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The depletion of rivers and groundwater caused by climate change and human ac-
tivity is threatening water security and ecosystems. In order to mitigate this trend, some
initiatives have been implemented, including the ecological restoration of rivers and the
artificial recharge of groundwater [1,2]. For instance, the South-to-North Water Diversion
Project [3,4], the ecology water replenishment of the Yongding River in Beijing, and the
comprehensive treatment of groundwater overexploitation [5] have been instrumental
in alleviating the depletion of water resources in North China. However, these actions
can change the natural connections between river water and groundwater, affecting their
hydrological characteristics and the exchange of materials between them [2]. Currently,
the responses of rivers and groundwater to these behaviors and the mechanisms behind
them are not fully understood. As a result, the Special Issue “River Ecological Restoration
and Groundwater Artificial Recharge” was created in March 2022 to review and present
advanced methodologies, recent progress and challenges, and future opportunities in this
field. The first Special Issue comprised 10 papers that discussed the impacts of river eco-
logical replenishment and groundwater recharge on watershed ecology and groundwater
quality, as well as the sustainable utilization of water resources at the regional and basin
scale. Unfortunately, due to the limited capacity of the publication, many excellent studies
could not be included. In response to the requests of the authors and readers, a second
Special Issue was created to further enrich our understanding of this issue.

This Special Issue comprises fifteen papers encompassing three interlinked research
fields. Three papers focused on revealing the hydrobiogeochemical cycles existing in
riverbank filtration. Seven papers focused on the sources, distribution, and transformation
of various types of pollutants in river–groundwater systems. Five papers focused on the
impacts of climate change and human activities on groundwater dynamics.

Riverbank filtration (RBF) is an important part of the surface water–groundwater cycle,
and it intercepts and retains many pollutants present in rivers. Understanding the material
cycling process is of paramount importance for the comprehension and implementation of
RBF. During groundwater recharge using RBF, pollutants such as ammonium and COD
enter the aquifer and change the hydrogeochemical processes and microbial community
structure, which in turn causes the release of elements such as Fe, Mn, and As (described in
contributions 1–3).

The effects of human activity on the quantity and quality of water in river–groundwater
systems can change the migration and transformation behaviors of pollutants in river
water and groundwater [6]. Research on the physicochemical behavior of pollutants in
river–groundwater systems is crucial for understanding their risks and their subsequent
control [7,8]. The behavior of different types of pollutants is determined by different factors
such as their sources and properties. The anthropogenic influence on inorganic contam-
ination is mainly seen in the release of poor-quality primary components from aquifers
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(especially in mining areas) caused by changes in hydrodynamic conditions, such as fluo-
rine contamination from red mud pits (contribution 4) and uranium from sandstone-type
mines (contribution 5). The behavior of insoluble organic contaminants (e.g., petroleum
hydrocarbons) in the zones of groundwater level fluctuation is sensitive to changes in the
water level caused by artificial recharge, especially under freezing and thawing cycles
(contributions 6–7). In addition, ecological replenishment strongly alters the hydrody-
namic conditions and chemical composition of surface water, which in turn causes the
secondary release of pollutants, such as heavy metals (contribution 8), pharmaceuticals,
and personal care products (PPCPs) (contribution 9), from sediments. With different types
of contaminants and distinct aquifer conditions, the choice of water treatment also needs to
be assessed comprehensively from a multi-dimensional perspective to prevent potential
pollution risks (contribution 10).

Groundwater dynamics, which are under the influence of climate change and hu-
man activity, is a coupled natural–human system problem, and numerical simulation is
an effective tool for studying it. Authors have combined fuzzy mathematics, random
forests, and climate models with groundwater models to study groundwater dynamics
under different scenarios, such as ecological recharge (contribution 11), riverbank filtration
(contribution 12), and artificial recharge (contribution 13). The impact of climate change
on the sustainable utilization of water resources is also discussed and studied in detail
(contributions 14–15).

These published papers provide useful scientific evidence that could lead to a better
understanding of the relationship between river water and groundwater impacted by hu-
man activity and climate change. We believe that these high-quality papers have important
value as references for the sustainable management of water resources and the protection
of water ecological security.

We thank all the authors for contributing to this Special Issue and making it a success.
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