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Abstract: In the context of global climate change and rising sea levels, the adverse impacts of storm
surges on the environment, economy, and society of affected areas are becoming increasingly signifi-
cant. However, due to differences in geography, climate, and other conditions among the affected
areas, a single method for assessing the risk of storm surge disasters cannot be fully applicable to all
regions. To address this issue, an increasing number of new methods and models are being applied
in the field of storm surge disaster risk assessment. This paper introduces representative traditional
statistical methods, numerical simulation methods, and artificial intelligence-based techniques in this
field. It compares these assessment methods in terms of accuracy, interpretability, and implementa-
tion difficulty. The paper emphasizes the importance of selecting appropriate assessment methods
based on specific conditions and scientifically combining various methods in practice to improve the
accuracy and reliability of storm surge disaster risk assessments.

Keywords: storm surge disaster; risks and economic losses; traditional statistical methods; numerical
simulation methods; artificial intelligence-based techniques

1. Introduction

Storm surges represent a natural phenomenon typically triggered by strong winds,
low atmospheric pressure, and other meteorological elements, resulting in an abnormal
rise in sea level that further invades coastal regions [1]. Such events not only impact the
environment and ecosystems, but also exert far-reaching effects on economic activities and
social structures. Dube et al. have indicated that storm surges have inflicted significant
loss of life and property in the regions of the Bay of Bengal and the Arabian Sea [2]. Jin
et al. have assessed the damages caused by storm surge disasters in specific areas of China
through economic models, which included sectors such as agriculture, fisheries, human
resources, engineering facilities, residential facilities, and direct economic losses. Their
findings suggest that the model equations can intricately reflect the interrelations between
storm surge losses and other related variables [3].

The impact of storm surges is not confined to coastal areas; they can also affect inland
regions through various pathways. For instance, surges can lead to the elevation of river
water levels, subsequently causing inland flooding [4]. This phenomenon has been recorded
across multiple geographic locations and environmental conditions, notably in the Red
River Delta region of Vietnam, where sea-level rise and storm surge disasters are considered
key factors contributing to permanent and temporary flooding areas [5]. In New York City,
factors such as changes in tropical storm climatic characteristics, sea-level rise, and coastal
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economic development have all been incorporated into the framework of assessing coastal
flood risks [6]. Hurricane Ike in 2008 also triggered storm surges in the Mississippi River
Delta area in the United States, leading to increased river water levels and causing inland
flooding, severely affecting local agriculture and residents’ lives [7]. Similarly, in the United
States, a study on the economic losses from inland flooding caused by tropical cyclones
showed that such events could directly lead to substantial economic losses [8].

The implications of storm surges can also be long-term. For example, surges may
cause enduring damage to coastal ecosystems, affecting the development of the fisheries
and tourism industries, which are major economic sources for many coastal regions [9].
Further research indicates that storm surges and other extreme hydrological events may
accelerate the expansion of harmful algal blooms (HABs), further impacting the water
supply of the affected areas and severely affecting the fisheries and tourism industries [10].
Additionally, storm surges may cause long-term damage to infrastructure, such as roads,
bridges, and power facilities, necessitating significant local government investments of
capital and time for repairs [6]. Some studies also point out that coastal vegetation, serving
as ‘biological barriers’, can mitigate the impact of storm surges, but this approach may
have long-term negative effects on biodiversity and human daily life [11].

Owing to global climate change and sea-level rise, the frequency and intensity of
storm surges are expected to show a positive growth trend in the coming decades [12]. This
underscores the importance of accurately assessing the economic impacts caused by storm
surge disasters. However, given the complexity and diversity of the processes involved
in storm surges becoming disasters, accurately assessing disaster impacts under different
storm surge conditions is a highly challenging task. Notably, the choice of assessment
methods can significantly affect the outcomes, thereby influencing policy decisions. For
example, a particular method may be very effective in a specific geographic area but may
not perform well elsewhere. Inaccurate or insufficient assessment methods could lead to
the underestimation of storm surge risks, resulting in inadequate preparation for disaster
prevention measures and potential catastrophic consequences. Conversely, overestimating
risks could lead to the unnecessary allocation of resources, thus wasting them, which is also
undesirable. Therefore, the importance of choosing appropriate and accurate assessment
methods is self-evident.

In the quest to better assess the extent of storm surge disasters, researchers have
adopted a variety of different approaches. Traditional statistical methods and numerical
simulation methods, as well as the emerging artificial intelligence-based techniques, have all
played significant roles in this domain. To better address the disaster risks posed by storm
surges, the advantages and disadvantages of different methods are urgently in need of in-
depth study and comparison. This article aims to comprehensively explore these methods
and provide guidance for policymakers and researchers on how to select appropriate
assessment methods to tackle the challenges of diverse and complex disaster losses brought
by storm surges. In the following, we delve into the application of traditional statistical
methods, numerical simulation methods, and artificial intelligence-based techniques in the
assessment of storm surge disaster risks, as well as their comparison and integration.

2. Traditional Statistical Methods

Currently, a multitude of methods are extensively applied and studied in the realm of
assessing the risks of storm surge disasters. Foremost among these are traditional statistical
analysis methods, which have long served as the foundation for assessing the impact of
natural disasters. These methods are straightforward and principally reliant on historical
data and empirical models, analyzing past natural disaster events and their effects on
affected areas to predict future occurrences.

Applications of Traditional Statistical Methods

These traditional statistical methods have low data requirements, high computational
efficiency, and good adaptability and comparability. Thus, they have been validated and
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tested in various contexts. Over time, traditional statistical methods have evolved from
simple statistics to complex probability models. In the mid-20th century, researchers began
using extreme value theory to analyze storm surge data, with Gumbel’s work being one of
the pioneering studies in the field of extreme value statistical analysis [13]. His proposed
Gumbel distribution has been widely applied in the extreme value analysis of storm surges.
Subsequently, Jenkinson improved Gumbel’s method, proposing a more suitable approach
for analyzing extreme storm surge data [14]. These early studies laid the foundation
for using statistical methods to analyze extreme storm surge data; in the 21st century,
with the development of computer technology and improved data collection capabilities,
traditional statistical methods have become more widely used and refined in storm surge
analysis. Pugh in his research utilized a variety of statistical methods to assess the long-term
trend of the impact of sea-level rise on storm surges, providing important information
for understanding storm surge risks under global warming [15]; Ji et al., based on the
general form of disaster loss indicators, provided a disaster grade calculation formula
for single factors of storm surge disaster losses, and proposed a fuzzy comprehensive
judgment method for the quantitative assessment of storm surge disaster losses based on
fuzzy mathematics theory [16]; Zhao et al. used a multi-indicator grading method to divide
the natural intensity of storm surges into two aspects: the intensity of over-warning water
level intensity, and wave intensity, and established a joint prediction equation for storm
surge grades based on these two factors [17]. Moreover, in 2012, Shepard et al. studied
the quantitative methods for assessing future storm surge risks, specifically the impact
of sea-level rise on the storm surge risk to the south shore of Long Island, New York,
using tidal gauges to measure sea water changes since 1856 and predict future storm surge
disaster risks [18]; Hsu et al. used a combined probability approach and a hurricane storm
surge risk assessment framework describing the relationship between storm surge height
and other factors, such as wind speed, wind direction, and atmospheric pressure [19].

Through the application of traditional statistical methods, we can gain a better un-
derstanding of the risk impacts of storm surge disaster events and provide robust support
for the formulation of corresponding risk management and disaster reduction strategies.
However, traditional statistical methods only quantify storm surge disaster risks from a
linear relationship perspective, while the genesis, development, and disaster process of
storm surges represent a non-linear, complex, dynamic process. Therefore, relying solely on
simple linear relationships fails to accurately comprehend the risks associated with storm
surge disasters. Therefore, addressing the challenge of simulating the dynamic process of
storm surges, numerical simulation methods have been increasingly applied as computer
technology has evolved. In the following section, we explore in greater detail the utilization
of numerical simulation methods in the assessment of storm surge disasters.

3. Numerical Simulation Methods

With the advancement of technology, the widespread application of large-scale com-
puters has precipitated a leap forward in the development of numerical modeling, thereby
enhancing the application of numerical simulation methods in assessing the severity of
storm surges. Numerical simulation is a computational method based on physical and
mathematical models that predicts the impact of storm surges on coastal areas by simulating
the development and disaster-forming process of such events.

Deterministic simulation, a common form of numerical simulation, operates on the
basis of known physical parameters and environmental conditions of storm surges. It
simulates the development of storm surge events to predict the potential extent and depth
of seawater intrusion. This method is of significant importance in the prediction and risk
assessment of storm surge events.

Development and Applications of Numerical Simulation Methods

The development of numerical simulation methods in the field of storm surge disaster
assessment marks a significant advancement in the understanding and predictive capability
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of this natural phenomenon. Since the late 20th century, with the rapid development of
computer technology, numerical simulation methods have become an essential tool for
studying the dynamics of storm surges and assessing their potential impacts. These
methods, by simulating the interactions among the atmosphere, ocean, and land, offer a
means to accurately predict storm surge events. In the early stages of numerical simulation
method development, research primarily focused on enhancing the physical foundation
of models and their computational efficiency. For instance, the SLOSH (Sea, Lake, and
Overland Surges from Hurricanes, SLOSH) model developed by Jelesnianski et al. (1992)
was one of the early significant tools for simulating storm surges [20]. This model simulated
the generation and propagation of storm surges using simplified physical equations. In 2002,
Zerger et al. utilized GIS (Geographic Information System, GIS) technology to verify the
effectiveness of the model and evaluated the comprehensive risk of storm surge disasters in
Cairns [21]. Subsequently, more sophisticated three-dimensional models such as ADCIRC
(Advanced Circulation Model, ADCIRC) [22], Delft3D [23] and SCHISM (Semi-implicit
Cross-scale Hydroscience Integrated System Model, SCHISM) [24] were developed to
simulate storm surges and their impacts on coastal regions with greater precision. In 2010,
Lin et al. improved the ADCIRC by enhancing its applicability for assessing the risk of storm
surge disasters in coastal areas under the influence of climate change, thereby providing a
reference for disaster prevention and mitigation decision-making [25]. Lara Santos et al.
employed the Delft3D model to evaluate storm surge risks along the Portuguese coastline.
They simulated historical storm surge events and reconstructed the genesis, development,
and disaster processes of storm surges, while also assessing changes in water levels and
flood inundation extents for various storm surge cases, offering a scientific basis for local
disaster prevention and mitigation planning [26]. In 2023, Mentaschi et al. conducted a
global-scale simulation of storm surges and waves using the SCHISM model. This research
established a high-resolution, global coastal ocean dynamics simulation system, simulated
numerous storm surge and wave processes over a period of 73 years [27]. The simulation
results were compared with satellite altimetry, tide gauge, and buoy observation data to
verify the model’s accuracy and reliability. This work not only enhanced our understanding
of the risks associated with storm surges and wave disasters in global coastal areas but also
contributed to assessing coastal disaster risks under climate change. With the development
of numerical simulation methods has increasingly emphasized the comprehensiveness
and multi-scale modeling capabilities of models. In 2013, Kiren et al. presented at the
EGU (European Geosciences Union, EGU) conference that the combination of the SWAN
(Simulating Waves Nearshore, SWAN) and the ADCIRC could enhance resolution, thereby
facilitating the assessment of typhoon-induced storm surge risks in the Martinique region of
France [28]. By integrating multiple numerical models with GIS and marine meteorological
datasets, and accounting for a variety of variables and parameters, such as wind speed, sea
level height, population density, as well as geographic information, it becomes feasible to
precisely simulate the propagation of the storm surges and the extent of their impacts, and
thus to generate a more comprehensive and accurate risk assessment system.

The advantage of numerical simulation methods lies in their ability to simulate the
complex dynamics of the formation and dissipation of storm surges and the resulting disas-
ter processes from a nonlinear perspective. These methods enable the precise prediction of
the impacts of storm surge events, providing a scientific basis for relevant departments to
quickly make disaster prevention and mitigation decisions. However, numerical simulation
methods require extensive input data and computational resources, making extensive
simulations using these methods potentially costly. Additionally, these methods present
a considerable barrier to entry for users, requiring a specific knowledge background and
computational skills for effective implementation. Furthermore, translating complex sim-
ulation results into actionable guidance for decision-making also poses a challenge for
relevant departments in affected areas.
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4. Artificial Intelligence-Based Techniques

Recently, artificial intelligence-based technologies, particularly machine learning and
deep learning, have begun to play a role and are increasingly being recognized in the
assessment of storm surge disaster risks. Compared to traditional methods, artificial
intelligence is capable of processing larger and more complex datasets, thereby enhancing
the accuracy and efficiency of assessments. For instance, neural network models can be
trained to identify and predict different types of economic losses caused by storm surges,
including those to agriculture, real estate, and infrastructure.

4.1. Machine Learning and Deep Learning Techniques for Storm Surge Assessment

Machine learning, a critical branch of artificial intelligence, learns patterns and rules
from data to make autonomous decisions and predictions. In assessing the economic
losses from storm surges, machine learning methods can leverage historical data and
environmental information to establish predictive models estimating the impacts of future
storm surge events. For example, by analyzing historical data from multiple storm surge
events, machine learning algorithms can identify key factors affecting economic damages
and predict the extent of losses under various scenarios. Deep learning, a specialized form
of machine learning, uses artificial neural networks to emulate the neural structure and
functioning principles of the human brain. With its strength in handling complex non-linear
relationships and large-scale data, deep learning can play a significant role in storm surge
risk. Deep learning algorithms allow for the construction of more intricate models that
capture the complex interactions between different factors, thereby predicting the disaster
impact of storm surge events more accurately.

4.2. Recent Studies Using Artificial Intelligence-Based Techniques

There are numerous studies utilizing artificial intelligence for storm surge disaster risk
assessment. In their study, Lin et al. employed ANN (Artificial Neural Networks, ANN) for
the prediction of typhoon-induced storm surges, demonstrating the potential of artificial
intelligence-based techniques in enhancing the accuracy of storm surge forecasts [29]. Zhao
Xin, Wang Baosong, et al. proposed a storm surge disaster loss measurement method based
on the RS-SVM (Rough Set-Support Vector Machine, RS-SVM) model by constructing an
assessment indicator system. Their data fitting analysis with this model yielded promising
results [30]. Wang Tiantian, Liu Qiang established a BP (Back Propagation, BP) neural
network model optimized by beetle antennae search based on existing storm surge disaster
research, creating a predictive indicator system for storm surge disaster losses for 29 storm
surges in Fujian Province, and found that the BAS (Beetle Antennae Search, BAS)-BP regres-
sion prediction model had good applicability in predicting storm surge disaster losses [31];
Zhao Xin, Wang Xiaohan introduced the POT (Peak Over Threshold, POT) model based
on extreme value theory to perform distribution fitting on direct economic loss data from
storm surge disasters between 1989 and 2014. They found that the POT model could aptly
describe the tail loss distribution of storm surge disasters in China, achieving the research
goal of reasonably calculating the risk value of storm surge disasters in China [32]; Hao
Jing, Liu Qiang, et al. used 50 sets of typhoon storm surge data from Guangdong Province
for research, quantified climate change data, and employed the sparrow search algorithm
to optimize the extreme learning machine to establish a pre-assessment model. Their
predictions for typhoon storm surge loss levels, affected population, and direct economic
losses showed improved accuracy in the optimized model [33]; Jiang and Liu used the
beetle antennae search algorithm to optimize a BPNN (Back Propagation Neural Network,
BPNN) based on 20 predictive parameters to forecast the next moment’s storm surge,
demonstrating that the combination of BAS and BPNN yielded more accurate and reliable
results than a single BPNN [34]. Zhang and Jiang employed four optimization algorithms
(including genetic algorithm, particle swarm optimization, beetle antennae search, and
beetle swarm optimization) to optimize Back Propagation Neural Networks, proposing
four optimized BPNN for predicting storm surge disaster risk [35]. Lockwood et al. found
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that ANN models trained on synthetic datasets could predict storm surge levels along the
eastern United States and the Gulf of Mexico, providing scientific support for relevant
departments to take preventative and disaster mitigation measures [36].

The advantage of artificial intelligence-based techniques is their ability to process
large amounts of data and variables and to automatically identify patterns and trends,
thereby offering more accurate and comprehensive assessment outcomes. However, AI
(Artificial Intelligence, AI)-based approaches not only face challenges such as substantial
data requirements and insufficient model robustness but also necessitate addressing a
series of issues related to model parameter selection and training. Addressing these
challenges requires considerable time investment and human resources. Moreover, models
that have been fine-tuned may not exhibit high applicability across all scenarios. These
issues necessitate rational solutions and adjustments in practical applications to ensure the
effective utilization of AI-based methods in diverse contexts.

5. Discussion

The preceding sections have outlined the main categories of methods used for storm
surge disaster risk assessment, including traditional statistical approaches, numerical simu-
lations, and emerging artificial intelligence techniques. Each methodology has its unique
advantages and limitations. Figures 1 and 2 present the results of our statistical analysis
on the number of articles from the ScienceDirect literature database from 2000 to 2023,
focusing on the application of the three methods in assessing and predicting the impact of
storm surges. It is evident that, over these years, the number of papers utilizing traditional
statistical methods, numerical simulation methods, and AI-based technologies for storm
surge assessment and prediction has significantly increased. Papers applied numerical sim-
ulation constitute the majority, accounting for 53% of the total, while AI, being an emerging
technology, has the smallest share at only 8%. The number of articles employing AI-based
technology has shown a positive growth trend starting from 2019. In contrast, the growth
trend in the number of articles using traditional statistical methods is less pronounced.
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techniques in storm surge assessment.

In assessing storm surge disaster risks, various methodologies exhibit distinct advan-
tages and limitations. Hence, selecting an appropriate method necessitates comparative
and integrative consideration. The following discussion compares and synthesizes tradi-
tional statistical methods, numerical simulation methods, and artificial intelligence-based
techniques to clarify their respective advantages and limitations.
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5.1. Comparison of Accuracy

Traditional statistical methods hold certain advantages in data analysis and sum-
marization, reflecting the extent of storm surge disasters and economic losses through
historical data. However, they may fail to capture complex nonlinear relationships and
inter-variable interactions, limiting the accuracy of predictions.

Numerical simulation methods, utilizing physical models and environmental data,
can predict the development and impact scope of storm surge events with greater preci-
sion. By considering multiple variables and parameters, these methods provide a more
comprehensive loss assessment. However, they require extensive data and computational
resources, and their accuracy is influenced by the model parameters and input data.

Artificial intelligence-based techniques, through machine learning and deep learn-
ing, can identify complex patterns and relationships, offering more accurate assessment
outcomes. Nonetheless, these methods require substantial data for training samples, and
the models’ interpretability is relatively low, making it challenging to comprehend how
predictions are derived. (From Table 1).

Table 1. Summary of research on storm surge disaster assessment methods.

Study Methods Accuracy Advantages Disadvantages

Li Peishun [37] Stepwise
Regression

Correlation coefficient = 0.99
S = 9.4

Low assessment error, uses
historical data, high reliability.

Lower applicability of
equations, higher limitations.

Zhao et al. [17] Multi-indicator
Grading

R-Squared = 80%
RMSE = 1.7

Measures storm surge disaster
levels from multiple

perspectives.

Some variable coefficients in
the equation are empirically

determined.

Lin et al. [25] ADCIR Accuracy = ±80%
Improved model does not rely

on historical data, suitable
for prediction.

Longer simulation time, high
computational cost,

application to extensive
simulations may be costly.

Lorenzo et al. [26] SCHISM Pearson correlation = 0.55

High nearshore spatial
resolution captures local,

short-term
storm surge variations.

Model initialization has
limitations, neglecting some

nonlinear interactions.

Zhao xin et al. [32] RS-SVM Test Samples R-Squared = 0.7669
Small error; multidimensional

factors assess storm surge
disaster risk.

High data requirements;
extensive training time.

Jiang and Liu [34] BAS-BPNN RMSE = 6.14
MSE = 5.19

BAS optimization of BPNN
enhances accuracy of
assessment results.

Model may not be universally
applicable across
multiple regions.
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5.2. Comparison of Interpretability

The results of traditional statistical methods are typically transparent and under-
standable, clearly showing the impact of different variables on storm surge disaster risks
and post-disaster economic losses. However, they may not adequately handle complex
nonlinear relationships and interactions, limiting interpretability.

The outcomes of numerical simulation methods are often intuitive and can be visually
displayed, such as the propagation paths and impact areas of storm surges. Yet, due to the
high complexity of the models, interpreting and understanding the assessment results may
require specialized knowledge.

Artificial intelligence-based techniques, compared to the aforementioned methods,
may be more challenging to interpret because the models, although trained with complex
learning methods on extensive data, do not explicitly explain the basis and reasons for
the predictions. This limitation can restrict the application and dissemination of artificial
intelligence techniques. (From Table 1).

5.3. Comparison of Implementation Difficulty

Traditional statistical methods are relatively straightforward, requiring only the collection
and analysis of historical data without complex model building and computation. However,
they may not capture intricate variable relationships, leading to less accurate predictions.

Numerical simulation methods necessitate constructing physical models, collecting
vast environmental data, and performing complex numerical calculations. This requires spe-
cialized knowledge and substantial computational resources, presenting a higher difficulty
level in implementation.

Artificial intelligence-based techniques involve preparing extensive training data, se-
lecting appropriate algorithms, and conducting model training and adjustments. Although
the implementation is challenging, once an effective model is established, it can yield
substantial benefits in future applications. (From Table 1).

In summary, different methods have varying strengths and limitations depending on
the context. In practice, the choice of method or a combination thereof can be guided by
factors such as data availability, required prediction accuracy, and interpretability needs,
aiming to produce more accurate and reliable assessments of storm surge disaster risks and
economic losses. The selection process should also consider the purpose of the assessment
and the practical application scenarios to ensure the results provide robust support for
decision-making by relevant authorities. In the next section, we build upon the content
previously discussed and offer recommendations on selecting suitable assessment methods.

6. Conclusions and Perspectives

Based on the comparison and integration of methods for assessing storm surge disaster
risks and economic losses, we can draw several discussions and suggestions to enhance the
accuracy and reliability of future assessment results.

6.1. Basis and Flexibility for Method Selection

As evident from the preceding sections of this article, different methods have their
respective advantages and limitations in assessing the risk of storm surge disasters and
economic losses. Traditional statistical methods are suitable for summarizing and ana-
lyzing historical data, revealing characteristics of past events. However, with increasing
climate change and uncertainty factors, these methods may not effectively predict future
storm surge disaster severity and economic loss. Numerical simulation methods can more
precisely model the development process of storm surges and predict disaster extent, but
their accuracy depends on model and parameter selection. Artificial intelligence-based
techniques, particularly machine learning and deep learning, can process large amounts of
complex data and uncover potential correlations and patterns, but they require substantial
training data samples and appropriate feature selection.
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Thus, when choosing an assessment method, one should weigh the pros and cons of
different methods based on the specific context and determine the most suitable method
considering the available data, complexity of the issue, and the temporal scale of the forecast.
In practice, combining multiple methods can also be considered to enhance the accuracy
and reliability of the predictions. For instance, Hashemi et al. (2016) utilized datasets
derived from numerical simulations to train artificial intelligence models, significantly
enhancing the efficiency and accuracy of storm surge predictions and providing more
reliable tools for storm surge disaster assessment in coastal areas [38].

6.2. The Importance of Data and Handling Uncertainty

Whether traditional statistical methods, numerical simulation methods, or artificial
intelligence-based techniques are used, data support is indispensable. In assessing storm
surge disaster risks and economic losses, the quality and completeness of data are crucial
for the accuracy of the predictions. Therefore, collecting and compiling accurate storm
surge event data, economic loss data, and other relevant data significantly impacts the
reliability of the assessment.

However, the uncertainty in data is also a challenge. There is inherent error in the
acquisition and measurement of meteorological and oceanographic data, and future climate
changes and sea-level rise add to this uncertainty. When using data for model train-
ing and prediction, these uncertainties must be considered, and appropriate measures
should be taken to address them, such as introducing uncertainty ranges or conducting
sensitivity analyses.

6.3. Summary

In this research, we have delved into the application of various methods in assessing
the risks and economic losses from storm surge disasters. Through traditional statistical
methods, numerical simulations, and artificial intelligence-based techniques, we have
understood the diversity and variability of methods to assess the extent of storm surge
disasters and post-disaster economic losses. We have summarized the strengths and
weaknesses of these three methods and offered some thoughts and recommendations.

In the realm of traditional statistical methods, based on the results obtained by multiple
researchers using this approach in the field of storm surge disaster risk and post-disaster
economic loss, statistical methods mainly rely on historical data and empirical models.
However, they also provide a novel perspective to understand the threat level of storm
surges to affected areas, offering valuable quantitative information for decision-makers.
The advent of numerical simulation methods has furnished us with more precise models
of storm surge propagation and impact. Utilizing numerical models and Geographic
Information System data, we can accurately simulate the intensity and impact range of
storm surges, generating comprehensive and accurate loss assessment outcomes. The
application of artificial intelligence-based techniques brings new opportunities to the
assessment of storm surge disaster risks and economic losses. The use of machine learning
and deep learning enables us to better uncover potential patterns within large datasets.
The rapid development of these technologies provides us with deeper insights, facilitating
a more comprehensive assessment of the impacts of storm surges.

In the comparison and integration section of methods, we discovered disparities among
the different approaches regarding accuracy, interpretability, and implementation difficulty.
Considering these factors, we can choose the most suitable method based on the specific
context. Such integrative application can better meet diverse decision-making needs.
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