5]. The reduction in and control of anthropogenic CO2 emissions needs to
be supported by keeping track of anthropogenic CO2 emissions. However, it is a challenge
to predict anthropogenic CO2 emissions quickly and accurately [6].
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The data on anthropogenic CO2 emissions are currently obtained using a bottom-up
methodology [7]. Firstly, the total emissions are collected by countries and regional inven-
tory statistics; then, they are redistributed to map the emissions at spatial and temporal
scales using proxies such as population and nighttime lighting [8]. This methodology is
based on the disaggregated accounting of national or regional energy-consuming sectors
or industry sectors, which strongly depend on the standards, accuracy, and lag of the
statistical methods in each country [9,10]. Moreover, the proxy data, which are used to map
the emissions in space and time, have some uncertainty that affects the reliability of the
regional emissions [11,12]. These emission statistics, proxies, and methodologies for the
allocation of emissions introduce diverse uncertainties into the emission inventory [13,14].

A top-down data-driven approach for predicting anthropogenic CO2 emissions is
currently being developed using massive data from multiple source measures, such as
satellite remote sensing technology and the increase in available satellite-based parameter
data [15,16]. The data-driven approach, which uses objective and current satellite observa-
tion data, can be a means to supplement the monitoring of anthropogenic CO2 emissions
and to cross-reference the bottom-up emission inventory data [17]. The prediction models
of anthropogenic CO2 emissions have been progressively developed from simple mathe-
matical statistical models to complicated models based on machine learning algorithms
with the advancement of big data technology [6,18,19]. Machine learning algorithms can
model the relationships between emissions and relevant parameters impacting emissions
by training and learning the relationships using massive data. With the increase and diversi-
fication of data related to carbon emissions, machine learning-based prediction methods for
anthropogenic CO2 emissions have been under development as monitoring tools for anthro-
pogenic CO2 emissions [20]. Several studies have proposed applying machine learning and
deep learning models to estimate anthropogenic CO2 emissions, such as artificial neural
networks (ANNs), generalized regression neural networks (GRNNs), random forests (RFs),
radial basis functions (RBFs), and long short-term memory (LSTM) networks. The results
have shown that these models demonstrated some prediction performances and potential
for estimating anthropogenic CO2 emissions [21–26].

Anthropogenic CO2 emissions are primarily from industrial processes that involve the
combustion of fossil fuels, which are closely linked to human activities [1,2]. These activities
are mainly concentrated in urban centers and their surrounding regions, which result in a
high geospatial aggregation of anthropogenic CO2 emissions. Consequently, the values of
emissions have a regional non-normal distribution, which affects the unbiased modeling
and accurate estimation of ACEs. Several studies have attempted to reduce this effect
using the sampling methods of training data (e.g., by segmenting the emission intensity
into two parts and then constructing an estimation model on a segment basis [27,28])
and demonstrated better validation results for predicting anthropogenic CO2 emissions
at the national scale. However, these previous studies used few predictor variables and
insufficiently evaluated the prediction results. They mostly focused on cross-validation
and lacked an evaluation of how the model’s effectiveness was affected by the training data
and available machine learning algorithms.

China is a country with some of the highest CO2 emissions and rapid economic
development. The anthropogenic CO2 emissions in China are significantly concentrated
in the eastern region, where there are highly dense populations and cities, industrial
enterprises, and advanced economies. Meanwhile, fewer CO2 emissions originate in the
western region with low-density populations, many rural areas, and fewer industrial
enterprises due to harsh environments. Therefore, the anthropogenic CO2 emissions
present in China are highly spatially inhomogeneous, as described above. As a major
emitter, the control of and reduction in CO2 emissions in China will have a significant effect
on mitigating global climate warming. The Chinese government is currently taking steps
to reduce CO2 emissions and, thus, urgently needs accurate CO2 emission data. In this
study, we took mainland China as the study area to develop an approach for accurately
predicting CO2 emissions.



Atmosphere 2024, 15, 323 3 of 16

The aim of this study was to develop an optimal prediction model for anthropogenic
CO2 emissions by optimizing training datasets from various sampling methods and avail-
able machine learning algorithms to address the problem of the non-normal distribution
of emissions. We compared and verified the prediction results from different sampling
and machine algorithm models to evaluate the effectiveness of modeling the relationships
between anthropogenic CO2 emissions and the prediction parameters for the accurate
prediction of anthropogenic CO2 emissions. The research in this paper will assist the
government in accurately obtaining anthropogenic emission data and supporting the im-
plementation of measures to reduce and control the anthropogenic emissions of CO2 by
tracking them, thereby mitigating the impacts of global warming and safeguarding against
climate change [29].

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

Taking mainland China as the study area, we collected anthropogenic CO2 emission
inventory data (ODIAC) from 2019 to 2021 and relevant parameters as predictive variables,
including atmospheric CO2 concentration data (CO2), atmospheric NO2 concentration data
(NO2), impervious surface cover (IS), nighttime lighting (NL), vegetation index (NDVI),
and vegetation CO2 ecological uptake parameter data (SIF) related to anthropogenic CO2
emission activities. In addition, we used meteorological reanalysis data (ERA5): wind field
data (10 m east–west wind speed (U10), 10 m north–south wind speed (V10)), 2 m tempera-
ture (T2M), and dew point temperature (D2M). The characteristics of each parameter and
its data source are given in Table 1.

Table 1. The collected parameters for predicting ACEs based on ML.

State Variables Resolution
(Space/Time) Data Sources

ODIAC 1 km/month Global Environmental Database (GED)

Nighttime lighting (NL) 500 m/month Earth Observation Group (EOG)

Atmospheric CO2 column (XCO2) 0.1◦/month
1◦/month Harvard Dataverse

Atmospheric NO2 concentration (NO2) 0.01◦/month
1◦/month Google Earth Engine (GEE)

Normalized difference vegetation index (NDVI) 0.05◦/month NOAA National Climatic Data Center

Vegetation fluorescence (SIF) 0.05◦/month Global Ecology Data Repository

Re-analysis of data
(ERA5)

D2M 0.05◦/month

European Centre for Medium-Range
Weather Forecasts (ECMWF)

U2M 0.05◦/month

U10 0.05◦/month

V10 0.05◦/month

Impervious surface (IS) 30 m/year Zenodo

Transportation road network (RN) Shp/year Open Street Map (OSM)

We collected ACE data from the Open-source Data Inventory for Anthropogenic
CO2 (ODIAC). The ODIAC data were generated, and the national total emissions were
reallocated on a spatial grid based on CARMA power plant data (power and geographic
location) and DMSP/NPP nighttime lighting data [30]. These data are released as monthly
averages with a resolution of 1 km × 1 km and cover the global continent. This is one of
the most widely used carbon emission datasets [31].

The changes in atmospheric CO2 concentrations correspond significantly to ACE
levels [32,33]. We collected monthly XCO2 data in a 0.1◦ × 0.1◦ grid from 2019 to 2021
and the monthly XCO2 dataset in a 1◦ grid from 2010 to 2021. These data are spatiotempo-
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rally continuous XCO2 data generated by spatiotemporal statistics and machine learning
methods using the XCO2 retrievals from satellite observations, including GOSAT, OCO-2,
and OCO-3 [18]. Atmospheric NO2 also mainly comes from the anthropogenic emissions
of fossil fuel combustion, in which the CO2 emissions are usually accompanied by NO2
emissions [34]. The short-lived NO2 is more sensitive to changes in anthropogenic CO2
emissions compared to the short-lived CO2 [35]. Therefore, we collected the global monthly
mean concentration data with a resolution of 0.01◦ from atmospheric NO2 data inverted
from observations of the Tropospheric Monitoring Instrument (TROPOMI) on board the
Sentinel-5P satellite [36]. The satellite-observed vegetation parameters SIF, NDVI, and
meteorological reanalysis data (ERA5) are used to represent the effects of terrestrial ecology
and atmospheric transport, as changes in atmospheric CO2 concentrations not only cor-
respond to anthropogenic CO2 emissions but also depend on the CO2 release and uptake
of terrestrial ecology and atmospheric transport [37,38]. Moreover, it was found that alter-
ations to and destruction of vegetation ecology could intensify greenhouse gas emissions,
which are the cause of climate warming [39].

Associated with human activities, the NL data are derived from the observations of the
Suomi NPP satellite [40]. The IS is largely contributed by cities, which have strong impacts
on anthropogenic CO2 emissions due to their economic development, energy consumption,
industrial activities, and population concentration [41]. The IS can explain the spatial extent
of human emission activities and make up for the impact of gaps in the nighttime lighting
data. This study used the global 30 m impervious surface data produced by Zhang et al.,
which has higher overall precision and better accuracy than other data products [42]. The
RN data demonstrate the impact of transportation factors on anthropogenic CO2 emissions.

The collected data shown in Table 1 are inconsistent in space and time. To address this,
these data were processed to integrate them into a monthly mean in a 0.1◦ × 0.1◦ grid for
predicting anthropogenic CO2 emissions in a 0.1◦ grid. The NL, NO2, ERA5, NDVI, and
SIF data were sampled to a 0.1◦ grid by calculating the mean of the data located within a
0.1◦ grid. The ODIAC data were processed to a 0.1◦ grid using cumulative computing. To
remove the effect of the background concentration of atmospheric CO2, thereby enhancing
the CO2 signal from the local anthropogenic emissions, the difference (dXCO2) between
the CO2 concentration and the background XCO2 was calculated for each grid, where the
background XCO2 had the median value of the CO2 data from the same month in the study
area [32]. The IS and RN data were sampled on a 0.1◦ × 0.1◦ grid by calculating the density
of the data area within a 0.1◦ × 0.1◦ grid.

2.2. Methodology

Modeling anthropogenic CO2 emissions (hereafter, referred to as ACEs) based on
machine learning (hereafter, referred to as ML) can be expressed by Equation (1):

Y = f (X1, X2, X3, . . .. . ., Xn), (1)

where Y is the predicted ACE, Xn is the nth predictor variable related to ACEs and the
atmospheric CO2 concentration, which are the parameters obtained from the satellite-
based observations, and f is the predicting model function, which is derived from machine
learning, which models the relationship between Y (based on ODIAC data here) and the
prediction parameters (X1, X2, X3, . . .. . ., Xn), which are XCO2, NO2, NL, IS, SIF, NDVI,
D2M, T2M, U10, V10, and RN, as shown in Table 1. A flowchart of the used data and
prediction approach is given in Figure 1.
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Figure 1. Flowchart of the prediction approach and the used data.

2.2.1. Creation of Sample Datasets

In the first step, we needed to generate three datasets, including a training dataset,
a cross-validation dataset, and a predictor variable dataset, for the entire studied area,
as shown in Figure 1. These were used to derive the ACE prediction models, validate
the models, and evaluate the performance of the predicted ACEs, respectively. The key
processing methods included two steps in the framework of the approach, as shown in
Figure 1. The first step was to generate efficient training datasets, which were used for the
training and learning of the prediction model. The second was to evaluate the performances
of the models predicting the ACE not only through cross-validation of the models but also
through bias assessment of the predicted ACEs. Extracting data samples to generate the
training datasets is essential to building an accurate ACE prediction model. To address
the problem of the non-normal distribution of ACEs in the study area, we adopted the
approach of extracting the training learning samples from the subregions of the study area
to generate the training dataset for each subregion.

The subregions were obtained through clustering analysis of the spatiotemporal char-
acteristics of the XCO2 data. It is known that XCO2 data derived from satellite observations
demonstrate strong correlations with anthropogenic emissions [18]. We implemented the
clustering analysis of the XCO2 spatiotemporal characteristics using multi-temporal XCO2
data from 2010 to 2021 using the K-Means unsupervised classification. The 10 classes (as
subregions of the study area), which are shown in Figure 2a, were generated by repeatedly
testing the number of classes and the maximum number of iterations to better account for
the accuracy of the classification and the heterogeneity of the anthropogenic emissions
among the subregions. Compared to the ODIAC data, as shown in Figure 2b, these subre-
gions clearly demonstrate the density of human activities with anthropogenic emissions;
for example, D2, D5, and D6 in Figure 2a are the most developed economic zones in China;
D3 and D7 are the areas with the lowest anthropogenic emission activities.
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Next, we divided the emissions data into two parts based on the emission intensity
thresholds of each subregion. We implemented an iterative operation of extracting the
training datasets by changing the threshold to find the optimal threshold with the minimum
error of the prediction model. Multiplied training datasets with emission values generated
in steps of 100, from 0 to 1000, were used to build the prediction model based on the CatB
algorithm. Then, the optimal threshold with the minimum error was found using cross-
validation of the multiplied emission prediction results. As a result, when the emission
value was set at 200, the prediction error was at its minimum.

Lastly, 20 training datasets in the study area were generated with 2 levels of emission
intensities and 10 subregions from the clustering analysis. Hereafter, these datasets are
referred to as SubSeg-Sdatasets. These 20 datasets were used for training and learning,
respectively, to build the prediction models.

We also extracted the other three training datasets using different methods to compare
and evaluate the prediction accuracy and effect of these different datasets. They were
(1) only based on the subregions from the clustering of XCO2 above to generate 10 training
datasets in the study area (hereafter, referred to as Sub-Sdatasets); (2) only based on the
segmenting threshold of emissions to obtain 2 training datasets in the study area (hereafter,
referred to as Seg-Sdatasets); and (3) all of the data in this study were used as the training
data (hereafter, referred to as One-Sdataset). The training datasets above were from 2019 to
2020, including all the prediction parameters and ODIAC data, as shown in Table 1.

2.2.2. ACE Prediction Modeling and Verification

We selected three integrated complex (boosting) algorithms based on decision tree
and gradient boosting (GBDT) algorithms, including LightGBM, XGBoost, and CatBoost, to
better evaluate the models based on the different training datasets above. These algorithms
can better handle nonlinear problems and are suitable for processing large-scale and high-
dimensional feature datasets. They are highly interpretable and can explain the quantitative
impact of different parameter features on the prediction results based on their own feature
importance and dependency graphs, using tools such as SHAP. The prediction accuracy of
LightGBM (LGB) is not better than that of the other two algorithmic frameworks, but it
is faster in operation, occupies less memory, and is able to better deal with large datasets
under the same hardware conditions [43]. XGBoost (XGB) is not only able to use a decision
tree as the base learner but also supports a variety of base learners, including linear learners,
which can reduce overfitting bias and improve prediction accuracy [44]. CatBoost (CatB) is
based on a fully symmetric tree, which solves the problems of gradient bias and prediction
bias and thus can effectively inhibit data overfitting; thus, it has a great advantage in
dealing with small datasets (e.g., high emission values) [45]. We compared and analyzed
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the models and ACE predictions based on these algorithms to determine the most feasible
and optimal algorithms out of the three.

The prediction models were built using the training datasets from 2019 to 2020, re-
spectively (SubSeg-Sdatasets, Seg-Sdatasets, Sub-Sdatasets, and One-Sdataset), which were
created using the four methods described in Section 2.2 and combined with the three ML
algorithms (CatB, LGB, and XGB). For each ML algorithm, the predictions of ACEs were
respectively implemented using multiple models from the multiple training datasets of
SubSeg-Sdatasets, Sub-Sdatasets, and Seg-Sdatasets in the corresponding areas, while the
prediction was implemented using a single model from the One-Sdataset.

The cross-validation dataset, moreover, was extracted by randomly sampling the
ODIAC data and the prediction parameter data from 2019 to 2020, and these data were
excluded from the training data corresponding to their locations in space and time. The
statistical indicators, the goodness-of-fit (R2), the mean absolute error (MAE), and the
root-mean-square error (RMSE), were used to verify the models’ accuracy. The ODIAC data
in 2021, moreover, were used as the test data to assess the performances of the predicted
ACEs and the validity of the prediction models.

3. Results
3.1. Cross-Validation of ML Predictions

In order to verify the model prediction accuracy, we predicted the ACEs using the
prediction parameter variables (Mp, including XCO2, NO2, NL, IS, SIF, NDVI, D2M, T2M,
U10, V10, and RN) from 2019 to 2020 in the cross-validation datasets and calculated the
goodness-of-fit (R2), the root-mean-square error (RMSE), and the mean absolute error
(MAE) between the ODIAC data and the prediction results using the cross-validation
dataset. Figure 3 shows the results of the cross-validation for each prediction model
derived from the combinations of the training datasets (SubSeg-Sdatasets, Seg-Sdatasets,
Sub-Sdatasets, and One-Sdataset) and the ML algorithms (CatB, LGB, and XGB).

As shown in Figure 3, we compared the predicted ACEs from four training datasets
(SubSeg-Sdatasets shown in Figure 3a, Seg-Sdatasets shown in Figure 3b, Sub-Sdatasets
shown in Figure 3c, and One-Sdataset shown in Figure 3d) using the same ML algo-
rithms with the ODIAC data. The prediction accuracy based on the training using the
SubSeg-Sdatasets was better than those from the other three training datasets, demon-
strating the best fit with R2 (0.97) and the smallest MAE (3.6 MtCO2 × 10−4) and RMSE
(19.56 MtCO2 × 10−4). This result indicates the validity of the model based on SubSeg-
Sdatasets, derived from the clustering of XCO2 combined with the division of the anthro-
pogenic emission intensities, indicating it is more likely to achieve unbiased modeling
for predicting ACEs. The predicted ACEs from the model based on the One-Sdataset
demonstrated the lowest accuracy out of the three ML algorithms, which indicates the
effects of the non-normal distribution of ACEs mentioned above.

The different ML algorithms for the predictions have different sensitivities to the
sampling methods of the training data. The prediction accuracies based on the CatB
and LGB algorithms were significantly improved from the One-Sdataset to the SubSeg-
Sdatasets, with the R2 value increasing from 0.69 to 0.97 and from 0.75 to 0.97, respectively,
and the RMSE decreasing from 67 to 20 MtCO2 × 10−4 and from 67 to 18 MtCO2 × 10−4,
respectively. These results indicate that the model based on the CatB and LGB algorithms is
more likely to be impacted by the training samples, depending on the spatial distribution of
the emission data. The prediction accuracy based on the XGB algorithm did not significantly
change with the sampling method, with the R2 value slightly increasing from 0.84 to 0.95
and the RMSE decreasing from 48 to 24 MtCO2 × 10−4, which shows that the XGB is less
sensitive to the effects of different training samples.

It can also be seen in Figure 3a that the MAE (2.43 MtCO2 × 10−4) based on the LGB
algorithm was slightly better than the MAE (3.60 MtCO2 × 10−4) based on the CatB under
the training of the Sub-Segsdatasets. We further assess and analyze the prediction effects
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(generalization performance) from the spatial features of biases on the prediction results in
2021 in the next section..
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and (d) One-Sdataset, where the unit of the RMSE and MAE is MtCO2 × 10−4.

3.2. Performance of ML Algorithms for ACE Prediction

In order to evaluate the generalization performance of each prediction model in space,
we predicted the monthly ACEs in 2021 for the whole of the study area and compared
the spatial differences with the ODIAC data in the same year. The cross-validation only
indicates the accuracy of the prediction model itself.

We applied the prediction parameter dataset in 2021 to predict the monthly ACEs
in 2021 using the multiple prediction models, respectively, built by the training datasets
(SubSeg-Sdatasets, Seg-Sdatasets, Sub-Sdatasets, and One-Sdataset), combined with the
ML algorithms (CatB, LGB, and XGB).
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Generally, the evaluation indexes (R2, RMSE, and MAE) of cross comparison between
the predicted ACEs and the ODIAC data in 2021 for the entire study area, which are
shown in Table 2, indicate that the predicted ACEs derived from the model based on the
combinations of the SubSeg-Sdatasets with CatB were still slightly better than the other
training datasets and ML algorithms. For the model based on the SubSeg-Sdatasets, the
predicted results combined with the CatB (0.96, 22.74 MtCO2 × 10−4, 4.97 MtCO2 × 10−4)
present slightly smaller biases than those with the LGB and XGB, while the MAE of the
predictions with the LGB was the smallest (2.43 MtCO2 × 10−4) in the cross-validation, as
shown in Figure 3.

Table 2. Comparison of prediction results with ODIAC data in 2021 in the study area.

Training Dataset

ML Algorithm R2 RMSE (MtCO2 × 10−4) MAE (MtCO2 × 10−4)

CatB LGB XGB CatB LGB XGB CatB LGB XGB

SubSeg-Sdatasets 0.96 0.95 0.93 22.74 27.79 32.03 4.97 5.86 5.20

Seg-Sdatasets 0.93 0.91 0.90 33.34 37.10 38.53 7.11 7.98 6.49

Sub-Sdatasets 0.76 0.85 0.88 62.47 49.62 42.98 11.51 13.36 7.59

One-dataset 0.58 0.62 0.78 83.13 79.07 60.16 15.81 25.40 10.21

Figure 4 shows the spatial features of the biases of the predicted ACEs by the four
training datasets combined with the CatB, which demonstrated the lowest biases among the
three ML algorithms in assessing the generalization performances of the predicted results.
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It can be seen in Figure 4 that the prediction biases from the SubSeg-Sdatasets model
(Figure 4a) were significantly the least in space compared to the other three training dataset
models (Figure 4b–d). The SubSeg-Sdatasets better model the predicted ACEs, especially
in the high-emission areas of eastern China.

The predicted ACE values from the Seg-Sdatasets, Sub-Sdatasets, and One-Sdataset
models were generally higher than the inventory emissions of ODIAC in the high-emission
areas. The prediction biases from the One-Sdataset model presented the largest biases in the
eastern region. Compared to the spatial variation of the ODIAC, as shown in Figure 2, high
biases in the prediction results from the Seg-Sdatasets, Sub-Sdatasets, and One-Sdataset
models were significantly concentrated in high-emission areas, such as the big cities in
China, and economically developed areas, such as the Beijing–Tianjin–Hebei area and the
Yangtze River Delta. These results indicate that these three training datasets are insufficient
to address the issue of the non-normal distribution of ACEs due to too many samples with
low ACE values and few samples with intermediate and high ACE values, resulting in
poor training and learning of the prediction model.

Furthermore, we compared the predictive effectiveness of the three ML algorithms
based on the training of SubSeg-Sdatasets, as they presented similar cross-validations, as
shown in Figure 3. Figure 5 presents the biases of the predicted ACEs and their correspon-
dence with the emission intensities from the ODIAC data for the CatB, LGB, and XGB
models with the SubSeg–Sdatasets.
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grid in 2021 from the three ML algorithms ((a) CatB, (b) LGB, and (c) XGB) with the SubSeg–datasets.

Figure 5 illustrates the linear correlation between the ODIAC value and the deviation
(estimation result–ODIAC value). A lower R2 value indicates a more accurate estimation
result, while an R2 of 0 signifies no deviation between the ODIAC and the estimation result.
It can be seen in Figure 5 that the predicted result using XGB modeling was slightly lower
than that using CatB, while the XGB generally presented a slight linear trend with the
ODIAC data. This result indicates that predictions from the XGB modeling are likely to
have systematic biases, which implies that the prediction models are mostly constrained
by some variables with a linear relationship to anthropogenic emissions. The average
predicted ACEs from the XGB were lower than those from the CatB for the entire study
area (see Figure S1a). The mean prediction bias based on the XGB model, however, was
−0.1074 MtCO2, with high ODIAC values ranging from 0.6 to 0.8 MtCO2, which was larger
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than the bias based on the CatB (−0.0381 MtCO2) (see Figure S1a) due to low predictions
in the high-emission sources from the XGB modeling.

4. Discussion

The data-driven method based on machine learning to predict the ACEs could apply
lots of predictor parameters to constrain the prediction model of ACEs affected by various
factors. The previous study, which is similar to our study, also applied machine learning
models to predict ACEs for the year 2019 using a stacked random forest regression model
derived using XCO2, NL, NDVI, and terrestrial CO2 flux data from 2014 to 2018 as the
predictor parameters [27]. That study validated and discussed the predicting results at the
national scale, where the predicted ACE for the Chinese region was 6.5% lower than ODIAC
in 2019 and did not demonstrate the reasonableness of the spatial distribution of predicted
ACEs in detail. Our prediction of ACEs, with the Chinese region as the study area, is 6%
higher than ODIAC in 2021, and we evaluated the validity of the data-driven method to
determine whether the predicted results accurately reveal the spatial characteristics of ACEs
in China. We would extend the study areas, such as the American land area, to validate our
proposed approach in the future. Another additional study built the grid-based prediction
model by the generalized regression neural network (GRNN) algorithm using a long time
series of data from 2010 to 2019, each grid including XCO2 and SIF, where the predicted
ACE was 4% lower than ODIAC in 2019 for the Chinese region and indicated that larger
predicting biases were mainly located around the big cities [28]. This GRNN model needs
long-term series data that are difficult to collect when using multiple parameters, which
could not further improve the prediction accuracy of the model. Our study introduces
multiple parameters up to 11 variables (XCO2, NO2, NL, IS, SIF, NDVI, D2M, T2M, U10,
V10, and RN), which are helpful to improve the accuracy of the prediction model.

All the predictor variables used in this study were from satellite observations. The
number of predictor variables used in this study, moreover, was higher than that in previous
studies, and the NL predictor variable was also used as a proxy in the ODIAC.

We applied the SHAP method to calculate and visualize the ranking of the total
contribution of each parameter to the predictions for the CatB, LGB, and XGB models based
on the SubSeg-Sdatasets, which is shown in Figure 6.
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The results show that impervious surfaces (IS) and nighttime lighting (NL) ranked
as the top contributors to the predictions in the three algorithms, which indicates a strong
relationship between the IS and NL parameters, revealing the relationship between urban-
ization, human activities, and anthropogenic CO2 emissions (see Figure S2 also). This is
consistent with the findings of Rahman et al. [46]. The high contributions of IS and NL
could also be because ODIAC uses NL, point sources of emissions, and population data as
proxies in the production methodology of ODIAC’s inventory to generate spatial grid data
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based on the national total emission statistics. There are also emission point sources and
populations in the IS areas.

The contribution of the atmospheric parameter XCO2 to the predictions of the XGB
model was higher than that of the CatB model, indicating that the XGB model is likely
to increase the contributions of atmospheric parameters to ACEs. Therefore, the XGB
could compress the signal of point source emissions over impervious surfaces, which
would result in low prediction in these areas, as shown in Figure S1b. The prediction
accuracy and performance using XGB modeling were similar to those using CatB modeling
(Figures 3 and 5), but the contributions of the prediction parameters were different, as
shown in Figure 6a,c), where the SHAP values of XCO2 were larger in the XGB than in
the CatB. The XGB model could be more accurate than the CatB model, as the XGB model
is more constrained by the CO2 concentration, which corresponds to the changes in the
ACEs [32,33]. However, the XGB showed low predictions from the high-emission sources,
which could be because of the CO2 constraint, where ODIAC overestimated the emissions,
which needs to be explored further.

NO2 emissions are mainly from fossil fuel combustion, and thus, a strong correlation
of 0.63 was shown between the ODIAC data and NO2 (see Figure S2). It is known that
CO2 emissions are generally accompanied by NO2 emissions. The grid distribution of
the statistical emissions from the ODIAC data is only based on the surface characteristic
parameters and does not consider the atmospheric parameters, like NO2, which strongly
affect anthropogenic CO2 emissions. A prediction model that introduces the atmospheric
NO2 parameter could reduce some of the uncertainty of the ODIAC emissions in the spatial
redistribution.

We introduced satellite-based XCO2 as a predictor variable, as well as variables related
to terrestrial ecology (SIF and NDVI) and atmospheric transport (ERA5), since atmospheric
CO2 originates from anthropogenic emissions, terrestrial ecology, and atmospheric trans-
port. The SHAP values showed that the ecological parameters SIF and NDVI contributed
to the prediction more than the dXCO2, and the meteorological variables (U10, V10, T2M,
and D2M) also showed SHAP values of 0.5–1, which implies that the effects of ecological
vegetation fluxes and transport fluxes are included in XCO2.

Lastly, we also made predictions using different combinations of the predictor param-
eters using the CatB model based on the SubSeg-Sdatasets. The cross-validation of the
results indicates that the prediction using all of the parameters as input was still the optimal
method. The parameters of IS and RN, which were high contributors to the predictions,
tended to affect the prediction of dynamic ACEs, as they were the static variables. The
spatial biases of the predicted ACEs could be increased by these static variables, smoothing
the changes in the ACEs. Therefore, we should add dynamic emission sources and mo-
bile transport emissions from impervious surfaces and roads to modeling predictions in
the future.

5. Conclusions

In the process of modeling predictions based on machine learning, extracting training
sample data used for the training and learning of the prediction model is an important step
to assure the accuracy and optimal performance of the prediction. Appropriate sampling
methods for the training data to resolve the issue of the non-normal distribution of ACEs can
significantly improve the prediction performance of the model. Accordingly, we proposed
a sampling method based on the clustering of the spatiotemporal characteristics of XCO2
combined with the division of emissions to extract the training datasets (SubSeg-Sdatasets).
Moreover, we also needed to find an ML algorithm that could accurately drive the pre-
diction model using the training datasets. Respectively, we implemented the prediction
model using combinations of the four training datasets (SubSeg-Sdatasets, Sub-Sdatasets,
Seg-Sdatasets, and One-Sdataset) and the three ML algorithms (CatB, LGB, and XGB) using
multiple parameters (XCO2, NO2, NL, IS, SIF, NDVI, D2M, T2M, U10, V10, and RN) as
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the predictor variables and ODIAC as the predicted variable. We evaluated the model’s
prediction accuracy using cross-validation and the performance of the predicted results.

As a result, the predictions from the CatB and LGB models combined with the SubSeg-
Sdatasets were slightly better than those from the XGB based on cross-validation, whereas
the predictions based on CatB modeling and XGB modeling demonstrated better predictive
effectiveness when analyzing the prediction performances in spatial biases and the overall
statistics of ACEs in the study area. We found that it was not enough to verify the prediction
using cross-validation alone; we needed to explore the prediction bias characteristics in
detail using the performance of the predicted results to reveal the spatial characteristics of
the ACEs accurately.

Satellite-based data have the advantage of being stable and objective observations.
Predicting anthropogenic CO2 emissions using satellite data based on machine learning
modeling, on the one hand, can be applied to monitor and evaluate anthropogenic CO2
emissions as a top-down measure. On the other hand, it can be compared with the ODIAC
data, which are only based on the static parameters of the surface characteristics and do
not include atmospheric parameters. The approach proposed in this study introduces the
dynamic observations of atmospheric NO2 and CO2, which suggests that a data-driven
prediction of anthropogenic CO2 emissions can supplement the shortage of proxies used in
generating ODIAC data. Moreover, satellite observations can help us obtain anthropogenic
CO2 emissions data earlier than inventory emissions data, with the advantages of their
near-real-time and high-coverage observations. By using these data, anthropogenic CO2
emission prediction modeling based on machine learning has great application potential as
a supplement to and in comparison with emission inventory data.

In the future, the combination of machine learning and mechanistic modeling is
expected to improve the estimation of ACEs, and the combination of mechanistic modeling
can help us to interpret the results theoretically.
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