
Citation: Sigauke, C.; Ravele, T.

Estimating Concurrent Probabilities of

Compound Extremes: An Analysis of

Temperature and Rainfall Events in

the Limpopo Lowveld Region of

South Africa. Atmosphere 2024, 15, 557.

https://doi.org/10.3390/

atmos15050557

Academic Editor: Masoud Rostami

Received: 30 March 2024

Revised: 27 April 2024

Accepted: 28 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Estimating Concurrent Probabilities of Compound Extremes:
An Analysis of Temperature and Rainfall Events in the Limpopo
Lowveld Region of South Africa
Caston Sigauke *,† and Thakhani Ravele †

Department of Mathematical and Computational Sciences, University of Venda Private Bag X5050,
Thohoyandou 0950, South Africa; thakhani.ravele@mvulaunivenac.onmicrosoft.com
* Correspondence: caston.sigauke@univen.ac.za; Tel.: +27-15-962-8135
† These authors contributed equally to this work.

Abstract: In recent years, there has been increasing interest in the joint modelling of compound
extreme events such as high temperatures and low rainfall. The increase in the frequency of occurrence
of these events in many regions has necessitated the development of models for estimating the
concurrent probabilities of such compound extreme events. The current study discusses an application
of copula models in predicting the concurrent probabilities of compound low rainfall and high-
temperature events using data from the Lowveld region of the Limpopo province in South Africa.
The second stage discussed two indicators for monitoring compound high temperature and low
rainfall events. Empirical results from the study show that elevations ranging from 100–350 m,
350–700 m and 700–1200 m exhibit varying probabilities of experiencing drought, with mild droughts
having approximately 64%, 66%, and 65% chances, moderate droughts around 36%, 39%, and 38%,
and severe droughts at approximately 16%, 19%, and 18%, respectively. Furthermore, the logistic
regression models incorporating the southern oscillation index as a covariate yielded comparable
results of copula-based models. The methodology discussed in this paper is robust and can be
applied to similar datasets in any regional setting globally. These findings could be useful to disaster
management decision makers, helping them formulate effective mitigation strategies and emergency
response plans.

Keywords: bivariate extremes; copulas; drought; joint extreme events; rainfall deficit; temperature

1. Introduction
1.1. Overview

The current study discusses applying copula models to predict the concurrent probabil-
ities of compound low-rainfall and high-temperature events using data from the Lowveld
region of the Limpopo province in South Africa. In order to develop effective climate
adaptation and risk-management strategies, it is therefore important to accurately predict
the joint behaviour of high temperature and low rainfall. There is a strong correlation
between the frequency and impact of extreme events, such as heat waves and droughts.
However, extreme events can have a greater impact when they occur in a particular order
or sequence. Drought and heat waves occurring simultaneously have a greater effect than
univariate counterparts [1]. A simultaneous occurrence of extreme events can significantly
impact the ecosystem and society. Climate change and variability can be mitigated by
predicting changes in concurrent climate extremes [2].

A few studies have examined concurrent climatic extremes, but most analysed changes
in a single climate variable. Climate extremes, such as extreme temperature and rainfall, are
critical in determining drought severity and risk. In order to manage and mitigate natural
hazards, it is imperative to understand rainfall and temperature trends, their probabilistic
characteristics, and how they relate to future climate changes [2].
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1.2. A Survey of the Related Literature

Due to the increased threat to human society and ecosystems caused by extreme
weather events, there has been a growing interest in the joint modelling of high temper-
atures and low rainfall. Several approaches are used in modelling such events, but the
copula modelling framework has gained much interest.

An overview of copula modelling is discussed in detail by [3]. The authors investi-
gated the dependence between two random variables using copulas. Although the paper
emphasised inference and testing procedures, the authors also presented an application of
the proposed methodology to modelling Harricana River data.

Bivariate extreme value-copula models are powerful in modelling the joint distribution
of extreme compound events such as temperature and rainfall extremes [4]. The bivariate
extreme value-copula model has several advantages. It can capture the tail dependence
between compound extreme events such as temperature and rainfall. In addition, it allows
for a more flexible joint distribution modelling, including nonlinear relationships between
extreme compound events [4]. In support of bivariate extreme-value copulas, ref. [5] argues
that extreme-value copulas are among the most commonly used copula families since they
can capture asymmetry well and are also known to be very flexible.

A recent study in modelling drought risk using bivariate spatial extreme is that of [6].
The authors used temperature and rainfall data to model meteorological drought. Max-
stable processes were used in the study to capture the spatio-temporal dependencies of
temperature and rainfall data from the Limpopo Lowveld region of South Africa. Results
from this study showed that the Schlather model with various covariance functions was a
good fit for both data sets compared to the Smith model based on the Gaussian covariance
function. However, in this study, the authors did not estimate concurrent probabilities.

In another study, ref. [7], the author used the multivariate frequency analysis to
quantify drought risk in the contiguous United States (CONUS). This was carried out by
analysing the temperature and rainfall data of CONUS. Results from this study showed
that the dependence between low rainfall and high temperature could be positive, negative,
or insignificant and that there were no major changes in the last three years. Serinaldi [7]
argues that the probability of occurrence of the compound event depends largely on the
variables selected and how they are combined.

Furthermore, ref. [8] used Indian data to investigate the concurrence of meteoro-
logical droughts and heatwaves. Both variables’ extremes are modelled using the peaks
over threshold method. Empirical results from this study suggest that there could be
an increase in the frequency of concurrent meteorological droughts and heatwaves in
India. Zscheischler and Seneviratne [9] investigated how the dependence structure be-
tween meteorological variables affects the frequency of occurrence of multivariate extremes.
They argue that to fully understand the changes in climate extremes, including their im-
pacts and the designing of adaptation strategies, it is important to use the multivariate
modelling framework.

A review of the different approaches used in the characterisation and modelling com-
pound extremes in hydroclimatology is given by [10]. The approaches discussed include
the indicator approach, empirical approach, multivariate distribution, quantile regression,
and Markov chain model. The authors highlight the limitations of the data available for
modelling extremes and the challenges of modelling asymmetric tail dependencies of
multiple events. In another study, ref. [11] conducted a comparative analysis of traditional
empirical methods and copula models to estimate the probability of compound climate
extremes, i.e., hot, dry and windy events, using data from the central United States of
America. In a separate study, ref. [12] used copula models to establish the characteristics
and the probability of the occurrence of different combinations of water discharge and
several water quality indicators. Empirical results from this study showed that the Gaus-
sian copula is the best function for describing the joint distribution of water discharge and
water quality.
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McKee et al. [13] utilised the standardised rainfall index (SPI) to classify droughts into
four primary categories. Specifically, they defined mild droughts when SPI falls within the
range of 0 to −0.99, moderate droughts for SPI between −1 and −1.49, severe droughts
for SPI in the range of −1.5 to −1.99, and extreme droughts for SPI less than or equal to
−2. The authors argued that for SPI values of −2, −1, 0, 1, and 2, there are associated
probabilities that the SPI will be less than or equal to the values above, namely, 0.02, 0.16,
0.5, 0.84, and 0.92, respectively.

Drought is recognised as a complex phenomenon. Esit and Yuce [14] in their study
argue that a comprehensive analysis of drought necessitates modelling it with multiple
variables. The authors used the SPI to characterise drought and utilised various bivariate
copula functions in their study, considering different elevation levels. Carrillo et al. [15]
support the modelling of drought considering different elevation levels and claim that
considering different elevation levels is important. They argue that in regions characterised
by complex topography, including elevation gradients can significantly contribute to an
improved understanding of drought modelling.

Using the SPI values for two sub-seasons of the rain season, October to December and
January to March, ref. [16] assessed the impact of elevation on the severity of drought and
frequency of occurrence using South African data from the Free State province over the
period 1960–2013. Empirical results showed that highland areas had the highest frequency
of droughts. However, the authors noted that extreme droughts occurred in the low-lying
areas. It also stated that variations in altitude have notable impacts on the severity of
drought at the onset of the summer compared to the late summer season. In a related study
using two drought indices, ref. [17] assessed meteorological drought and wet conditions
using data from the KwaZulu-Natal province in South Africa. This study showed increased
drought frequency and severity with the most extreme dry periods experienced between
the 1992–1993 and 2015–2016 summer seasons.

1.3. Research Highlights

Based on the literature survey in Section 1.2, the highlights and contributions of this
study are as follows:

• Elevations ranging from 100–350 m, 350–700 m, and 700–1200 m show varying proba-
bilities of experiencing drought, with mild droughts having approximately 64%, 66%,
and 65% chances, moderate droughts around 36%, 39%, and 38%, and severe droughts
at approximately 16%, 19%, and 18% respectively.

• Specific elevation clusters exhibit distinct frequency probabilities for mild and mod-
erate drought occurrences, such as 0.43 and 0.03 for 100–350 m, 0.32 and 0.02 for
350–700 m, and 0.02 for mild drought at 700–1200 m elevations.

• Logistic regression models incorporating the Southern Oscillation Index (SOI) as a
covariate yielded comparable results to copula-based models, demonstrating strong
predictive performance for compound low rainfall and high temperatures during the
2015/2016 season.

• The monitoring system captured the major drought years in Southern Africa between
1970 and 2020, which are the 1982/1983, 1991/1992, 2002/2003, 2015/2016, and
2019/2020 seasons.

The remainder of the paper is structured as follows: Section 2 elaborates on the
methodology. Section 3 presents the empirical results, followed by the discussion in
Section 4, and the conclusion in Section 5.

2. Methods

It is well known that rainfall is dependent on temperature. As temperature increases,
rainfall also increases. However, there is a decrease in rainfall for high temperatures, result-
ing in meteorological drought. Due to the dependence between these two meteorological
variables, their joint distribution is best described by copula functions. The present study is
an extension of the work done by [6].
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2.1. Bivariate Copulas

A copula C is a joint distribution function of standard uniform random variables and
is given as [18].

C(u1, . . . , un) = P(U1 ≤ u1, . . . , Ud ≤ un), (1)

where Ui = U(0, 1)∀i = 1, . . . , n. Copulas capture the dependence structure of random
variables very well, separately from the marginal distributions. Let Y denote rainfall and X
temperature. The distribution function of X and Y is given as ([18])

G(y, x) = C(FY(y), FX(x)) = C(v, u), (2)

where U = FX(x) and V = FY(y) are standard uniform variables. There are three main
classes of copulas: the elliptical, Archimedean, and extreme value copulas. In this study,
the elliptical and Archimedean copulas were used. These copulas are known to be flexible
in modelling the joint distribution of variables with different marginal distributions.

Drought risk is typically associated with inadequate rainfall. Low rainfall decreases
soil moisture, impacting vegetation, agriculture, and water supplies. Temperature, on
the other hand, affects evaporation rates, potentially intensifying drought conditions.
Considering this, P(V < v, U > u) would provide a more comprehensive understanding
of the joint impact of rain and temperature on drought risk. From Figure 1, region 4 is our
region of interest in which we need to calculate P(V < v, U > u).
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Figure 1. Scatter plot of temperature and rainfall showing the regions of interest for cluster 2. Rainfall
and temperature anomalies were used. The blue horizontal line refers to a the reference rainfall while
the red line is the reference temperature both used for comparison.

The joint probability P(V < v, U > u) quantifies the probability of experiencing low
rainfall with high temperatures above a certain threshold. This probability captures the
joint impact of rain and temperature on drought risk by considering situations where
both contribute to drought conditions. It helps assess the likelihood of drought risk with
insufficient rainfall and high temperatures.

On the other hand, the conditional probability P(V < v, U > u) focuses on rainfall
alone, given a specific temperature threshold. While it provides information on the like-
lihood of low rainfall during high-temperature periods, it does not explicitly capture the
joint impact of both variables. Therefore, P(V < v, U > u) is better suited for describing
the joint impact of rain and temperature on drought risk as it considers the combined
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effects of these variables, providing a more holistic understanding of the conditions leading
to drought.

2.1.1. Elliptical Copulas

Elliptical copulas are a class of copulas used in multivariate statistics to model the
dependence structure between random variables. These copulas are based on elliptical dis-
tributions, which include well-known distributions like the multivariate normal (Gaussian)
distribution, the Student’s t-distribution, and the multivariate Laplace distribution. Ellipti-
cal copulas are useful for modelling symmetric, linear, and well-behaved dependencies.
Two common models within the elliptical copulas are the Gaussian and the t copulas ([19]).

The choice between Gaussian and t copulas depends on the specific characteristics of
the data and the modelling objectives. Gaussian copulas are simpler but may not capture
extreme events well, while t copulas offer more flexibility but come with greater complexity
and estimation challenges ([19]).

The Gaussian Copula

The Gaussian copula is defined as ([19])

CGauss
P = Φ(Φ−1(u1), . . . , Φ(Φ−1(ud)), (3)

where Φ(.) is the standard univariate normal distribution function (DF) and ΦP(.) repre-
sents the joint CDF of X.

The t Copula

The t copula is defined as ([19])

Ct
v,P(u) = tv,P(t−1

v (u1), . . . , t−1
v,P(ud)), (4)

where P is a correlation matrix, tv,P is the joint DF of X ∼ td(v, 0, P) and tv is the standard
univariate DF of a t− distribution with v degrees of freedom.

2.1.2. Archimedean Copulas

Archimedean copulas have been widely used because they are convenient and easy
to use ([20]), comprise different families, and possess several nice properties ([21]). The
Archimedean copula produces a much better dependency model due to its more tractable
mathematical properties. Archimedean copulas contain sufficient dependence models for
modelling upper and lower tail dependences. Naifar [18] defines the bivariate Archimedean
copula equation as given in Equation (5).

Carch(u, v) = ϕ−1(ϕ(u) + ϕ(v)
)
, (5)

where ϕ denotes a generator function of the copula, if for all 0 ≤ u1, u2 ≤ 1. Within
the Archimedean copula, there are a variety of different dependency structures. These
structures simplify the construction of bivariate distributions in many families ([18]).
Two Archimedean copula functions are considered in this study: Frank and Gumbel.

The Frank Copula

Frank copula was first introduced by [22] and is defined by,

CFrank
θ (u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)
(e−θ − 1)

)
, (6)

where θ denotes the dependence parameter. The upper and lower Fréchet–Hoeffding
bounds can be determined using the θ. Modelling data with weak tail dependence is
suitable for this model since it is not tail-dependent (λu = λL = 0).
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The Gumbel Copula

Gumbel copula was first introduced by [23] and is defined by Equation (7).

CGumbel
θ (u, v) = exp

(
−

[
(− ln u)θ + (− ln v)θ

] 1
θ

)
; 0 ≤ u, v ≤ 1, (7)

where the parameter θ ∈ [1, ∞) controls the degree of dependence between u and v. If
θ = 1, the bivariate Gumbel copula converges to complete independence, and if θ → 0,
perfect independence is achieved. The bivariate Gumbel parameter (θ) and Kendall’s tau
(τ) are integrated by the following formula:

τk = 1 − θ−1. (8)

Bivariate Gumbel copula upper (λU) and lower (λL) tail dependence estimation is carried
out by the following functions:

λU = 2 − 2
1
θ and λL = 0.

Estimation of the parameters of the copula models will be completed using the maxi-
mum likelihood method.

Table 1 presents the relationship between bivariate elliptical and Archimedean copula
parameters (θ), tail-dependence coefficients: Kendall’s tau (τ) and upper and lower tail
dependence, λU and λL, respectively.

Table 1. Bivariate Archimedean copulas.

Family θ Kendal’s Tau (τ) Upper Tail (λU ) Lower Tail (λL)

Gaussian
t

Frank −∞ < θ < ∞ 1 − 4
θ [Dj(θ)] 0 0

Gumbel θ ≥ 1 θ−1
θ 2 − 2

1
θ 0

2.2. Joint and Conditional Distributions
2.2.1. Joint Probability Distribution

The joint probability distribution of low rainfall and high temperature is given
in Equation (9).

P(V < v, U > u) = P(V ≤ v)− P(V ≤ v, U ≤ u) (9)

2.2.2. Conditional Distribution

The conditional distribution of compound high temperature and low rainfall is given
in Equation (10).

P(V < v|U > u) = P(V<v,U>u)
P(U>u)

But P(V < v, U > u) = P(V ≤ v)− P(V ≤ v, U ≤ u) Joint Probability

=⇒ P(V < v|U > u) = P(V≤v)−P(V≤v,U≤u)
PU>u

= P(V≤v)−P(V≤v,U≤u)
1−P(U≤u)

= C(v,1)−C(v,u)
1−C(1,u)

= v−C(v,u)
1−u

(10)
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2.3. Monitoring Compound Dry and Hot Events

We use two indicators to monitor compound low rainfall and high temperature
events. The first is the standardised compound event indicator (SCEI) discussed in [24].
This indicator is based on the joint probability of the two weather variables, rainfall and
temperature, in this study.

SCEI = Φ−1(F(P(Y ≤ y, X > x))) (11)

According to [24], lower SCEI values indicate more severe occurrences of compound dry
and hot events.

The second indicator assesses the concurrence of low rainfall and high temperature for
specific regions. For given thresholds, po and to of rainfall and temperature, respectively,
the occurrence of a compound low rainfall and high temperature event can be defined as
given in Equation (12) ([24]).

I =

{
1, if P ≤ po, T ≥ to,
0, otherwise,

(12)

Table 2 summarises the drought classification discussed by [24]. We present only part
of the table given in [24].

Table 2. SPI Drought classification ([24]).

SPI Values Drought Category Time in Category

0 to −0.99 mild drought 24%
−1.00 to −1.49 moderate drought 9.2%
1.50 to −1.99 severe drought 4.4%

≤−2.00 extreme drought 2.3%

2.4. Prediction of The Occurrences of Compound Events

To predict the occurrence of compound events, i.e., when Z = 1, using the Southern
Oscillation Index (SOI) as a covariate, we applied the logistic regression model outlined
by [24] and represented by Equation (13).

ln
[

θ

1 − θ

]
= α + βx, (13)

where the probability of occurrence P(Z = 1|x) is denoted by θ, α represents the constant,
β is the regression coefficient, and x denotes a covariate, which, in this context, is the
SOI. Consequently, the one-month-ahead forecast of the probability of compound low
rainfall and high temperature events occurring (i.e., Z = 1) can be expressed as shown
in Equation (14).

P(Zt+1 = 1|x) = 1
1 + exp[−(α + βxt)]

(14)

The aim is to evaluate the influence of SOI on the prediction of compound event
occurrences, specifically when Z = 1.

3. Empirical Results
3.1. Data and Study Area

The study area for this research is found in the Lowveld region of the Limpopo
Province in South Africa, situated between latitude −22◦ and −24◦ and longitude 30◦ and
33◦. This area is known to experience warm temperatures throughout the year and has
an average annual rainfall of 500 mm from October to March ([25]). In this study, we use
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monthly rainfall and temperature data. We consider only summer months, i.e., October
to March.

The top and bottom panels of Figure 2 show maps illustrating the average annual
precipitation and the average maximum temperature across the study area, respectively.
These maps also identify clusters corresponding to annual average precipitation and
maximum temperature within the study region.

Figure 2. Top panel: Annual average rainfall. Bottom panel: Annual maximum temperature. Source: [6].

The study area is split into three subregions based on the following elevation (al-
titude) intervals: subregion one 100–350 m, subregion two 350–700 m, and subregion
three 700–1200 m, respectively. The average temperatures in these three subregions are:
32.9◦, 31.9◦ and 29.4◦, respectively. The average rainfall in these three subregions 1–3
during the rainy season, October to March of each year, are 73.4 mm, 73.9 mm, and
110.1 mm, respectively.

This study uses anomalies of both temperature and rainfall data. Using anomalies can
help remove long-term trends, seasonality, and other confounding factors, making it easier



Atmosphere 2024, 15, 557 9 of 17

to analyse and model the joint distribution. The metadata, a summary of the grid points, is
given in Table A1. The three groups based on elevation are as follows:

• Cluster 1 (elevation 100–350 m) has the following grid points: r4c6, r2c6, r3c6, r1c6,
r4c5, r3c5, r2c5, r2c4, r1c4, r1c5 and r4c4 with n2 = 3366 observations.

• Cluster 2 (elevation 350–700 m) has the following grid points: r2c3, r3c4, r4c3, r3c3,
r1c3, r2c2, r3c2,r4c2, r1c2, r1c1 and r2c1 with n2 = 3366 observations.

• Cluster 3 (elevation 700–1200 m) has the following grid points: r4c1 and r3c1 with
n2 = 612 observations.

We fitted theoretical distributions to precipitation and temperature data. A summary
of the results is given in Table 3.

Table 3. Distribution fitting to the data.

Elevation 100–350 m Elevation 350–700 m Elevation 700–1200 m

Distribution Temp Rain Temp Rain Temp Rain

Gamma shape = 2561.8 (13.7) shape = 2.46 (0.056) shape = 335.68 (8.18) Shape = 2.155 (0.0489) shape = 346.85 (19.82)
rate = 17.1 (0.42) rate = 0.03 (0.0008) rate = 10.51 (0.26) rate = 0.029 (0.0007) rate = 11.81 (0.68)

Weibull shape = 1.67 (0.02)
scale = 123.35

3.2. Exploratory Data Analysis

Figure 3 shows histograms (diagonal) superimposed with kernel densities, pairwise
scatter plots (bottom left), and pairwise Kendall’s rank correlation coefficient (top right) of
temperature and rainfall data for cluster 2 (elevation 350–700 m). The figures for clusters 1
and 3 are given in Figrues A1 and A2, respectively.

temp_anom

−6 −4 −2 0 2 4

−5
0

0
50

10
0

15
0

20
0

25
0

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

● ●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●●

● ●
●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●●● ●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●●

●

● ●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

−50 0 50 100 150 200 250

−6
−4

−2
0

2
4

−0.23

rain_anom

Figure 3. Cluster 2: Histograms (diagonal), a scatter plot of the rainfall and temperature (bottom
left). The red dot represents the reference point (0,0). Kendall’s rank correlation coefficient (top right)
of temperature and rainfall data for Cluster 2 (elevation 350–700 m).

Based on Kendall’s rank correlation coefficient values for Cluster 1 (elevation 100–350 m),
Cluster 2 (elevation 350–700 m), and Cluster 3 (elevation 700–1200 m), rainfall and temper-
ature tend to be more negatively correlated for cluster 2 and a very weak correlation in
cluster 1.
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Figure 4 shows plots of rainfall, SOI, and temperature, accompanied by box plots
displaying their distributions for Cluster 1, corresponding to elevations ranging from
100 to 350 m. High rainfall is observed during the December to February period.
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Figure 4. Plots for Cluster 1 (elevation 100–350 m).

3.3. Results

A formal goodness-of-fit test was carried out. The choice of the significance level (α) de-
pends on the trade-off between type I and type II errors. A lower α, such as 0.01 compared
to 0.05, reduces the risk of type I error, i.e., false positives. In this study, α = 0.01 will be
used. The parameter estimates for the best-fitting copula function for all three clusters are
given in Table 4.

Table 4. (a) Parameter estimation for the copula functions: Cluster 1 (Elevation 100–350 m); (b) Pa-
rameter estimation for the copula functions Cluster 2 (Elevation 350–700 m); (c) Parameter estimation
for the copula functions Cluster 3 (Elevation 700–1200 m).

Family Copula Estimate (ρ) ℓ AIC BIC λU λL τ

(a)

Arhimedean Frank 0.1710 1.384 −0.7680 5.353 0 0 0.0190

(b)

Arhimedean Frank −1.1137 57.45 −112.89 −106.77 0 0 −0.1224

(c)

Arhimedean Frank −0.8171 5.61 −9.220 −4.803 0 0 −0.0902
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Estimating Concurrent Probabilities

Approximate temperature ranges for the different levels of drought severity in the
Limpopo Lowveld region of South Africa might be as follows:

• Mild Drought: Slightly above-average temperatures, typically 1–3 °C above the long-
term average.

• Moderate Drought: Elevated temperatures, often in the 3–5 °C range above the long-
term average.

• Severe Drought: High temperatures, commonly exceeding 5 °C above the long-term average.
• Extreme Drought: High temperatures, potentially reaching 7 °C or more above the

long-term average.

Average rainfall and temperature in the study area during the rainy season, October
to March, are 74 mm and 32 °C, respectively. The drought characterisation based on the
rainfall and temperature ranges of values is given in Table 5. These ranges were based on
the information in Table 2 third column, i.e., time in the category given as a percentage.

As discussed in Section 2.1, the joint probability considers the simultaneous occurrence
of low rainfall and high temperature, key factors influencing drought conditions. It provides
insights into the combined effect of these variables, indicating when both conditions align
to contribute to drought risk.

Table 5. Drought characterisation based on rainfall and temperature ranges of values.

Drought Characterisation Rainfall (mm) Temperature (Degrees Celsius)

Mild 59 < Y ≤ 74 32 < X ≤ 35

Moderate 52 < Y ≤ 59 35 < X ≤ 37

Severe 44 < Y ≤ 52 37 < X ≤ 40

Extreme Y ≤ 44 X > 40

Tables 6–8 show the results from the computation of the joint and conditional proba-
bilities for the three elevation groups: 100–350 m, 350–700 m, and 700–1200 m, respectively.
The conditional probabilities are significantly higher compared to the joint probabilities.
This result is expected since there is some dependency between rainfall and temperature,
meaning the occurrence of one variable affects the probability of another.

Table 9 summarises the number of low-rainfall and high-temperature occurrences for
the four drought categories. The values in set braces denote the number of occurrences
followed by the probability of the occurrence. In square brackets are the probabilities from
the logistic regression based on SOI as the covariate. The comparable probabilities suggest
that SOI is a good predictor of the joint probabilities of the compound low rainfall and
high temperatures.

Table 6. (a) Joint and conditional probabilities based on the Frank copula (Elevation 100–350 m);

(b) P(Y < y, X > x) = ∑∀xy [Y<y,X>x]
n and P(Y < y|X > x) = ∑∀xy [Y<y,X>x]

∑∀x [X>x] (Elevation 100–350 m).

Joint Probability Conditional Probability Drought

(a)

P(Y < 74, X > 32) = 0.6378 P(Y < 74|X > 32) = 0.7973 Mild
P(Y < 59, X > 35) = 0.3551 P(Y < 59|X > 32) = 0.5959 Moderate
P(Y < 52, X > 37) = 0.1551 P(Y < 52|X > 32) = 0.3959 Severe
P(Y < 44, X > 40) = 0.0378 P(Y < 44|X > 32) = 0.1972 Extreme

(b)

P(Y < 74, X > 32) = 0.6316 P(Y < 74|X > 32) = 0.7889 Mild
P(Y < 59, X > 35) = 0.3523 P(Y < 59|X > 32) = 0.5996 Moderate
P(Y < 52, X > 37) = 0.1554 P(Y < 52|X > 32) = 0.3688 Severe
P(Y < 44, X > 40) = 0.0487 P(Y < 44|X > 32) = 0.1859 Extreme
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Table 7. (a) Joint and conditional probabilities based on the Frank copula (Elevation 350–700 m);

(b) P(Y < y, X > x) = ∑∀xy [Y<y,X>x]
n and P(Y < y|X > x) = ∑∀xy [Y<y,X>x]

∑∀x [X>x] (Elevation 100–350 m).

Joint Probability Conditional Probability Drought

(a)

P(Y < 74, X > 32) = 0.6566 P(Y < 74|X > 32) = 0.8207 Mild
P(Y < 59, X > 35) = 0.3898 P(Y < 59|X > 32) = 0.6273 Moderate
P(Y < 52, X > 37) = 0.1898 P(Y < 52|X > 32) = 0.4261 Severe
P(Y < 44, X > 40) = 0.0566 P(Y < 44|X > 32) = 0.2180 Extreme

(b)

P(Y < 74, X > 32) = 0.6480 P(Y < 74|X > 32) = 0.8099 Mild
P(Y < 59, X > 35) = 0.3734 P(Y < 59|X > 32) = 0.6045 Moderate
P(Y < 52, X > 37) = 0.1916 P(Y < 52|X > 32) = 0.4181 Severe
P(Y < 44, X > 40) = 0.0663 P(Y < 44|X > 32) = 0.2094 Extreme

Table 8. (a) Joint and conditional probabilities based on the Frank copula (Elevation 700–1200 m);

(b) P(Y < y, X > x) = ∑∀xy [Y<y,X>x]
n and P(Y < y|X > x) = ∑∀xy [Y<y,X>x]

∑∀x [X>x] (Elevation 700–1200 m).

Joint Probability Conditional Probability Drought

(a)

P(Y < 74, X > 32) = 0.6509 P(Y < 74|X > 32) = 0.8136 Mild
P(Y < 59, X > 35) = 0.3835 P(Y < 59|X > 32) = 0.6197 Moderate
P(Y < 52, X > 37) = 0.1835 P(Y < 52|X > 32) = 0.4191 Severe
P(Y < 44, X > 40) = 0.0509 P(Y < 44|X > 32) = 0.2123 Extreme

(b)

P(Y < 74, X > 32) = 0.1144 P(Y < 74|X > 32) = 0.7873 Mild
P(Y < 59, X > 35) = 0.0683 P(Y < 59|X > 32) = 0.5991 Moderate
P(Y < 52, X > 37) = 0.0315 P(Y < 52|X > 32) = 0.3988 Severe
P(Y < 44, X > 40) = 0.0119 P(Y < 44|X > 32) = 0.2168 Extreme

Table 9. (a) Number of occurrences for Cluster 1 (Elevation: 100–350 m (n = 3366)); (b) Number of
occurrences for Cluster 2 (Elevation: 350–700 m (n = 3366)); (c) Number of occurrences for Cluster 3
(Elevation: 700–1200 m (n = 612)).

Indicator Mild Moderate Severe Extreme

(a)

P(Y < 74, X > 32) P(Y < 59, X > 35) P(Y < 52, X > 37) P(Y < 44, X > 40)

I = 1 (1464) 0.4349 [0.3039] (99) 0.0294 [0.0023] (0) 0 [0] (0) 0 [0]
I = 0 (1902) 0.5651 [0.6961] (3267) 0.9706 [ 0.9977] (3366) 1 [1] (3366) 1 [1]

(b)

P(Y < 74, X > 32) P(Y < 59, X > 35) P(Y < 52, X > 37) P(Y < 44, X > 40)

I = 1 (1088) 0.3232 [0.1982] (72) 0.0214 [0.0027] (0) 0 [0] (0) 0 [0]
I = 0 (2278) 0.6768 [0.8018] (3294) 0.9786 [0.9973] (3366) 1 [1] (3366) 1 [1]

(c)

P(Y < 74, X > 32) P(Y < 59, X > 35) P(Y < 52, X > 37) P(Y < 44, X > 40)

I = 1 (14) 0.0229 [ 0.0021] (0) 0 [0] (0) 0 [0] (0) 0 [0]
I = 0 (598) 0.9771[0.9979] (612) 1 [1] (612) 1 [1] (612) 1 [1]

The number of occurrences for mild drought P(Y ≤ 74, X ≥ 32) (Cluster 1), P(Y ≤ 74,
X ≥ 32) (Cluster 2) and P(Y ≤ 74, X ≥ 32) (Cluster 3) are shown in Figures 5–7, respec-
tively. The monitoring system captured the major drought years in Southern Africa between
1970 and 2020, which are 1982/1983, 1991/1992, 2002/2003, 2015/2016, and the 2019/2020
seasons [26]. Out of the 1088 incidents of mild drought from cluster 2, 85 were for the
2015/2016 period, which was seen as the most severe drought for the sampling period
2000–2020. These results are consistent with those of [26].
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Figure 5. Frequency of indicator ones for mild drought P(Y ≤ 74, X ≥ 32). Cluster 1 (Elevation:
100–350 m).

1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014 2018

Year

F
re

q
u

e
n

c
y
 o

f 
In

d
ic

a
to

r 
O

n
e

0
1

0
2

0
3

0
4

0

Figure 6. Frequency of indicator ones for mild drought P(Y ≤ 74, X ≥ 32). Cluster 2 (Elevation:
350–700 m).
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Figure 7. Frequency of indicator ones for mild drought P(Y ≤ 74, X ≥ 32). Cluster 3 (Elevation:
700–1200 m).

4. Discussion

The current study was motivated by work discussed in [6]. It focused on analysing
the concurrent occurrence of low rainfall and high temperatures in the Lowveld region
of South Africa’s Limpopo province. The primary aim was to evaluate how elevation
influences the joint modelling of drought risk involving low rainfall and high temperatures.
This involved using elliptical and Archimedean copulas for joint modelling and estimating
the probabilities of getting low rainfall and high temperatures.

The findings of the study revealed that in elevations ranging from 100–350 m, 350–700 m,
and 700–1200 m, there were approximately 64%, 66%, and 65% chances of experiencing mild
droughts, with corresponding risks of moderate drought at around 36%, 39% and 38%, and
severe drought at approximately 16%, 19%, and 18%, respectively. An analysis of mild and
moderate drought occurrences for different elevation clusters indicated specific frequency
probabilities, such as 0.43 and 0.03 for elevation 100–350 m and 0.32 and 0.02 for elevation
350–700 m, with zero probabilities for severe and extreme droughts. At 700–1200 m eleva-
tions, the probability was 0.02 for mild drought, with no occurrence of moderate, severe, or
extreme droughts.

Furthermore, these frequency probabilities were compared with those obtained from a
logistic regression model utilising the Southern Oscillation Index (SOI) as the sole covariate,
demonstrating comparable results. The models exhibited strong predictive performance
regarding compound low rainfall and high temperatures during the 2015/2016 season, as
depicted in Figures 5–7. These results are consistent with those of [24].

One of the limitations of the study is that it did not include other indicators such as the
standardised precipitation index (SPI), Palmer drought severity index (PDSI), normalised
difference vegetation index (NDVI), drought severity and coverage index (DSCI), or the
standardised precipitation evapotranspiration index (SPEI), among others. It is known that
integrating multiple drought indicators provides a comprehensive assessment of drought
risk and severity. This will be carried out in future research.
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5. Conclusions

The study investigated the increasing occurrence of extreme compound events, focus-
ing on concurrent low rainfall and high temperatures in South Africa’s Lowveld region
in the Limpopo province. It assessed how elevation influences drought risk, using copu-
las for joint modelling and estimating concurrent probabilities. Findings from the study
show varying probabilities of mild, moderate, and severe droughts across elevation ranges,
with comparisons to a logistic regression model using the southern oscillation index. The
study’s modelling framework provides insights into the complex relationship between high
temperatures and low rainfall, offering valuable implications for disaster management and
suggesting robust methodologies applicable globally.
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Appendix A

Appendix A.1. Tables

Table A1 gives a summary of the metadata.

Table A1. Meta data. Source: Nemukula et al. [6]

Grid ID r1c1 r1c2 r1c3 r1c4 r1c5 r1c6

Latitude −22.5 −22.5 −22.5 −22.5 −22.5 −22.5
Longitude 30 30.5 31 31.5 32 32.5

Grid ID r2c1 r2c2 r2c3 r2c4 r2c5 r2c6

Latitude −23 −23 −23 −23 −23 −23
Longitude 30 30.5 31 31.5 32 32.5

Grid ID r3c1 r3c2 r3c3 r3c4 r3c5 r3c6

Latitude −23.5 −23.5 −23.5 −23.5 −23.5 −23.5
Longitude 30 30.5 31 31.5 32 32.5

Grid ID r4c1 r4c2 r4c3 r4c4 r4c5 r4c6

Latitude −24 −24 −24 −24 −24 −24
Longitude 30 30.5 31 31.5 32 32.5

https://github.com/csigauke
https://github.com/csigauke
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Appendix A.2. Figures
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Figure A1. Histograms (diagonal), a scatter plot of the rainfall and temperature (bottom left). The
red dot represents the reference point (0,0). Kendall’s rank correlation coefficient (top right) of
temperature and rainfall data for Cluster 1 (elevation 100–350 m).
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Figure A2. Histograms (diagonal), a scatter plot of the rainfall and temperature (bottom left). The
red dot represents the reference point (0,0). Kendall’s rank correlation coefficient (top right) of
temperature and rainfall data for Cluster 3 (elevation 700–1200 m).
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