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Abstract: The increase in satellite instruments sounding the atmosphere will increase the frequency
of several instruments simultaneously measuring either the same vertical profile or vertical profiles
related to nearby geo-locations, and users will consult fused products rather than individual measure-
ments. Therefore, the retrieval products should be optimized for use in data fusion operations, rather
than for the representation of the profile. This change in paradigm raises the question of whether
a more functional representation of the retrieval products exists. New variables for the retrieval
products are proposed that have several advantages with respect to the standard retrieval products.
These variables, in the linear approximation of the forward model, are independent of the a priori
information used in the retrieval, allow us to represent the profile with any a priori information and
can be used directly to perform the data fusion of a set of measurements. Furthermore, the use of
these variables allows us to reduce the stored data to about one third of its volume with respect to the
use of standard retrieval products.

Keywords: retrieval products; data fusion; atmospheric vertical profiles; remote sensing

1. Introduction

The retrieval of the vertical profile of an atmospheric parameter requires the solution of
an inverse problem [1–3] that is often ill-posed [4], and in order to obtain a stable solution,
some a priori information has to be added in the retrieval process. A commonly used
method to retrieve atmospheric parameters using remote sensing is the optimal estimation
method [1], where the a priori information is represented by an a priori profile and by an a
priori covariance matrix (CM) of the unknown parameter, and the solution is given by the
profile corresponding to the maximum a posteriori probability calculated with the Bayes
theorem (see e.g., [5]).

Since, in the last few years, the number of satellite instruments that are sounding
the atmosphere has increased at a high rate, it is very likely that more instruments will
simultaneously measure either the same vertical profile or vertical profiles corresponding
to nearby geo-locations. In this case, the different retrieved profiles can be combined
into a single product that includes all of the available information, and we refer to this
combination as data fusion [6]. Accordingly, the choice of the a priori information and of the
vertical grid has to take into account the possibility that the result of the retrieval will be
fused with other measurements [7–11]. The data fusion approach is alternative to that of
the synergistic retrieval [12], in which all of the available observations are simultaneously
used in a single retrieval; for a detailed description and comparison of the two methods
see [13] and references therein.

In light of the increased requirement of fused products, we consider the possibility of
using new variables representing the retrieval products, with the purpose of simplifying
the subsequent fusion processes. A change in the retrieval products is proposed in view of
developing a shared formalism, which facilitates the interface between data providers and
data users, while ensuring a full exploitation of the available information. The advantages
of the new variables with respect to those currently used are analyzed on a theoretical basis.
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When the result of the retrieval is used in subsequent data fusion operations, the
vertical grid of the fusing products should be as fine as needed for the representation of the
information content of the final fused product, rather than of the information content of the
individual measurement, because, as shown in [14], in the latter case, some information is
lost. This can be easily done because the use of the a priori information allows for represent-
ing the profile on a vertical grid as fine as desired. Therefore, the retrieval products are no
longer chosen with the objective of providing the user with a useful representation of the
observed profile, but rather as the best input for the fusion process, possibly independent
of a priori information. Therefore, the question arises of whether by removing the objective
of the graphical representation of the profile a more functional data transfer of the retrieval
products can be considered.

Generally, in order to make complete use of the products in further processing such
as data fusion or data assimilation, the retrieval products are represented by means of the
retrieved profile, the averaging kernel matrix (AKM), the retrieval CM and the a priori
information used in the retrieval.

We propose new variables calculated starting from these standard retrieval products
that are a new way to save the information provided by the measurements and have several
advantages with respect to the standard quantities. In the linear approximation of the
forward model, the new variables are independent of the a priori information used in the
retrieval and decrease the data volume requirement. Furthermore, they can be used to
represent the profile with any a priori information and are quite suitable for subsequent
data fusion operations.

In Section 2, we recall useful notations and equations, linearize the transfer function
and introduce the new variables. In Section 3, we describe the advantages of the new
variables with respect to the standard retrieval products concerning representation of
the profile, data fusion and reduction of the data volume. Finally, in Section 4, we draw
the conclusions.

2. The New Variables
2.1. Recall of Notations and Equations

We assume to have retrieved the vertical profile x̂ of an atmospheric parameter from a
set of observations (radiances) y with the optimal estimation method [1], using a profile xa
and a CM Sa as a priori information. We indicate with f(x) the forward model, which allows
us to express the observations y as a function of the true profile xt by the following equation:

y = f(xt) + ε, (1)

where ε is the vector including both the noise errors of the observations and the forward
model errors, due to parameter errors and physical approximations of the forward model.
Generally, the forward model calculates the radiative transfer through the Earth’s atmo-
sphere and knowing the state of the atmosphere, the observation geometry (for example
either limb or nadir) and the characteristics of the instrument allows us to simulate the ra-
diances measured in the given conditions. In order to simplify the formulation, we assume
that there are no forward model errors and, therefore, ε includes only the noise errors of
the observations and is characterized by ⟨ε⟩ = 0 and

〈
εεT〉 = Sny. ⟨. . .⟩ indicates the mean

value, and Sny is the CM of the noise errors of the observations. A formulation that takes
into account forward model errors can be obtained defining new observations corrected for
the bias of the forward model errors and replacing Sny with the sum of Sny and the CM of
the random part of the forward model errors.

The sensitivity of x̂ to the true profile xt is described by the AKM A = ∂x̂
∂xt

, and the
retrieval errors of x̂ are described by the CM S, which is the sum of the CM of the noise
errors Sn and the CM of the smoothing errors, which are due to the smoothing of the
true profile caused by the averaging kernels, Ss. The AKM and the CMs are given by (see
Equations (3.28)–(31) in [1]):
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A =
(

F + S−1
a

)−1
F, (2)

Sn =
(

F + S−1
a

)−1
F
(

F + S−1
a

)−1
, (3)

Ss =
(

F + S−1
a

)−1
S−1

a

(
F + S−1

a

)−1
, (4)

S = Sn + Ss =
(

F + S−1
a

)−1
, (5)

where
F = KTS−1

ny K, (6)

with K being the Jacobian of the forward model f(x) calculated at x̂: K =
∂f(x)

∂x

∣∣∣∣
x=x̂

. The

matrix F is the Fisher information matrix [1,15], defined as

F =
∫

P(y|x)
(

∂ ln P(y|x)
∂x

)(
∂ ln P(y|x)

∂x

)T
dy, (7)

where P(y|x) is the conditional probability distribution to obtain y given x, which, con-
sidered as a function of x, is referred to as the likelihood function L(x) [16]. In the case that
the inverse problem can be solved without constrain (S−1

a = 0), that is when we can find
the solution of maximum likelihood, from Equations (3)–(5), we see that F is equal to the
inverse matrix of the CM of the retrieval errors (S), which coincides with the CM of the
noise errors (Sn). From this consideration, we can understand that the physical meaning
of F is quantifying the information provided by the observations y about the retrieved
vertical profile.

F depends on the a priori information used in the retrieval through K calculated at x̂,
which depends on xa and Sa. Therefore, the dependence of F on the a priori information is
due to the second order terms in the expansion of the forward model as a function of the
profile x, and consequently, when the linear approximation of the forward model is valid, F
is independent of the a priori information.

2.2. Linearization of the Transfer Function and Variables α

We can consider the whole measuring system, including both the observing system and
the retrieval method, as an operation that transforms the true profile xt into the retrieved
profile x̂ and, accordingly, defines the retrieved profile x̂ as a function of the true profile
xt. This function is referred to as the transfer function [1], and besides being a function of
xt, it is also a function of the noise errors ε of the observations y. This dependence can
be seen recalling that really x̂ depends on xt through the observations y; therefore, using
Equation (1) we can write x̂ = x̂(y) = x̂(f(xt) + ε), which we indicate as x̂ = x̂(xt, ε). We

note that
∂x̂(xt, ε)

∂ε
=

∂x̂(y)
∂y

∂y
∂ε

=
∂x̂(y)

∂y
because from Equation (1), it results that

∂y
∂ε

is the

identity matrix.
Expanding the transfer function at the first order around the a priori profile xt = xa

and zero errors ε = 0, we obtain:

x̂(xt, ε) ≃ x̂(xa, 0) +
∂x̂(xt, ε)

∂xt

∣∣∣∣ xt = xa
ε = 0

(xt − xa) +
∂x̂(xt, ε)

∂ε

∣∣∣∣ xt = xa
ε = 0

ε. (8)

Concerning the first term of the expansion, we recall that the retrieved profile obtained
with the optimal estimation method in the absence of errors is a weighted mean between
the true profile and the a priori profile. Therefore, when the true profile coincides with the a
priori profile, the retrieved profile in the absence of errors results in the a priori profile, that
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is x̂(xa, 0) = xa. This result is peculiar of the optimal estimation method, and if we wish to
extend the results of this article to retrieval methods different from the optimal estimation,
it is necessary to identify a linearization point for which we know the value assumed by the
transfer function. This consideration also applies to the complete data fusion method [6,17]
and to all the methods that are based on the expansion of the transfer function.

Under the approximation that the derivatives do not significantly depend on the point

where they are calculated, we have
∂x̂(xt, ε)

∂xt

∣∣∣∣ xt = xa
ε = 0

≃ ∂x̂(xt, ε)

∂xt

∣∣∣∣ xt = x̂
ε = 0

= A and

∂x̂(xt, ε)

∂ε

∣∣∣∣ xt = xa
ε = 0

≃ ∂x̂(xt, ε)

∂ε

∣∣∣∣ xt = x̂
ε = 0

=
∂x̂(y)

∂y

∣∣∣∣
y=f(xt)

= G, where G is the gain matrix

and is given by

G =
(

KTS−1
ny K + Sa

−1
)−1

KTS−1
ny =

(
F + Sa

−1
)−1

KTS−1
ny . (9)

On the basis of these considerations, Equation (8) becomes

x̂ = xa + A(xt − xa) + Gε. (10)

Following the approach described in the complete data fusion method [6,17], we
define the vector α:

α = x̂ − xa + Axa, (11)

which can be calculated knowing the retrieved profile, the a priori profile and the AKM.
Substituting x̂ from Equation (10) into Equation (11), we see that α is equal to

α = Axt + Gε (12)

and provides a measurement of the true profile made using the rows of A as weighting
functions. Equation (12), together with Equations (2) and (9), shows that α (differently from
x̂), in the linear approximation of the forward model is independent of the a priori profile
xa; however, through the expressions of A and G, it maintains dependence on the a priori
CM Sa.

2.3. The New Variables β

We define the vector β as

β = S−1α = S−1(x̂ − xa + Axa) (13)

and using Equations (2), (5), (9) and (10), we obtain

β = Fxt + δ, (14)

where the vector δ is given by
δ = KTS−1

ny ε. (15)

Equation (14) provides the physical meaning of β, that is the measurement of the true
profile in which the weighting functions are the rows of F, and δ is the vector that includes
the errors of this measurement. Furthermore, from Equations (14) and (15) we see that β, in
the linear approximation of the forward model, is uniquely determined independently of
both xa and Sa.

Using Equation (14), we calculate the sensitivity of β to the true profile, which is the
AKM of β

Aβ =
∂β

∂xt
= F (16)
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and from Equations (6), (14) and (15), we calculate the CM of β

Sβ =
〈
(β − ⟨β⟩)(β − ⟨β⟩)T

〉
=
〈

δδT
〉
= KTS−1

ny

〈
εεT
〉

S−1
ny K = F. (17)

Therefore, both the AKM and the CM of β coincide with the Fisher information
matrix F.

From Equation (13), we see that the dimensions of β are the inverse of the dimensions
of x̂: [β] = [x̂]−1; therefore, β does not represent a profile of the parameter that we aim
to retrieve. However, as we noticed in the introduction, this is not a problem, because
the objective of the retrieval products is no longer the graphical representation of the
profile, but to efficiently provide all of the information of the observations to subsequent
data analyses.

3. Advantages of the Use of the Variables β

3.1. Representation of the Profile Using Any Constraint

Using Equations (2), (5) and (13), we can obtain β from the retrieved profile x̂

β =
(

F + S−1
a

)[
x̂ − xa +

(
F + S−1

a

)−1
Fxa

]
=

=
(

F + S−1
a

)[
x̂ − xa +

(
F + S−1

a

)−1(
F + S−1

a − S−1
a

)
xa

]
=

=
(

F + S−1
a

)[
x̂ −

(
F + S−1

a

)−1
S−1

a xa

] (18)

and, multiplying on the left both sides of this equation by
(

F + S−1
a

)−1
, we can derive x̂

from β:

x̂ =
(

F + S−1
a

)−1(
β + S−1

a xa

)
. (19)

Equation (19) can be used to recover the original retrieved profile using the a priori
information xa and Sa used in the retrieval procedure, but since in the linear approxima-
tion of the forward model F and β are independent of the a priori information, in this
approximation, Equation (19) can be used to produce a profile with any a priori information
we like.

3.2. Data Fusion

If we suppose to have N independent measurements x̂i of the same vertical profile xt,
obtained with the optimal estimation method and characterized by the AKMs Ai and CMs
of the retrieval errors Si, we can combine these measurements in a single vertical profile
that includes the information of all of the N measurements using the complete data fusion
formula [17]

xf =

(
N

∑
i=1

S−1
i Ai + S−1

a

)−1( N

∑
i=1

S−1
i αi + S−1

a xa

)
(20)

where xa and Sa are the a priori profile and CM used to constrain the fused profile xf, and
αi are the vectors defined by Equation (11) for each measurement:

αi = x̂i − xai + Aixai (21)

where xai is the a priori profile used in the retrieval of the i-th measurement. The use of
Equation (20) is equivalent to perform the data fusion using the approach of the Kalman
filter [1,18], as shown in [19]

Using Equations (2), (5) and (13), we can rewrite Equation (20) as
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xf =

(
N

∑
i=1

Fi + S−1
a

)−1( N

∑
i=1

βi + S−1
a xa

)
(22)

where βi and Fi are the β and F quantities related to each one of the N measurements.
Equation (22) shows that the vectors βi and the Fisher information matrices Fi are the only
quantities needed to perform the data fusion of a set of measurements.

3.3. Reduction in the Data Volume

In this subsection, we compare the data volume required by the standard retrieval
products with that required by the new variables β. In the case of standard retrieval
products, the quantities that have to be stored to allow for the complete use of the products,
in further processing of the data such as data fusion or data assimilation, are: x̂, A, S and
xa. Sa is not necessary, because it can be obtained from A and S by means of

Sa = (I − A)−1S (23)

which is derived using Equations (2) and (5).
If we suppose that the profile has n components, then A is composed by n2 values and

S by n(n + 1)/2 independent values (because it is a symmetric matrix). Therefore, in the
case of standard retrieval products, we have to store (3n2 + 5n)/2 values.

In the case of the new variables β, the quantities that have to be stored to allow for
the complete use of the products are β and F (which is a symmetric matrix); therefore,
the values that have to be stored are (n2 + 3n)/2. In case we wish give more complete
information specifying where the Jacobian K is calculated, we can also give x̂, and the
values that have to be stored are (n2 + 5n)/2. In Table 1, we summarize the data volume of
the quantities stored when using the standard retrieval products and the new variables.

Table 1. Data volume of the quantities stored when using the standard retrieval products and the
new variables.

Standard Products New Variables

Quantities Number of Values Quantities Number of Values

x̂ n β n
A n2 F n(n + 1)/2
S n(n + 1)/2
xa n

Total number of values

(3n2 + 5n)/2 (n2 + 3n)/2

Since the main storage requirement is due to the square term, the use of the variables
β allows us to reduce the stored data to about one-third of its volume with respect to the
use of the standard retrieval products.

4. Conclusions

With the increasing use of the atmospheric profiles retrieved from atmospheric satel-
lite observations in data fusion operations, the requirement that these products provide
a representation of the observed quantity is less important, and other features, such as
completeness and compactness of the information, are becoming more relevant. In light of
this, new retrieval variables have been proposed when the retrieval has been performed
with the optimal estimation method and the first order approximation of the transfer
function is appropriate. These variables, referred to as β, are the measurement of the true
profile obtained using the rows of the Fisher information matrix as weighting functions.
This measurement does not provide a representation of the profile, but has several useful
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properties: in the linear approximation of the forward model, it is independent of the a
priori information used in the retrieval, and both the AKM and the CM of β coincide with
the Fisher information matrix. Furthermore, the variables β can be used to obtain the repre-
sentation of the vertical profile with an a priori information selected by the user, and they
can be directly used to perform the data fusion of a set of measurements performed with
different instruments. For the exploitation of these products in the subsequent operations,
it is sufficient to provide β and the Fisher information matrix F, which fully characterizes
the measurement, being both its AKM and its CM. Accordingly, the use of the variables β
allows us to reduce the stored data to about one-third of its volume with respect to the use
of the standard products. These properties of the variables β make them a perfect retrieval
product when further processing is performed by the users and encourage the possibility of
considering finer retrieval grids, possibly concerted by the scientific community rather than
determined by instrumental considerations. On the other hand, the standard products have
the advantage of providing a graphical representation of the measured profiles. However,
it is important to notice that the possibility of a graphical representation is obtained at the
cost of a constraint on the adopted retrieval grid. The retrieval grid is usually limited in
extension and density of points in order to avoid a too large bias of the a priori information,
and different instruments freely use different retrieval grids that complicate comparisons.
A storage procedure that does not depend on the a priori information can use a retrieval
grid commonly used with the other instruments and avoid these difficulties.

The communities of data providers and data users are invited to test and validate the
efficiency of this new interface.
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