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Abstract: Fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) profoundly
affects environmental systems, human health and economic structures. Multi-source data and
advanced machine or deep-learning methods have provided a new chance for estimating the PM2.5

concentrations at a high spatiotemporal resolution. In this paper, the Random Forest (RF) algorithm
was applied to estimate hourly PM2.5 of the North China area (Beijing–Tianjin–Hebei, BTH) based on
the next-generation geostationary meteorological satellite Himawari-8/AHI (Advanced Himawari
Imager) aerosol optical depth (AOD) products. To improve the estimation of PM2.5 concentration
across large areas, we construct a method for co-weighting the environmental similarity and the
geographical distances by using an attention mechanism so that it can efficiently characterize the
influence of spatial–temporal information hidden in adjacent ground monitoring sites. In experiment
results, the hourly PM2.5 estimates are well correlated with ground measurements in BTH, with a
coefficient of determination (R2) of 0.887, a root-mean-square error (RMSE) of 18.31 µg/m3, and a
mean absolute error (MAE) of 11.17 µg/m3, indicating good model performance. In addition, this
paper makes a comprehensive analysis of the effectiveness of multi-source data in the estimation
process, in this way, to simplify the model structure and improve the estimation efficiency of the
model while ensuring its accuracy.

Keywords: PM2.5; random forest;attention mechanism; spatiotemporal prediction; multi-source data

1. Introduction

China’s economy has developed rapidly in the past few decades, but it also faced
serious air pollution problems, especially in the Beijing–Tianjin–Hebei (BTH) region [1].
Fine particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5) has been
a major issue of public concern [2], associated with the risk to public health [3] and the
impact on climate change [4] and economic structures [5,6]. Three common methods,
such as ground station measurements, model simulations and satellite estimations can all
provide PM2.5 data. However, differences in data quality make it difficult for a single data
source to meet high-precision data requirements.

Currently, numerous studies have estimated the concentration of fine particulate
matter by employing satellite-based aerosol optical depth (AOD) products, and the data
quality is improved by integrating other multi-source data [7–9]. Moderate Resolution
Imaging Spectroradiometer (MODIS) AOD products are the most widely available data for
PM2.5 estimation [10–12]. In the early studies, the Dark Target (DT) and Deep Blue (DB)
aerosol retrieval algorithms in MODIS provided global daily AOD products only at 10-km.
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The application of these products in studies regarding PM2.5 is limited by their coarse spatial
resolution, such as the first global mapping about PM2.5 spatia-l-temporal distribution [13].
With the improvement of the AOD retrieval algorithm, the quality of AOD and PM2.5 data
has also been improved [14–17], especially the daily AOD at 1 km produced by the multi-
angle implementation of atmospheric correction (MAIAC) algorithms [18–20]. In addition,
some PM2.5 products using geostationary satellite AOD data can reach hourly levels,
such as Himawari-8/AHI (Advanced Himawari Imager) [21,22] and Fengyun-4A/AGRI
(the Advanced Geosynchronous Radiation Imager) [23,24], but the spatial resolution is
still limited.

In most AOD-PM2.5 estimation models, the minimum data unit is a vector of the
site PM2.5 value and the corresponding one-dimensional correlation factor (e.g., AOD,
meteorological). Therefore, both linear and nonlinear models are fitted to a class of tabular
feature data [25]. Some statistical regression models are simple and easy to implement,
such as linear regression (LR) [26], linear mixed-effects models (LME) [27], geographically
weighted regression (GWR) [14], geographically and temporally weighted regression
(GTWR) [28], and some hybrid models [29–31]. Essentially, these liner models with local
variation have difficulty capturing complex spatiotemporal relationships and have limited
accuracy. In recent years, some deep learning and data-driven methods achieved promising
results in remote sensing [32–35]. Machine learning methods, with their powerful ability to
establish complex nonlinear relationships between various interacting predictor variables,
are emerging as the dominant estimation method, such as artificial neural networks [36]
and geo-intelligent deep belief networks [37].

In particular, some decision-tree-based models are more advantageous in fitting data
with tabular features, such as the random forest (RF) [11,19,21], the Light Gradient Boosting
Machine (LightGBM) [22], and the eXtreme Gradient Boosting (XGBoost) [38]. They are
based on the idea of bootstrap aggregating and the random subspace method [39]. It
aggregates a set of weak learners to form a strong one, and these weak learners, i.e.,
basic decision trees, are trained by randomly bootstrapped samples from the training set.
Moreover, the node splitting features are also randomly selected during the training process
of the decision tree. Thus, it can nonparametrically model the indefinable and complex
non-linear relationship among input features. However, these decision-tree-based models
are difficult to capture spatio-temporal correlation features of neighboring sites. Therefore,
it is an important way to extract the spatio-temporal correlation via other different methods,
as well as to construct a hybrid model for PM2.5 estimation. In addition, in contrast to
some other deep learning methods in the study of intelligent processing of remote sensing
information [40,41], the full exploitation of multi-source data as well as spatio-temporal
information plays a key role in the efficiency of the model [42,43].

There are two main hybrid model ways to achieve better PM2.5 concentration esti-
mation [8]: one is to fuse multiple sources of data to improve spatio-temporal resolution,
and the other is to assemble other methods for capturing spatio-temporal correlation
features of neighboring sites. Typically, these data fusion methods simply complement
the spatio-temporal missing data, and it is difficult to verify the effectiveness of the data.
The most essential characteristic of PM2.5 is its spatial and temporal heterogeneity. Many
researchers have tried to solve this problem by using geographical association information,
which is constructed by weighting spatio-temporal distance from ground-based PM2.5
measurements [19,20,37]. However, ground-based PM2.5 monitoring sites are usually
sparsely distributed in urban areas. Common weight methods with spatio-temporal dis-
tance is prone to over fitting in training. Moreover, its verifiability and effectiveness will be
dramatically reduced when actually applied to large scale PM2.5 concentration estimation.

In this paper, we improve the estimation of PM2.5 concentration across large areas
using multi-source data by aggregating random forest and the attention mechanism. The
attention mechanism-based method is proposed to characterize the influence of spatial–
temporal information hidden in neighboring PM2.5 monitoring sites. Then, the extracted
features are connected with a random forest model for PM2.5 estimation. In addition, we
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verify the effect of AOD data quality on the final estimation accuracy of the model and
analysis of the feature importance ranking results to form some explanatory notes on the
estimation model. Finally, PM2.5 estimations were formed by fusing satellite and model
data, and we make a comparative analysis of spatial–temporal information at different
scales to further demonstrates the rationality of the estimated results.

2. Materials and Methods
2.1. Datasets and Preprocessing

The experimental data in this paper include the hourly PM2.5 observations from
monitoring stations, 5 km resolution AOD products of Himawari-8, and other auxiliary
data. Table 1 lists all the information about the data used in this study. The study area
in this paper is the Beijing–Tianjin–Hebei urban agglomeration, with the geographical
location of 113.45◦ E 119.83◦ E and 36.08◦ N 42.67◦ N. Figure 1 shows the geographical
location of the region and the distribution of the state-controlled environmental monitoring
sites located within the region. The elevation map in the figure shows that the topographic
distribution of the region has its own distinctive characteristics. The Beijing–Tianjin–Hebei
urban agglomeration has a high population concentration and is one of the core economic
regions in China. In addition, with the air pollution control in recent years, the spatial
pattern of some major steel, coal, power, and light industries in the Beijing-ring region
has changed dramatically. As one of the heavy industrial regions in China, most of the
industrial production has shifted to the southern part of Hebei province, which further
leads to the clustering of heavy industry in this areas. In terms of topography and climatic
environment, air pollution tends to accumulate in these regions. In terms of pollution
sources, the periphery of the region is a heavy industrial agglomeration, which has a certain
impact on the air quality of Beijing in the central region of the urban agglomeration.

Figure 1. Geographical location of the study area and distribution map of PM2.5 monitoring sites.

2.1.1. Ground-Level PM2.5 Measurements

Hourly PM2.5 observations from monitoring stations in BTH of 2017 are collected
for model fitting and validation. They are publicly available on the website of the China
Environmental Monitoring Centre (CEMC, http://www.cnemc.cn/, accessed on 7 February
2024). As shown in Figure 1, there are about 80 monitoring sites in total, and most of them
are distributed in the city areas of BTH.

http://www.cnemc.cn/
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Table 1. Summary of the dataset.

Type Abbreviation Content Spatial
Resolution

Temporal
Resolution Source

PM2.5 PM2.5 PM2.5 site hourly CNEMC

AOD H-AOD Himawari AOD 5 km hourly JAXA
M-AOD Himawari model AOD 5 km hourly JAXA

Meteorological

TEM 2 m air temperature 0.1◦ × 0.1◦ hourly ECMWF
UW 10 m u-component of wind 0.1◦ × 0.1◦ hourly ECMWF
VW 10 m v-component of wind 0.1◦ × 0.1◦ hourly ECMWF
PRE Total precipitation 0.1◦ × 0.1◦ hourly ECMWF
SP Surface pressure 0.1◦ × 0.1◦ hourly ECMWF

BLH Boundary layer height 0.25◦ × 0.25◦ hourly ECMWF
RH Relative humidity 0.25◦ × 0.25◦ hourly ECMWF

Land-related
NDVI NDVI 1 km 16-day MYD13A2
DEM DEM 90 m - SRTM
LULC LULC 500 m annually MCD12Q1

2.1.2. AOD Data

Himawari-8 is a Japanese geostationary satellite that launched on 7 October 2014.
It carries an Advanced Himawari Imager (AHI) and produces hourly AOD at a 5 km
resolution during the daytime. In recent years, Himawari-8 AOD has been evaluated
and used increasingly in the study of China air pollution [21,22,44]. Here, we obtained
official Himawari-8 AOD (Level 3 Version 3.0) at 500 nm in 2017 and used AOD-merged
data, which are with broader spatial and temporal coverage and slightly better quality [45].
Meanwhile, model-assimilation AOD products of Himawari-8 were selected for achieving
full-coverage PM2.5 estimation. This product is the forecast (every hour) of aerosol prop-
erties by the MRI/JMA global aerosol model called the Model of Aerosol Species in the
Global Atmosphere (MASINGAR). This product is assimilated by Himawari L3 aerosol
optical depth at 00, 03, 06, and 09 UTC. There are quality differences between these AOD
data, which could help to verify the effect of AOD data quality on the final PM2.5 estimation
accuracy of the model.

2.1.3. Auxiliary Data

Auxiliary data consist of meteorological and land-related data. They are helpful for
capturing the complex AOD-PM2.5 relationships associated with spatiotemporal varia-
tions. The meteorological data are extracted from the European Centre for Medium-Range
Weather Forecasts (ECMWF,https://www.ecmwf.int, accessed on 7 February 2024) and
ERA5-Land reanalysis products, including temperature (TEM; unit: K), surface pressure
(SP; unit: hPa), relative humidity (RH; unit: %), precipitation (PRE; unit: mm), and 10m
u-component and v-component of wind (UW/VW; unit:m/s). The boundary layer height
(BLH; unit: m) is obtained from the ERA5 hourly data on single levels. In addition, this
study adopted three land-related datasets, including the normalized difference vegeta-
tion index (NDVI) products derived from the MODIS MYD13A2, the digital elevation
model (DEM) products inferred from the shuttle radar topography mission, and the land
use/cover (LULC) products derived from the MODIS MCD12Q1.

2.1.4. Processing of Data

Although the spatial and temporal resolution of current satellites has been greatly
improved, it is difficult for a single data source to meet the high-precision requirement of all
applications. Moreover, due to the influence of cloud coverage, complex surface conditions,
and other factors, satellite AOD data often also have a large amount of spatial information
missing. In order to obtain full-coverage of PM2.5 spatial and temporal distribution data,
the research on the reconstruction of missing information in satellite remote sensing esti-

https://www.ecmwf.int


Atmosphere 2024, 15, 384 5 of 20

mated PM2.5 can be summarized into two main aspects [8,17,31]: one is to prioritize the
reconstruction of AOD missing data, so as to reduce or eliminate the spatial missingness
of estimated PM2.5 data; the others is to directly use single-source satellite AOD data for
PM2.5 estimation and then seamlessly reconstruct it by fusing multiple sources of PM2.5.

In order to achieve PM2.5 estimation at 1 km, we improved the official Himawari-8
hourly AOD at a 5 km resolution to 1 km by using the AeroCGAN model [46]. Meanwhile,
estimation experiments were conducted separately using three types of AOD data: official
Himawari-8 AOD (H-AOD), official Himawari-8 model-AOD (M-AOD), and mixed-AOD
(Mix-AOD) of the above. Then, according to different AODs with ground-based monitor-
ing PM2.5, we make a temporal and spatial matching processing for AODs and relevant
auxiliary data, and then form a control variable experiment dataset. In this way, we will
verify the effect of AOD data quality on the final estimation accuracy of the model and
achieve full-coverage PM2.5 estimation.

In addition, since the auxiliary data are diverse in terms of spatial resolutions, they
are resampled to a 1 km resolution with bilinear interpolation to ensure data consistency.
Bilinear interpolation can produce smooth interpolation results with the distance-weighted
average of the four nearest pixels.

After data processing, based on the data in the study area in 2017, there are 115,029
valid samples matched for satellite observation AOD data, and 222,547 valid samples data
matched for both model-assimilation AOD data and mixed AOD data. These data will be
used for model training and validation.

2.2. Methods

Supported by abundant observational data and machine learning methods, the main
current PM2.5 estimation methods are essentially optimization processes that are searching
for the relationship between PM2.5 concentrations and observational data. More formally,
the commonly used model can be expressed as PM2.5 = f (AOD, meteorological, land-
related, geographic factors).

Typically, the AOD is essential, basic data. Meteorological factors and land-related data
are listed in Table 1; they are helpful for capturing the complex AOD-PM2.5 relationships
associated with spatiotemporal variations. In addition, geographic factors, such as the
neighboring ground-based PM2.5 measurements, are valuable prior information for spatial
correlations. Previous studies measured this correlation by weighting spatio-temporal
distance [19,37]. However, as shown in Figure 2, ground-based PM2.5 monitoring sites
are usually sparsely distributed in urban areas. Moreover, such correlations are usually
dynamic and highly susceptible to changes in time and local environmental conditions.
When the correlations are constructed on the basis of spatial distance [19,37], in most
studies, the weight of such correlations is not consistent with the spatial and temporal
heterogeneity of PM2.5. For example, when several neighboring stations with similar
spatial distances are in the upstream and downstream channels of pollution dispersion, it is
obvious that the upwind stations are less affected, but the downwind stations are relatively
more affected. It is difficult to distinguish their differences with the correlation only based
on distance.

According to the above analysis, common weight methods with spatio-temporal
distance show strong effectiveness in spatio-temporal correlation information when training
the model with training data (like P1), but they provide weak effectiveness when actually
applied to large-area data (like P2), as in Figure 2.
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Figure 2. Schematic diagram of the spatial–temporal correlation of PM2.5 ground monitoring stations.

2.2.1. Spatial Features

In order to more efficiently utilize the spatially correlated prior information provided
by the observations of neighboring sites, we construct a co-weighting similarity of spatial
distance and environment factors using the attention mechanism. Attention mechanism-
based neural network models have been widely used in computer vision, natural language
processing, and spatio-temporal prediction tasks [47,48]. Essentially, the attention mecha-
nism is used to calculate the similarity relationship of the vectors and learn the features
of the data accordingly. Inspired by this mechanism, we designed the new spatial feature
extraction method.

For the PM2.5 concentration of a target pixel, its neighboring PM2.5 sites usually show
a certain correlation to it. Just like in the first law of geography, all things are related, but
nearby things are more related than distant things [49]. This law can interpret previous
studies that constructed this correlation by weighted spatio-temporal distances [19,37].
However, the impact of weights are highly dynamic, when changing over time and with
environmental factors. Therefore, this study further considers the third law of geography:
the more similar the geographic configurations of two points (areas), the more similar the
values (processes) of the target variable are at these two points (areas) [50]. With this law,
we construct co-weights of spatial distance (the first law) and environmental similarity
(the third law) by using an attention mechanism. Moreover, since there might be many
irrelevant series, it results in very high computational cost and degrades the performance
if directly using all kinds of time series as the encoder inputs to capture the correlations
between different observation data. Therefore, we further synergize the environmental
similarity and spatial distance to capture the dynamic correlations by using a designed
attention mechanism.

Let starget be the site of our estimated target, and its neighboring sites are S =
[s1, · · · , si, · · · , sN ], every site si has an environment vector ei and a PM2.5 value pi.

ei = [AOD, TEM, RH, BLH, WS, WD, NDVI] (1)

where AOD, TEM, RH, BLH, WS, WD, and NDVI are defined in Table 1. Furthermore,
starget has an environment vector etarget like ei. To reduce the computational complexity
of the attention mechanism in extracting spatially correlated features, only these seven
variables were selected for the environmental similarity extraction. Then, we calculate the
attention weights Simi (i.e., impacting weight) between neighboring sites as follows:

Simi = η tanh
(
Wi

[
ei; etarget

]
+ Kietarget + bi

)
(2)
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where
[
ei; etarget

]
is a concentration operation between ei and etarget. η, Wi , Ki, and bi are

the learnable parameters.
Then, a SoftMax function operation is performed to normalize all attention weights. In

this process, we construct the neighboring site attention weights considering both spatial
distance and environmental similarity.

ai = Softmax(Simi) =
exp((1− li) Simi +li))

∑N
j=1 exp

((
1− lj

)
Simj +lj

) (3)

where li is the geospatial distance weight, and the specific value is the reciprocal of the
spatial distance ( 1

di
) between the site target site starget and neighboring site si. Similarity ai

indicates the attention value between the i-th neighboring site and the site to be estimated.
The attention weights of spatial features are jointly determined by the input features

and the spatial distance in the encoder. The score calculated by Equation (3) semantically
represents the site correlation under the effect of distance and environment. When the
spatial distance between two sites is closer, the effect of spatial distance weight is higher
than the environmental similarity weight, thus the correlation between them is higher;
on the contrary, when the spatial distance between two sites is farther, the effect of the
environmental similarity weight is higher than that of the spatial distance weight, thus the
environmental similarity effect is higher.

Finally, we weighted the spatial correlation of PM2.5 for all spatially neighboring sites
and obtained the neighboring spatial features SAttstarget of the site to be estimated as follows:

SAttstarget =
n

∑
i=1

ai · pi (4)

where ai is the spatial distance and environmental similarity co-weighting by Equation (3),
and pi is the PM2.5 concentration at the i-th site.

In addition, considering the numerical differences among the variables, each variable
was normalized separately before feature extraction.

2.2.2. Temporal Features

The time stamp could be a temporal feature in some machine learning methods;
especially, the minimum data unit of this study is a vector of features. Moreover, numerous
studies have verified that the values of PM2.5 concentrations show strong variation and
correlation patterns across the geographical space and the temporal dimension [22,51,52].
The sites in the BTH often observe much higher PM2.5 concentrations in winter than summer.
The PM2.5-AOD correlation became noticeably higher from 9:00 to 17:00 local time, whereas
the PM2.5/AOD ratio notably decreased in the Beijing–Tianjin–Hebei, Yangtze River Delta,
and Chengyu regions. Specifically, there is a high correlation between 12:00 and 14:00
LT (Local Time) and 13:00 and 17:00 LT. The ratio in a day has a clear unimodal pattern,
with the peak occurring, particularly in the fall and winter, at about 10:00 or 11:00 LT.
The PM2.5-AOD association significantly varies over the course of a week in the winter.
Additionally, the winter is the period of time when most metropolitan agglomerations have
their best association and highest ratio [53]. Therefore, considering that our approach aims
to estimate hourly PM2.5 concentrations, we selected month and hour as temporal features.

2.2.3. Random Forest

Random forest is based on the idea of bootstrap aggregating and the random subspace
method [39]. It aggregates a set of weak learners to form a strong one; these weak learners,
i.e., basic decision trees, are trained by randomly bootstrapped samples from the training
set. Moreover, the node splitting features are also randomly selected during the training
process of the decision tree. Thus, it can nonparametrically model the indefinable and
complex non-linear relationship among input features [11,19].
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Decision tree-based models, such as RF, XGBoost, and LightGBM, are more advanta-
geous in fitting data with tabular features as well as PM2.5 estimating. Previous studies
have demonstrated that there is little difference in performance between these decision
tree-based models in PM2.5 estimation [38]. Compared to image or natural language data,
tabular data are heterogeneous, resulting in dense numbers and sparse categorical fea-
tures. In addition, the correlation between features is weaker than the spatial or semantic
relationships in image or natural language data. The variables of tabular data can be
correlated or independent, and features usually have no positional information. Therefore,
it is necessary to discover and exploit correlations relying on spatial information. The
spatio-temporal correlation feature extraction is the primary optimization direction of these
PM2.5 estimation models.

Especially, PM2.5 concentrations show strong variation and correlation patterns across
the geographical space and the temporal dimension. It is difficult to capture such features
by relying on random forest alone to mine the value of neighboring site data. Therefore,
this study selected the classic random forest model and aggregating attention mechanism
to achieve PM2.5 estimation. With the attention mechanism described above, we obtain new
spatio-temporal features that are fed into the random forest together with the auxiliary data.

There are three key parameters that should be tuned in a random forest model, which
are the number of trees in the forest (N), the number of input features to consider when
splitting data at a decision node (m), and the minimum number of samples required to be
at a leaf node (n). Through controlled variable experiments, we finally set each of these
three parameters as 500, 13, and 2, respectively. Actually, this is also related to the amount
of our data and the number of features.

2.2.4. Model and Evaluation

According to the above analysis, the flowchart of the proposed attention mechanism-
based random forest model is shown in Figure 3, including input data, feature processing,
RF regression, and output data. Firstly, we made a temporal and spatial matching pro-
cessing for AODs and relevant auxiliary data to form a training dataset. Then, we used
the attention mechanism-based spatial correlation extraction method (Equations (1)–(4)) to
obtain the spatial feature. Furthermore, the time stamp is chosen as the temporal feature.
These above data are used as input features of the random forest model to finally estimate
PM2.5 concentrations. Here, the steps of the attention mechanism-based random forest are
summarized in Algorithm 1.

Figure 3. Attention mechanism-based random forest model for PM2.5 concentration estimation.
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Algorithm 1 Attention Mechanism-Based Random Forest Algorithm for PM2.5 Estimation
Input: Dataset D = {(x1, y1), · · · , (xi, yi), · · · , (xN , yN)}, each xi contains F features (de-
fined in Table 1). Training times is T. The random forest RF has M decision trees (DTree).

1: SAtt← Eqs. (1) to (4); attention mechanism-based spatial correlation
2: TF; time stamp as temporal features
3: x′i ← [xi, SAtti, TFi]; features concat
4: D′ =

{
(x′1, y1), · · · , (x′i, yi), · · · , (x′N , yN)

}
; each x′i contains F′ features (i.e., dimen-

sion);
5: for t = 1, 2, . . . , T do
6: randomly bootstrapped K samples:
7: D1, · · · , Dk, · · · , DK ∈ D′

8: for Dk ∈ D′ do
9: Randomly select f feature subsets from the F′-dimension features;

10: training each decision tree:
11: for DTreei in RF do
12: select the optimal one from the f features for tree node splitting
13: DTreei ← {Dk, f }
14: end for
15: end for
16: RFt ← {DTree1, · · · ,DTreei, · · · ,DTreeM}
17: end for
18: return RF

In addition, based on previous studies [8,19,28], 10-fold cross-validation [54] is adopted
to investigate the effectiveness of the proposed method. The general 10-fold cross-validation
randomly partitions all the samples into 10 folds with an equal number of subsamples,
which is also referred to as sample-based cross-validation. One subsample is retained
for validation, and the remaining 9 subsamples are used for training. This process of
subsampling is repeated 10 times with each fold for validation in return. The overall
performance of the model is estimated by averaging the 10 evaluation results to reduce the
random effect.

During the evaluation stage, three quality metrics are used to measure the performance:
determination coefficient (R2), root-mean-square error (RMSE), and mean absolute error
(MAE). They are denoted as follows:

R2 =
∑n

i=1(Pi − Q̄i)
2

∑n
i=1(Oi − Q̄i)

2 (5)

RMSE =

√
1
n

n

∑
i=1

(Pi −Qi)2 (6)

MAE =
1
n

n

∑
i=1
|Pi −Qi| (7)

where Oi is the obvious value, Q̄i is the average of obvious values, Pi is the estimate value,
and n is number of data points.

3. Results and Discussion
3.1. Model Performance

Table 2 shows the estimation performances of the proposed and some existing methods.
With the development of analysis methods, the early geographically weighted regression
model (GWR) is gradually replaced by some new methods that are based on machine
learning (XGBoost, Two-stage, STRF). Furthermore, the stream trend of the current re-
search is to further improve the performance of the machine learning method by adding
spatio-temporal features. In addition, it can be seen that the accuracy for most of the
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model estimation is within a certain range (R2: 0.65 to 0.90; RMSE: 10.0 to 30.0 µg/m3,
approximately). This may be due to the difference in the spatial and temporal resolution of
the data or the spatial and temporal range of the research. For example, some early studies
for PM2.5 estimation [14,37] are mostly based on 10 km resolution AOD data from MODIS
satellite observations. Then, to benefit from the improvement in AOD data quality (such
as MODIS MAIAC AOD with 1 km spatial resolution, Himawari AOD with 5 km hourly
resolution, etc.) and the development of machine learning methods, some researchers have
gradually developed more efficient PM2.5 estimation methods [19,22,31], and the study
area has changed from highly polluted areas (such as Beijing–Tianjin–Hebei, Yangtze River
Delta, and Pearl River Delta) to large regional nationwide areas and long time series.

Table 2. Comparison of performance with other methods.

Methods Resolution R2 RMSE MAE Source AOD Period Region Reference

LME 10 km, daily 0.79 26.74 - MODIS 2015 China Ma et al. (2016) [27]
GWR 10 km, daily 0.64 32.98 21.25 MODIS 2013 China Ma et al. (2014) [14]

GTWR 3 km, daily 0.80 18.00 12.03 MODIS 2015 China He et al. (2018) [28]
Geo-DBN 10 km, daily 0.88 13.03 8.54 MODIS 2015 China Li et al. (2017) [37]

DNN 1 km, hourly 0.84 19.90 11.89 Himawari 2017 BTH Sun et al. (2019)
Two-stage 1 km, daily 0.85 11.02 - MODIS, Himawari 201804–201902 China Jiang et al. (2021) [26]

STRF 1 km, daily 0.85 15.57 9.77 MODIS MAIAC 2015–2016 China Wei et al. (2019) [19]
STET 1 km, daily 0.89 10.35 6.71 MODIS MAIAC 2017–2018 China Wei et al. (2020)
STLG 5 km, hourly 0.85 13.09 8.11 Himawari 2018 China Wei et al. (2021)[22]

XGBoost 5 km, hourly 0.84 18.10 11.40 Himawari 2016
Central and

Eastern
China

Chen et al. (2019) [38]

RF 1 km, hourly 0.81 25.51 15.91 Himawari 2017 BTH This study
STAttenRF 1 km, hourly 0.89 18.31 11.17 Himawari 2017 BTH This study

In this study, we use the attention mechanism to construct spatial proximity feature
extraction and then introduce it into the random forest model for PM2.5 estimation. We
also compared it with the performance of the basic random forest model without spatio-
temporal features (R2 = 0.81, RMSE = 25.51 µg/m3, MAE = 15.91 µg/m3). The proposed
model which captures the spatio-temporal features, achieves a higher efficiency (R2 = 0.89,
RMSE = 18.31 µg/m3, MAE = 11.17 µg/m3). Although the accuracy index of the proposed
method is not the highest among the existing methods, it has definite improvements in
spatial and temporal resolution (1 km, hourly). Meanwhile, it is also demonstrated that the
spatial proximity features extracted by using the attention mechanism can provide effective
supports for the final estimation.

3.2. Feature Correlation and Importance Analysis

For the task of estimating PM2.5 concentrations, most machine learning methods are
black-box models which do not provide us with much knowledge about the massive data.
In other words, they do not tell us how these input variables are connected to the output of
the predictions and which factor gains the most attention in the model. In previous studies,
they usually used the Pearson correlation coefficient and histograms as descriptive statistics
for the correlation analysis [20,53]. Therefore, this paper also conducts a preliminary feature
correlation analysis for the problem accordingly.

The frequency distribution histograms of the data with descriptive statistics (minimum,
maximum, mean, and standard deviation) are shown in Figure 4. It can be seen that the
frequency distribution of PM2.5 concentration is more similar to the AOD data, which is
in line with the consensus of much research that the AOD data can directly reflect the
corresponding spatial and temporal distribution characteristics of PM2.5 concentration,
and they have a certain degree of similarity in spatial and temporal distribution. In
addition, there is a large difference between the Himawari satellite retrieval AOD and the
model-assimilation AOD. The value of model-assimilation AOD data is higher than that
of the satellite inversion overall, which indicates that the model-assimilation AOD value
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may be overestimated, but the overall frequency distribution structure has some similarity
between these data. Although some previous studies have shown that the relative humidity,
air temperature, and wind speed have a strong influence on the spatial and temporal
distribution of PM2.5 concentrations [8], it is difficult to show the intuitive similarity only
in their frequency distributions. These results also reflect that the relationship among the
spatio-temporal distribution of PM2.5 concentrations, meteorological factors, and surface
environment data is complex and nonlinear. The DEM data are sparsely distributed because
the data are obtained by matching the air quality monitoring stations and the DEM values
reflecting the geospatial location of the stations to a certain extent.
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Std = 57.64
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Std = 0.84.

Min = 0.008
Max = 4.998
Mean = 1.34
Std = 1.19

Min = -9.67
Max = 9.47
Mean = 0.55
Std = 1.86

Min = 0
Max = 0.076
Mean = 8.3×10-5
Std = 0.0013

Min = 0
Max = 893
Mean = 115
Std = 203

Min = 0
Max = 0.872
Mean = 0.26
Std = 0.16

Min = 87,513
Max = 104,092
Mean = 99,832
Std = 3055

Min = 2.13
Max = 100.68
Mean = 36.28
Std = 18.12

Min = -9.08
Max = 7.34
Mean = 0.13
Std = 2.39

Min = 14
Max = 5018
Mean = 1186
Std = 806

Min = -14.28
Max = 40.96
Mean = 17.08
Std = 11.39

10,000 10,000

10,000

15,000

20,000

10,000

15,000

20,000

25,000

10,000

40,000

60,000

80,000

100,000

20,000

15,000

20,000

25,000

30,000

10,000

10,000

90,000 95,000 100,000

Figure 4. Histograms and descriptive statistics (minimum, maximum, mean, and standard deviation)
of PM2.5 concentrations and the associated variables.

The frequency distribution of PRE data is very concentrated and near the Y axis; it may
have a small effect on the accuracy of PM2.5 estimation in the model and needs to be further
confirmed for it to be retained in the subsequent experimental analysis. According to the
above analysis, to ensure the efficiency of the PM2.5 estimation model, suitable characteristic
variables need to be selected, and the nonlinear relationships between multiple variables
need to be adequately fitted and to be experimentally compared to form a definitive model
data selection strategy.

The Pearson correlation coefficients between PM2.5 concentration data and other
variables are shown in Figure 5. It can be seen that the Pearson coefficient of PM2.5
concentration and Himawar satellite AOD (H-AOD) data reaches 0.43, which is the highest
among all variables, and this further indicates that the AOD is always the core data for
PM2.5 estimation. In addition, among the variables related to the atmospheric physical
properties of PM2.5, the correlation between PM2.5 concentration and boundary layer height
and relative humidity is higher (both reach 0.31), while the correlation with wind speed
(−0.16, 0.14) and temperature (−0.061) have lower correlations. Usually, PM2.5 pollution
is more influenced by wind speed and temperature, etc., during dissipation, and this
single intuitive coefficient makes it difficult to reflect the characteristic correlation of PM2.5
concentration. Therefore, although the histogram structure of frequency distribution of
AOD and PM2.5 data is similar and the Pearson correlation coefficient is high, the accuracy
of directly constructing the fitted relationship between AOD and PM2.5 for PM2.5 estimation
is limited, and it is necessary to use multivariate synergy to fit the nonlinear relationship.
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Figure 5. The results of bivariate correlation analysis between PM2.5 concentrations and other
associated variables.

The random forest model requires a tree node splitting calculation during the con-
struction of the decision tree, such as a splitting function based on the gini coefficient.
This approach also reflects the importance of the feature variables on the estimation of
the random model. Therefore, this study provides a detailed comparative analysis of the
importance of information related to these variables in the random forest, as shown in
Figure 6. Overall, among the feature variables, the model considers AOD, BLH, and RH to
be the most important for the estimation results, which is also consistent with most existing
studies [19,55]. Moreover, this information importance also corresponds in some aspects to
Figures 4 and 5. When the model added temporal features, the time stamp (Month, Day,
Hour) shows a certain of importance for the estimation results. There is little change in the
feature importance ranking, but only the NDVI importance rate is reduced greatly.

(a)

(b)

Figure 6. Feature importance comparison of input variables in PM2.5 concentrations estimation
model. (a) RF model. (b) STAttenRF model

3.3. The Impact of AOD data Quality on Model Accuracy

To further compare and analyze the effect of AOD data quality on the estimation of
atmospheric PM2.5 by the random forest model, we conducted separate comparison experi-
ments according to the different AOD data sources, as shown in Table 3. Obviously, the
coverage of model assimilation AOD data is higher. In addition, we verified the correlation
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accuracy (satellite retrieval and model assimilation AOD data vs. the AOD data from
ground monitoring sites), as shown in Figure 7. There are 6169 valid data matched between
the satellite observed AOD data and AERONET in the study area in 2017, and the correla-
tion between them reached 0.836. There are 6946 valid data matched between the model
assimilation AOD data and AERONET, and the correlation between them was only 0.585. It
is shown that there is a huge difference in data quality between the two cases. Furthermore,
the visual comparison of the scatter plotted in Figure 7 also shows that there is a large overes-
timation of AOD in the model assimilation AOD. However, when these AOD data are input
into the random forest model to estimate the spatial and temporal distributions of PM2.5,
Table 3 shows that the difference in estimation results is small, as well as the PM2.5 estima-
tion based on the Himawari satellite retrieval AOD being R2 = 0.812, RMSE = 25.51 µg/m3,
and MAE = 15.91 µg/m3, and the Himawari model assimilation AOD being R2 = 0.805,
RMSE = 27.86 µg/m3, and MAE = 15.35 µg/m3. These results are somewhat different from
previous studies that pursued the quality of AOD data and used it to obtain high quality
PM2.5 estimation. However, by mixing the two types of AOD data and replacing them
with model assimilation AOD data when the AOD is missing from the satellite retrievals,
the accuracy of the model is reduced to a certain extent. Based on this comparison, this
study concluded that there may be errors in the full-coverage PM2.5 estimation by directly
using the mixed AOD, so the full-coverage results should be obtained by estimating PM2.5
separately and then performing data fusion. The full-coverage results were obtained by
fusing the data after estimating PM2.5 separately. In addition, after using the attention
mechanism to extract spatio-temporal features, the model accuracy was significantly im-
proved. As shown in Table 3, the evaluation indicators of PM2.5 estimation by Himawari
satellite retrivals AOD were R2 = 0.887, RMSE = 18.31 µg/m3, and MAE = 11.17 µg/m3,
and the index of PM2.5 estimation by Himawari model assimilation AOD was R2 = 0.874,
RMSE = 20.68 µg/m3, and MAE = 12.87 µg/m3. These situations further illustrate the
importance of spatio-temporal characteristics for the random forest model.
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Figure 7. Comparison results of ground-based validation of Himawari (a) satellite retrievals and
(b) model assimilation of AOD data.

With the comparison of the importance of input variables in the random forest model
in Figure 6, we provide a preliminary explanation for this phenomenon. Although the
correlation between AOD and PM2.5 is strong, the random forest responds differently to
AOD data of different quality when multiple variables are input into it. For example,
for the Himawari AOD data in Figure 6, the random forest considered the AOD data
to be the most important (more than 20%). While for the model-assimilation AOD data,
for its lower data precision (Figure 7), the random forest model adaptively reduced its
importance of layer height BLH and relative humidity RH. However, the model is still able
to generate better PM2.5 spatial and temporal distribution estimation results in cooperation
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with several variables in the end. In the estimation results by the mixed AOD data, all
three evaluation indicators show some degree of degradation compared with the separate
estimation. This may be due to the misleading effect of data quality differences on the same
characteristic variables in the random forest model, which is difficult to distinguish in the
random forest model.

Based on above analysis, we believe that although the quality of AOD data varies
greatly, when multiple variables are input into the random forest model, the random
forest will adjust the importance of different-quality AOD data to achieve a certain of
robustness (the PM2.5 distribution estimated based on satellite retrievals AOD data or
model-assimilation AOD data). The non-linear relationship between the variables can be
fitted well, and thus, the spatial and temporal distribution of PM2.5 can be estimated better.
In addition, comparing the final results, we can find that the model accuracy is significantly
improved after using the attention mechanism to extract spatio-temporal features.

Table 3. Comparison of experimental results of PM2.5 estimation with different AOD data

Data Method
Model Fitting Model Validation

R2 RMSE MAE R2 RMSE MAE

H-AOD
RF 0.972 9.45 5.46 0.812 25.51 15.91

STAttenRF 0.983 7.56 4.51 0.887 18.31 11.17

M-AOD
RF 0.973 9.94 5.66 0.805 27.86 15.35

STAttenRF 0.985 7.47 4.34 0.874 20.68 12.87

Mix-AOD
RF 0.968 10.18 5.96 0.793 28.20 17.02

STAttenRF 0.981 7.63 4.54 0.861 22.43 13.66

3.4. Spatio-temporal Validation and Analysis

The spatial and temporal distribution of seasonal PM2.5 concentration is calculated
from the average of hourly PM2.5 data in the corresponding time interval, as shown in
Figure 8. Among them, the point source distribution markers in the figure are the seasonal
averages of the ground monitoring stations, which range from March to May each year in
spring, June to August each year in summer, September to November each year in autumn,
and December to February each year in winter. It can be seen that the seasonal distribution
of PM2.5 concentrations in the Beijing–Tianjin–Hebei region varies significantly. Based on
the statistical data of PM2.5 pollution concentrations at ground stations, it can be concluded
that the pollution level is higher in winter (∼70.12 ± 85.26 µg/m3), the average values
in spring (∼47.61 ± 46.09 µg/m3) and autumn (∼46.94 ± 42.92 µg/m3) are close to each
other, and the lowest pollution level is in summer (∼42.15 ± 25.23 µg/m3). The seasonal
PM2.5 spatial distribution data were obtained statistically after model estimation in this
section, and the PM2.5 pollution level in the northwest region of Beijing, Tianjin, and Hebei
is lower. The PM2.5 pollution level in the southeast region is higher, which shows a trend of
gradually severe pollution from the northwest to southeast. This spatial pattern distribution
is extremely similar to the digital elevation map of the Beijing–Tianjin–Hebei region shown
in Figure 1. With higher terrain in the northwest mountainous region and lower terrain in
the southeast open plain, it shows a sloping trend from the northwest to southeast. It can be
seen that PM2.5 pollution is mainly distributed in the urban built-up areas, while decreasing
spatially toward the suburbs. The main reasons are: the northwest region is located in the
mountainous area, the population and urban built-up areas are sparsely distributed, and
there are few sources of pollution emissions caused by industrial agriculture and human
activities. In contrast, Beijing–Tianjin–Hebei is one of the core economic regions in China
and also one of the heavy industrial regions in China. With the air pollution control in
recent years, the spatial pattern of some major iron and steel, coal, electricity, and light
industries in the Beijing-ring region has changed dramatically. Most of the industrial sites
have shifted to the southern part of Hebei province, thus leading to poorer air quality in



Atmosphere 2024, 15, 384 15 of 20

the southeast, which is the area of heavy industries. Although the pollution sources around
Beijing are reduced, topographically, the pollution from the southeast heavy industry region
still spreads to the Beijing area and gathers and dissipates in the region. Beijing is still a
population gathering area, and it is difficult to reduce the traffic as well as living pollutant
emissions, especially the large amount of pollution emissions caused by coal burning and
fossil-fuel heating in the winter, etc. The local topography and terrain and even autumn
and winter meteorological conditions also contribute to the gathering of pollution. It is not
conducive and also exists in the Yangtze River Delta and Sichuan Basin regions [56,57].
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Figure 8. Spatial distribution of seasonal averaged PM2.5 concentrations in 2017.

Comparing the spatial distribution values with the monitoring point values, the
overall PM2.5 spatial distribution accuracy is similar to that of the corresponding ground
monitoring points. Among them, the estimated values of Beijing and Tianjin are relatively
more accurate, which may be attributed to the relatively large number of air quality
monitoring stations and more uniform spatial distribution in these two cities. On the
contrary, the ground stations in Hebei province are sparsely distributed in each city and
the number of stations is small, so the visual comparison is slightly underestimated. In
addition, a significant overestimation of PM2.5 occurs along the Bohai Sea coast, which may
be due to the difference in aerosol types along the seashore, model training data obtained
from ground monitoring sites that are in the land area, and meteorological conditions
such as sea fog and sea wind. This also indicates that the data-driven model relies on the
complete data set with high accuracy.

This study cross-validated the hourly PM2.5 estimates with ground monitoring val-
ues for each season in 2017, and the relevant scatter plots are shown in Figure 9. It can
be seen that although the highest RMSE (11.841 µg/m3) and MAE (7.909 µg/m3) indi-
cators for PM2.5 were found in summer, the R2 was only 0.783. On the contrary, the
lowest RMSE (24.937 µg/m3) and MAE (13.611 µg/m3) indicators were found in winter,
but the R2 reached 0.912. The scatter plot also shows the lowest PM2.5 concentration
values in summer (about 0–150 µg/m3) and the highest PM2.5 concentration values in
winter (about 0–500 µg/m3), and therefore, the estimated PM2.5 in winter has difficulty
reflecting the advantage in RMSE and MAE indexes, and the measurement of model per-
formance should be compared comprehensively. In addition, the indicators are closer in
spring (R2 = 0.852, RMSE = 17.976 µg/m3, MAE = 9.502 µg/m3) and autumn (R2 = 0.879,
RMSE = 15.105 µg/m3, MAE = 9.243 µg/m3). The differences in model performance for
different seasons of PM2.5 may have some correlation with the sample size and seasonal
natural conditions. For example, on the one hand, in BTH region, there is more snow and
ice cover in winter and cloudy and rainy weather in summer. Those differences have a
greater impact on the number of effective samples, thus the samples in winter and summer
will be significantly less than that in spring. On the other hand, summer weather conditions
are conducive to the rapid dissipation of pollution, making it difficult to form aggregated
pollution. The autumn and winter seasons are closely related to the increase in pollution
emissions, and the Beijing–Tianjin–Hebei region is more influenced by the northwest dust
in spring, which also makes the nonlinear relationship between AOD and PM2.5 more
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complicated. It is difficult for the model to completely fit such complex relationships
without multi-source data and the attention mechanism.

Figure 9. Density scatterplots of cross-validation correlation between estimated hourly PM2.5 concen-
trations and ground measurements in 2017.

Table 4 presents statistics on the detailed model-estimated average PM2.5 concentra-
tions at different hours in 2017 compared with the corresponding ground-based measure-
ments for the validation results. It can be seen that the proposed method in this study
has a slightly different performance in each hour, but the overall main evaluation indexes
do not differ much. The main reason for this may be due to the reduced number of train-
ing samples from optical remote sensing satellites at sunrise (8:00 vs. 9:00) and sunset
(16:00 vs. 17:00).

In addition, there are significant daily variations in air pollution at different PM2.5
pollution levels due to the difference in human activity intensity and natural conditions
at each time period. The slope metric shows that the model has a certain degree of
underestimation, which is a common problem in PM2.5 estimation studies, and some
scholars believe that this is due to the large uncertainty in the aerosol retrievals and the
small data samples under high pollution conditions [8,22,56].

Table 4. Cross-validation of estimated and measured average PM2.5 at different hours.

Time Samples R2 RMSE MAE Slope Estimated Measured

08:00 3099 0.817 16.32 10.52 0.72 50.2 ± 27.8 49.3 ± 34.7

09:00 4739 0.820 17.13 11.24 0.76 52.3 ± 32.9 49.8 ± 39.2

10:00 6931 0.855 22.19 12.11 0.78 57.4 ± 50.2 55.6 ± 59.4

11:00 7244 0.881 20.61 11.81 0.83 55.1 ± 51.7 53.2 ± 58.6

12:00 7188 0.884 19.46 10.82 0.85 51.3 ± 51.1 49.8 ± 56.6

13:00 6953 0.902 18.01 9.87 0.86 50.0 ± 51.7 49.7 ± 57.0

14:00 6848 0.891 19.02 10.54 0.85 49.4 ± 51.0 50.6 ± 56.9

15:00 6550 0.903 18.84 11.01 0.84 49.1 ± 52.2 52.2 ± 58.7

16:00 4500 0.878 18.76 10.83 0.80 44.6 ± 44.6 49.3 ± 51.2

17:00 2814 0.745 16.49 10.68 0.69 36.3 ± 22.3 41.9 ± 30.2

ALL 56,866 0.873 18.60 11.92 0.83 50.7 ± 48.1 50.9 ± 54.6
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Figure 10 illustrates the spatial and temporal distribution of hourly average PM2.5
concentrations in 2017, where the point source distribution data are ground monitoring
values. As can be observed in the figure, the spatial distribution of pollution across the study
area is characterized by the same seasonal scale, with low PM2.5 pollution in the northwest
region and high pollution in the southeast. From the annual average spatial distribution of
PM2.5 at different hours, the trend of PM2.5 pollution shows the characteristics of rising first
and then falling from morning to evening. The pollution reaches a peak around 11:00 a.m.,
and PM2.5 pollution drops to a relatively low level in the evening, which may be caused by
the increase in pollution emission in the morning and the superposition effect of pollution
gathering from the previous night, etc. This kind of PM2.5 pollution spatial and temporal
distribution characteristic is also similar to some existing studies [53], especially that the
increase in pollution emissions caused by anthropogenic activities, industrial production,
etc., during the corresponding time of autumn and winter seasons are more relevant.
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Figure 10. Spatial distribution of averaged PM2.5 concentrations at different hours (08:00 to 17:00
local time) during 2017.

4. Conclusions

In this paper, we improved the estimation of PM2.5 concentration across Beijing–
Tianjing–Hebei regions using multi-source data by introducing the attention mechanism
into random forest. The attention mechanism was used to co-weight the environmental
similarity and the geographical distances, and the RF algorithm was applied to estimate
hourly PM2.5 of BTH based on the Himawari-8/AHI AOD products. The experiment
results demonstrated that our approach can more efficiently characterize the influence
of spatio-temporal information hidden in adjacent ground monitoring sites. The hourly
PM2.5 estimates are well correlated with ground measurements in BTH, with an R2 of
0.887, an RMSE of 18.31 µg/m3, and an MAE of 11.17 µg/m3, indicating the good model
performance. Furthermore, to simplify the model structure and improve the efficiency
while maintaining accuracy, this paper thoroughly examines of the effectiveness of multi-
source data in the estimation process, including the analysis of the effect of AOD data
quality on the final estimation accuracy of the model and the ranking results of the feature
importance of the random forest. Finally, this approach provides full-coverage PM2.5
estimation in BTH by fusing satellite and model data.

In future work, we will pay attention to computation efficiency and model robustness,
then expand the estimation area with reasonable spatial–temporal analysis and validation.
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